APMA 1941G Homework 7 Solutions
 Lulabel Ruiz Seitz

(with collaboration from Will Kwon)
March 18, 2024

Problem 1

This relates to example four from lecture, which was about a nonlinear oscillator with damping.

(a)

Let A be the area of the region $\left\{\left(u_{0}, V\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} V^{2}+\Phi\left(u_{0}\right) \leq E\right.\right\}$. Show that $A=\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta$.
Proof. First, consider the boundary of the region, which we can rewrite as $V= \pm \sqrt{2\left(E-\Phi\left(u_{0}\right)\right)}$. By symmetry, the area is given by

$$
\begin{equation*}
A=2 \int_{a(E)}^{b(E)} \sqrt{2\left(E-\Phi\left(u_{0}\right)\right)} d u_{0} \tag{1}
\end{equation*}
$$

where $a(E)$ and $b(E)$ are the endpoints. This is because we used $a(E)$ and $b(E)$ to denote the points where $\Phi\left(u_{0}\right)=E$ in class; at these values, $V=0$, so these are indeed where the function crosses the u_{0}-axis. We make the change of variables $u_{0}=u_{0}(\eta)$ and assume u_{0} is increasing in $\eta, u_{0}(0)=a(E)$ and $u_{0}(\pi)=b(E)$ as we did in class. Using the given identity, $\sqrt{2\left(E-\Phi\left(u_{0}\right)\right)}=\omega_{0} u_{\eta}^{0}$, we may then rewrite

$$
A=2 \int_{0}^{\pi} \omega^{0} u_{\eta}^{0} u_{\eta}^{0} d \eta=2 \int_{0}^{\pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta
$$

Using the evenness and 2π-periodicity of $\left(u_{0}\right)^{2}$, as in class, we obtain the desired relationship,

$$
A=\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta
$$

(b)

Show that

$$
\frac{d A}{d E}=\frac{2 \pi}{\omega^{0}(E)}
$$

Proof. Following the hint, we differentiate (1) with respect to E. Using the given formula,

$$
\begin{aligned}
\frac{d A}{d E} & =2 \frac{d}{d E} \int_{a(E)}^{b(E)} \sqrt{2\left(E-\Phi\left(u_{0}\right)\right)} d u_{0} \\
& =2\left(\int_{a(E)}^{b(E)} \frac{1}{\sqrt{2\left(E-\Phi\left(u_{0}\right)\right)}} d u_{0}+b^{\prime}(E) \sqrt{2(E-\Phi(b(E)))}-a^{\prime}(E) \sqrt{2(E-\Phi(a(E)))}\right) \\
& =2 \int_{a(E)}^{b(E)} \frac{1}{\sqrt{2\left(E-\Phi\left(u_{0}\right)\right)}} d u_{0}
\end{aligned}
$$

where we used the fact that $\Phi(a(E))=\Phi(b(E))=E$ to see that all of the terms added to the integral are zero. Using the same change of variables as in part (a), we then obtain

$$
\frac{d A}{d E}=2 \int_{0}^{\pi} \frac{1}{\omega^{0}(E) u_{\eta}^{0}} u_{\eta}^{0} d \eta=2 \frac{1}{\omega^{0}(E)} \int_{0}^{\pi} d \eta=\frac{2 \pi}{\omega^{0}(E)}
$$

as claimed.

Problem 2

Consider

$$
\begin{equation*}
u_{\epsilon}^{\prime \prime}(t)+\omega^{2}(\epsilon t) \sin \left(u_{\epsilon}(t)\right)=0 \tag{2}
\end{equation*}
$$

where $u^{\epsilon}=u^{\epsilon}(t)$ and $\omega=\omega(s)>0$. Suppose u_{ϵ} has the form

$$
\begin{equation*}
u_{\epsilon}(t)=u\left(\frac{\theta(\epsilon t, \epsilon)}{\epsilon}, \epsilon t, \epsilon\right) \tag{3}
\end{equation*}
$$

where $u=u(\eta, \tau, \epsilon), \theta=\theta(\tau, \epsilon)$, and $\eta \mapsto u(\eta, \tau, \epsilon)$ are 2π-periodic. Apply the usual ansatz

$$
\begin{aligned}
u & =u^{0}+\epsilon u^{1}+\ldots \\
\theta & =\theta^{0}+\epsilon \theta^{1}+\ldots
\end{aligned}
$$

and choose θ_{0} such that $\theta_{\tau}^{0}=\omega$. Let $\omega_{0} \doteq \theta_{\tau}^{0}=\omega$ and $\omega_{1} \doteq \theta_{\tau}^{1}$.

