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Problem 1

This relates to example four from lecture, which was about a nonlinear oscillator with damping.

(a)

Let A be the area of the region {(u0, V ) ∈ R2 | 1
2V

2 +Φ(u0) ≤ E}. Show that A =
∫ 2π

0
ω0(u0

η)
2dη.

Proof. First, consider the boundary of the region, which we can rewrite as V = ±
√
2(E − Φ(u0)).

By symmetry, the area is given by

A = 2

∫ b(E)

a(E)

√
2(E − Φ(u0))du0, (1)

where a(E) and b(E) are the endpoints. This is because we used a(E) and b(E) to denote the points
where Φ(u0) = E in class; at these values, V = 0, so these are indeed where the function crosses the
u0-axis. We make the change of variables u0 = u0(η) and assume u0 is increasing in η, u0(0) = a(E)
and u0(π) = b(E) as we did in class. Using the given identity,

√
2(E − Φ(u0)) = ω0u

0
η, we may then

rewrite

A = 2

∫ π

0

ω0u0
ηu

0
ηdη = 2

∫ π

0

ω0(u0
η)

2dη.

Using the evenness and 2π-periodicity of (u0)
2, as in class, we obtain the desired relationship,

A =

∫ 2π

0

ω0(u0
η)

2dη.

(b)

Show that
dA

dE
=

2π

ω0(E)
.

Proof. Following the hint, we differentiate (1) with respect to E. Using the given formula,

dA

dE
= 2

d

dE

∫ b(E)

a(E)

√
2(E − Φ(u0))du0

= 2

(∫ b(E)

a(E)

1√
2(E − Φ(u0))

du0 + b′(E)
√
2(E − Φ(b(E)))− a′(E)

√
2(E − Φ(a(E)))

)

= 2

∫ b(E)

a(E)

1√
2(E − Φ(u0))

du0

where we used the fact that Φ(a(E)) = Φ(b(E)) = E to see that all of the terms added to the integral
are zero. Using the same change of variables as in part (a), we then obtain

dA

dE
= 2

∫ π

0

1

ω0(E)u0
η

u0
ηdη = 2

1

ω0(E)

∫ π

0

dη =
2π

ω0(E)

as claimed.
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Problem 2

Consider
u′′
ϵ (t) + ω2(ϵt) sin(uϵ(t)) = 0 (2)

where uϵ = uϵ(t) and ω = ω(s) > 0. Suppose uϵ has the form

uϵ(t) = u

(
θ(ϵt, ϵ)

ϵ
, ϵt, ϵ

)
(3)

where u = u(η, τ, ϵ), θ = θ(τ, ϵ), and η 7→ u(η, τ, ϵ) are 2π-periodic. Apply the usual ansatz

u = u0 + ϵu1 + ....

θ = θ0 + ϵθ1 + ...

and choose θ0 such that θ0τ = ω. Let ω0
.
= θ0τ = ω and ω1

.
= θ1τ .

(a)

Let E be the energy

E(τ, η) =
1

2
(u0

η)
2 − cos(u0).

Showing, using the O(1)-terms, that E = E(τ).

Proof. First, substitute the ansatz into (2). To do so, we compute, using (3),

u′
ϵ = (u0 + ϵu1 + ...)′

= u0
η ·

1

ϵ
θτ · ϵ+ ϵu0

τ + ϵ(u1
η ·

1

ϵ
θτ · ϵ+ ϵu1

τ ) + ...

= u0
ηθ

0
τ + ϵ(u0

ηθ
1
τ + u0

τ + u1
ηθtau

0) + ϵ2(u1
ηθ

1
τ + u1

τ ) + ...

and

u′′
ϵ = u0

ηθ
0
ττ ϵ+ θ0τ (u

0
ηη(θ

0
τ + ϵθ1τ + ...) + u0

ητ ϵ) + ϵ(u0
ηθ

1
ττ ϵ+ θ1τ (u

0
ηη(θ

0
τ + ϵθ1τ + ...) + u0

ητ ϵ))

