# APMA 1941G Homework 8 Solutions <br> Lulabel Ruiz Seitz 

March 23, 2024

With collaboration from Will Kwon.

## Problem 1

For this problem, you may use the following integration-by-parts formula, assuming the boundary terms are zero:

$$
\begin{equation*}
\int_{W} D f \cdot D g d \mathbf{x}=-\int_{W} \operatorname{div}(D f) g d \mathbf{x} \tag{1}
\end{equation*}
$$

## (a)

Suppose $u$ is a minimizer of

$$
\begin{equation*}
I[u]=\int_{W} \frac{1}{2}|D u|^{2}+f(u)+|\mathbf{x}|^{2} d \mathbf{x} \tag{2}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, W \subseteq \mathbb{R}^{n}, f=f(s)$, and ${ }^{\prime}=\frac{d}{d s}$. Mimic the derivation of the EulerLagrange equation to show

$$
\begin{equation*}
-\Delta u+f^{\prime}(u)=0 \tag{3}
\end{equation*}
$$

Proof. Let $v$ be an arbitrary function (say smooth and compactly supported on $W$ ). Let $h \in \mathbb{R}$. Then we can evaluate

$$
\Phi(\epsilon) \doteq I[u+\epsilon v]=\int_{W} \frac{1}{2}|D(u+\epsilon v)|^{2}+f(u+\epsilon v)+|\boldsymbol{x}|^{2} d \boldsymbol{x}
$$

We know since $u$ is a minimizer by assumption, $\left.\frac{d}{d \epsilon} \Phi(\epsilon)\right|_{\epsilon=0}=0$. We now evaluate $\frac{d}{d \epsilon} \Phi$ :

$$
\begin{aligned}
\frac{d}{d \epsilon} \Phi(\epsilon) & =\int_{W} \frac{1}{2} \frac{d}{d \epsilon}|D(u+\epsilon v)|^{2}+\frac{d}{d \epsilon} f(u+\epsilon v)+\frac{d}{d \epsilon}|\boldsymbol{x}|^{2} d \mathbf{x} \\
& =\int_{W} \frac{d}{d \epsilon}\left(\frac{1}{2}|D u|^{2}+\epsilon D u \cdot D v+\epsilon^{2}|D v|^{2}+f(u+\epsilon v)+|\mathbf{x}|^{2}\right) d \mathbf{x} \\
& =\int_{W} D u \cdot D v+2 \epsilon|D v|^{2}+f^{\prime}(u+\epsilon v) v d \mathbf{x} \\
& =\int_{W}\left(-\Delta u+f^{\prime}(u+\epsilon v)\right) v+2 \epsilon|D v|^{2} d \mathbf{x}
\end{aligned}
$$

where in the last line, we used integration by parts and the assumption that $v$ vanishes on the boundary. We also know that when $\epsilon=0$,

$$
0=\left.\frac{d}{d \epsilon} \Phi(\epsilon)\right|_{\epsilon=0}=\int_{W}\left(-\Delta u+f^{\prime}(u)\right) v+d \mathbf{x}
$$

By the fundamental theorem of the calculus of variations though, since $v$ was arbitrary, we may then conclude exactly (3),

$$
-\Delta u+f^{\prime}(u)=0
$$

## (b)

This part refers to Example 7 (An Eikonal/Continuity PDE): Suppose that $a^{0}$ and $\theta^{0}$ minimize $I^{0}\left[a^{0}, \theta^{0}\right]$. By doing a variation in $\theta^{0}$, show that $\theta^{0}$ must satisfy the equation

$$
\begin{equation*}
-\operatorname{div}\left(\left|a_{0}\right|^{2} D \theta^{0}\right)=0 \tag{4}
\end{equation*}
$$

Proof. We recall from class that

$$
\begin{equation*}
I^{0}\left[a^{0}, \theta^{0}\right]=\int_{\mathbb{R}^{n}} \frac{1}{2}\left|a^{0}\right|^{2}\left|D \theta^{0}\right|^{2}+\frac{1}{2} V(x)\left|a^{0}\right|^{2} d x \tag{5}
\end{equation*}
$$

Now let $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider a variation in $\theta^{0}$. We then evaluate

$$
\Psi(\epsilon) \doteq I^{0}\left[a^{0}, \theta^{0}+\epsilon v\right]=\int_{\mathbb{R}^{n}} \frac{1}{2}\left|a^{0}\right|^{2}\left(\left|D \theta^{0}\right|^{2}+2 \epsilon D v \cdot D \theta^{0}+\epsilon^{2}|D v|^{2}\right)+\frac{1}{2} V(x)\left|a^{0}\right|^{2} d \mathbf{x}
$$

We compute as before

$$
\frac{d}{d \epsilon} \Psi(\epsilon)=\int_{\mathbb{R}^{n}}\left|a^{0}\right|^{2} D v \cdot D \theta^{0}+\left|a^{0}\right|^{2} \epsilon|D v|^{2} d \mathbf{x}
$$

At $\epsilon=0$, we then have

$$
0=\int_{\mathbb{R}^{n}}\left|a^{0}\right|^{2} D v \cdot D \theta^{0}
$$

Using integration by parts, the assumption on $v$, and changing the notation from $D$. to divergence, we obtain

$$
0=-\int_{W} \operatorname{div}\left(\left(a_{0}\right)^{2} D \theta^{0}\right)=0
$$

Again using the fundamental theorem of the calculus of variations, we have exactly the identity (4) as claimed.