(a)

Let E be the energy

$$
E(\tau, \eta)=\frac{1}{2}\left(u_{\eta}^{0}\right)^{2}-\cos \left(u^{0}\right)
$$

Showing, using the $O(1)$-terms, that $E=E(\tau)$.
Proof. First, substitute the ansatz into (2). To do so, we compute, using (3),

$$
\begin{aligned}
u_{\epsilon}^{\prime} & =\left(u^{0}+\epsilon u^{1}+\ldots\right)^{\prime} \\
& =u_{\eta}^{0} \cdot \frac{1}{\epsilon} \theta_{\tau} \cdot \epsilon+\epsilon u_{\tau}^{0}+\epsilon\left(u_{\eta}^{1} \cdot \frac{1}{\epsilon} \theta_{\tau} \cdot \epsilon+\epsilon u_{\tau}^{1}\right)+\ldots \\
& =u_{\eta}^{0} \theta_{\tau}^{0}+\epsilon\left(u_{\eta}^{0} \theta_{\tau}^{1}+u_{\tau}^{0}+u_{\eta}^{1} \theta_{t} a u^{0}\right)+\epsilon^{2}\left(u_{\eta}^{1} \theta_{\tau}^{1}+u_{\tau}^{1}\right)+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
u_{\epsilon}^{\prime \prime}= & u_{\eta}^{0} \theta_{\tau \tau}^{0} \epsilon+\theta_{\tau}^{0}\left(u_{\eta \eta}^{0}\left(\theta_{\tau}^{0}+\epsilon \theta_{\tau}^{1}+\ldots\right)+u_{\eta \tau}^{0} \epsilon\right)+\epsilon\left(u_{\eta}^{0} \theta_{\tau \tau}^{1} \epsilon+\theta_{\tau}^{1}\left(u_{\eta \eta}^{0}\left(\theta_{\tau}^{0}+\epsilon \theta_{\tau}^{1}+\ldots\right)+u_{\eta \tau}^{0} \epsilon\right)\right) \\
& +u_{\tau \eta}^{0}\left(\theta_{\tau}^{0}+\epsilon \theta_{\tau}^{1}+\ldots\right)+\epsilon u_{\tau \tau}^{0}+\epsilon u_{\eta}^{1} \theta_{\tau \tau}^{0}+\theta_{\tau}^{0}\left(u_{\eta \eta}^{1}\left(\theta_{\tau}^{0}+\epsilon \theta_{\tau}^{1}+\ldots\right)+\epsilon u_{\eta \tau}^{1}\right)
\end{aligned}
$$

Just from $u_{\epsilon}^{\prime \prime}$, we have:

$$
\begin{array}{ll}
O(1): & u_{\eta \eta}^{0}\left(\theta_{\tau}^{0}\right)^{2} \\
O(\epsilon): & \epsilon\left(u_{\eta}^{0} \theta_{\tau \tau}^{0}+2 \theta_{\tau}^{0} \theta_{\tau}^{1} u_{\eta \eta}^{0}+2 u_{\tau \eta}^{0} \theta_{\tau}^{0}+\left(\theta_{\tau}^{0}\right)^{2} u_{\eta \eta}^{1}\right)
\end{array}
$$

Notice that the term $\omega^{2}(\tau) \sin \left(u_{\epsilon}(t)\right)$, substituting in our ansatz and using a Taylor expansion, becomes

$$
\omega^{2}\left(\sin \left(u_{0}\right)+\epsilon u^{1} \cos \left(u_{0}\right)+\ldots\right)
$$

Overall, the $O(1)$ terms then yield the equation

$$
u_{\eta \eta}^{0}\left(\theta_{\tau}^{0}\right)^{2}+\omega^{2} \sin \left(u^{0}\right)=0
$$

Rewriting this to reflect that $\omega=\theta_{\tau}^{0}$, we have

$$
\omega^{2} u_{\eta \eta}^{0}+\omega^{2} \sin \left(u^{0}\right)=0
$$

We then have

$$
\begin{equation*}
u_{\eta \eta}^{0}+\sin \left(u^{0}\right)=0 \tag{4}
\end{equation*}
$$

We want to use this to show $E=E(\tau)$. To show $E=E(\tau)$, we need to show that $\frac{\partial E}{\partial \eta}=0$. Evaluating this using the definition of $E(\tau, \eta)$, what we want to show is that

$$
u_{\eta}^{0} u_{\eta \eta}^{0}+\sin \left(u^{0}\right) u_{\eta}^{0}=0
$$

Equivalently, we want to show that

$$
u_{\eta \eta}^{0}+\sin \left(u^{0}\right)=0
$$

Yet, this is exactly (4), the relationship we showed to be true due to the $O(1)$-terms. Thus, we have shown $E=E(\tau)$ as claimed.