+ u0
τη(θ

0
τ + ϵθ1τ + ...) + ϵu0

ττ + ϵu1
ηθ

0
ττ + θ0τ (u

1
ηη(θ

0
τ + ϵθ1τ + ...) + ϵu1

ητ )

Just from u′′
ϵ , we have:

O(1) : u0
ηη(θ

0
τ )

2

O(ϵ) : ϵ(u0
ηθ

0
ττ + 2θ0τθ

1
τu

0
ηη + 2u0

τηθ
0
τ + (θ0τ )

2u1
ηη)

Notice that the term ω2(τ) sin(uϵ(t)), substituting in our ansatz and using a Taylor expansion, be-
comes

ω2(sin(u0) + ϵu1 cos(u0) + ...)

Overall, the O(1) terms then yield the equation

u0
ηη(θ

0
τ )

2 + ω2 sin(u0) = 0.

Rewriting this to reflect that ω = θ0τ , we have

ω2u0
ηη + ω2 sin(u0) = 0.

We then have
u0
ηη + sin(u0) = 0. (4)

We want to use this to show E = E(τ). To show E = E(τ), we need to show that ∂E
∂η = 0. Evaluating

this using the definition of E(τ, η), what we want to show is that

u0
ηu

0
ηη + sin(u0)u0

η = 0.

Equivalently, we want to show that
u0
ηη + sin(u0) = 0.

Yet, this is exactly (4), the relationship we showed to be true due to the O(1)-terms. Thus, we have
shown E = E(τ) as claimed.
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(b)

Differentiate the O(1)-terms with respect to θ and let W
.
= u0

η to show that W solves a linear PDE
in W . Then multiply the O(ϵ)−terms by W to show that∫ 2π

0

ω0(u0
η)

2dη = C.

Proof. Differentiating (4) with respect to η and using the definition of W , we have that

Wηη + cos(u0)W = 0, (5)

which is the desired PDE that W satisfies. Next, using the O(ϵ) terms we found in part (a), we
obtain (using also the definition of ω0 and ω1)

u0
ηω

0
τ + 2ω0ω1Wη + 2Wτω

0 + (ω0)2u1
ηη + (ω0)2u1 cos(u0) = 0. (6)

Multiplying (6) by W , considering only the u1 term, and integrating from η = 0 to η = 2π, we
evaluate ∫ 2π

0

(ω0)2u1
ηη + (ω0)2u1 cos(u0)Wdη =

∫ 2π

0

(ω0)2u1Wηη + (ω0)2u1 cos(u0)Wdη

=

∫ 2π

0

(ω0)2u1(Wηη + cos(u0)W )dη

= 0.

In the first line we used integration by parts to get the first term in the integral, noting that the
boundary terms are zero because of the 2π-periodicity assumption. In the third line, we used the
PDE we just derived for W , (5). We found that multiplying this part of the overall O(ϵ) terms and
integrating is zero, so we are left with (after factoring out a negative)∫ 2π

0

W 2ω0
τ + 2ω0ω1WηW + 2ω0WτWdη = 0.

Evaluating this further,

0 = ω0ω1

∫ 2π

0

(W 2)ηdη +

∫ 2π

0

(W 2ω0)τdη

= 0 +

∫ 2π

0

(W 2ω0)τdη

=
d

dτ

∫ 2π

0

W 2ω0dη

In the first line, we used that ω0 and ω1 do not depend on η. In the second line, we used FTC and
the 2π-periodicity of W 2. From the last line, we can integrate with respect to τ and use the definition
of W to find that ∫ 2π

0

ω0(u0
η)

2 = C,

as claimed.

(c)

Finally, calculate θ0 in terms of ω.

Solution. Due to the note in the problem set stating that we can solve the three equations (from
part (a), (b), and this part) to find u0, ω

0, and θ0, we interpret the problem statement to not be
asking for a full, explicit calculation. Instead, as in class, we can integrate using the definition of ω0

to find that

θ0(τ) = θ0(0) +

∫ τ

0

ω0(s)ds

is the desired equation for θ0 in terms of ω = ω0.
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