(b)

Differentiate the $O(1)$-terms with respect to θ and let $W \doteq u_{\eta}^{0}$ to show that W solves a linear PDE in W. Then multiply the $O(\epsilon)$-terms by W to show that

$$
\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2} d \eta=C
$$

Proof. Differentiating (4) with respect to η and using the definition of W, we have that

$$
\begin{equation*}
W_{\eta \eta}+\cos \left(u^{0}\right) W=0, \tag{5}
\end{equation*}
$$

which is the desired PDE that W satisfies. Next, using the $O(\epsilon)$ terms we found in part (a), we obtain (using also the definition of ω^{0} and ω^{1})

$$
\begin{equation*}
u_{\eta}^{0} \omega_{\tau}^{0}+2 \omega^{0} \omega^{1} W_{\eta}+2 W_{\tau} \omega^{0}+\left(\omega^{0}\right)^{2} u_{\eta \eta}^{1}+\left(\omega^{0}\right)^{2} u^{1} \cos \left(u^{0}\right)=0 \tag{6}
\end{equation*}
$$

Multiplying (6) by W, considering only the u^{1} term, and integrating from $\eta=0$ to $\eta=2 \pi$, we evaluate

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(\omega^{0}\right)^{2} u_{\eta \eta}^{1}+\left(\omega^{0}\right)^{2} u^{1} \cos \left(u^{0}\right) W d \eta & =\int_{0}^{2 \pi}\left(\omega^{0}\right)^{2} u^{1} W_{\eta \eta}+\left(\omega^{0}\right)^{2} u^{1} \cos \left(u^{0}\right) W d \eta \\
& =\int_{0}^{2 \pi}\left(\omega^{0}\right)^{2} u^{1}\left(W_{\eta \eta}+\cos \left(u_{0}\right) W\right) d \eta \\
& =0
\end{aligned}
$$

In the first line we used integration by parts to get the first term in the integral, noting that the boundary terms are zero because of the 2π-periodicity assumption. In the third line, we used the PDE we just derived for $W,(5)$. We found that multiplying this part of the overall $O(\epsilon)$ terms and integrating is zero, so we are left with (after factoring out a negative)

$$
\int_{0}^{2 \pi} W^{2} \omega_{\tau}^{0}+2 \omega^{0} \omega^{1} W_{\eta} W+2 \omega^{0} W_{\tau} W d \eta=0
$$

Evaluating this further,

$$
\begin{aligned}
0 & =\omega^{0} \omega^{1} \int_{0}^{2 \pi}\left(W^{2}\right)_{\eta} d \eta+\int_{0}^{2 \pi}\left(W^{2} \omega^{0}\right)_{\tau} d \eta \\
& =0+\int_{0}^{2 \pi}\left(W^{2} \omega^{0}\right)_{\tau} d \eta \\
& =\frac{d}{d \tau} \int_{0}^{2 \pi} W^{2} \omega^{0} d \eta
\end{aligned}
$$

In the first line, we used that ω^{0} and ω^{1} do not depend on η. In the second line, we used FTC and the 2π-periodicity of W^{2}. From the last line, we can integrate with respect to τ and use the definition of W to find that

$$
\int_{0}^{2 \pi} \omega^{0}\left(u_{\eta}^{0}\right)^{2}=C
$$

as claimed.

(c)

Finally, calculate θ_{0} in terms of ω.
Solution. Due to the note in the problem set stating that we can solve the three equations (from part (a), (b), and this part) to find u_{0}, ω^{0}, and θ_{0}, we interpret the problem statement to not be asking for a full, explicit calculation. Instead, as in class, we can integrate using the definition of ω_{0} to find that

$$
\theta_{0}(\tau)=\theta_{0}(0)+\int_{0}^{\tau} \omega^{0}(s) d s
$$

is the desired equation for θ_{0} in terms of $\omega=\omega^{0}$.