## (c)

Let $f$ and $\phi$ be fixed functions. Find $L=L(p, z, x)$ so that

$$
-\Delta u+D \phi \cdot D u=f(x)
$$

is the Euler-Lagrange equation corresponding to the functional

$$
I[u]=\int_{W} L(D u, u, x) d x
$$

Solution. Following the hint, we first find a Lagrangian corresponding to the simpler $\mathrm{PDE}-\Delta u=f$. Inspired by an example from class, we try $L(p, z, x)=\frac{1}{2}|p|^{2}-z f$. Now we check it. The EulerLagrange equation is given by

$$
-\sum_{i=1}^{n}\left(L_{p_{i}}(p, z, x)\right)_{x_{i}}+L_{z}(p, z, x)=0
$$

Evaluating this for our guess, we see that we obtain

$$
-\sum_{i=1}^{n}\left(D_{i} u\right)_{x_{i}}-f=0
$$

which is exactly $-\Delta u=f$. Following the hint, we multiply by an exponential term involving $\phi$. We try the simplest option:

$$
\begin{equation*}
L(p, z, x) \doteq e^{-\phi(x)}\left(\frac{1}{2}|p|^{2}-z f\right) \tag{6}
\end{equation*}
$$

Plugging this into the Euler-Lagrange equation,

$$
-\sum_{i=1}^{n}\left(e^{-\phi(x)} D_{i} u\right)_{x_{i}}-e^{-\phi(x)} f=0
$$

Using the product rule, this is

$$
-\sum_{i=1}^{n} e^{-\phi(x)} D_{i i} u-D_{i} \phi(x) e^{-\phi(x)} D_{i} u=e^{-\phi(x)} f
$$

Multiplying through by $e^{\phi(x)}$,

$$
-\sum_{i=1}^{n} D_{i i} u-D_{i} \phi(x) D_{i} u=f
$$

which we can rewrite as

$$
-\Delta u+D \phi \cdot D u=f(x)
$$

which is what we wanted. Thus, the desired Lagrangian is indeed (6).

## Problem 2

Consider the following ODE on $(0,1)$

$$
\left\{\begin{array}{l}
\epsilon u_{\epsilon}^{\prime \prime}+u_{\epsilon}^{\prime}+u_{\epsilon}=0 \\
u_{\epsilon}(0)=0, \quad u_{\epsilon}(1)=1
\end{array}\right.
$$

and apply the ansatz

$$
u^{\epsilon}(x)=u^{0}\left(x, \frac{x}{\epsilon}\right)+\epsilon u^{1}\left(x, \frac{x}{\epsilon}\right)+\ldots
$$

where $u^{k}=u^{k}(x, \tau)$.
(a)

Find the $O\left(\frac{1}{\epsilon}\right)$ terms to get a formula for $u^{0}(x, \tau)$ in terms of constants $A(x)$ and $B(x)$.
Solution. In order to collect terms, we first need to substitute in our ansatz. To do so, we first calculate

$$
\frac{d}{d x} u^{\epsilon}(x)=u_{x}^{0}+\frac{1}{\epsilon} u_{\tau}^{0}+\epsilon u_{x}^{1}+u_{\tau}^{1}
$$

and

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} u^{\epsilon}(x) & =u_{x x}^{0}+\frac{1}{\epsilon u_{\tau x}^{0}}+\frac{1}{\epsilon} u_{\tau x}^{0}+\frac{1}{\epsilon^{2}} u_{\tau \tau}^{0}+\epsilon u_{x x}^{1}+2 u_{x \tau}^{1}+\frac{1}{\epsilon} u_{\tau \tau}^{1} \\
& =u_{x x}^{0}+\frac{2}{\epsilon} u_{x \tau}^{0}+\frac{1}{\epsilon^{2}} u_{\tau \tau}^{0}+\epsilon u_{x x}^{1}+2 u_{x \tau}^{1}+\frac{1}{\epsilon} u_{\tau \tau}^{1} .
\end{aligned}
$$

Substituting these into the original equation, we obtain

$$
\begin{equation*}
\frac{1}{\epsilon}\left(u_{\tau \tau}^{0}+u_{\tau}^{0}\right)+u_{\tau \tau}^{1}+2 u_{x \tau}^{0}+u_{x}^{0}+u_{\tau}^{1}+u^{0}+\epsilon\left(u_{x x}^{0}+2 u_{x \tau}^{1}+u_{x}^{1}+u_{\epsilon}\right)+\ldots=0 \tag{7}
\end{equation*}
$$

Now extracting the $O\left(\frac{1}{\epsilon}\right)$ terms, we have

$$
u_{\tau \tau}^{0}+u_{\tau}^{0}=0
$$

Integrating in $\tau$ once, we obtain $u_{\tau}^{0}=A(x) e^{-\tau}$. Integrating in $\tau$ again, we obtain

$$
u^{0}(x, \tau)=-A(x) e^{-\tau}+B(x)
$$

## (b)

Find the $O(1)$-terms to get an ODE of $u^{1}$ in terms of $u^{0}$. Kill the resonance terms to find (the general form of) $A(x)$ and $B(x)$.

Solution. Now considering the $O(1)$ terms from (7), we have

$$
\begin{equation*}
u_{\tau \tau}^{1}+2 u_{x \tau}^{0}+u_{x}^{0}+u_{\tau}^{1}+u^{0}=0 . \tag{8}
\end{equation*}
$$

From part (a), we find that

$$
u_{x}^{0}=-e^{-\tau} A^{\prime}(x)+B^{\prime}(x)
$$

and

$$
u_{x \tau}^{0}=e^{-\tau} A^{\prime}(x) .
$$

We then rewrite (8) as

$$
u_{\tau \tau}^{1}+u_{\tau}^{1}+e^{-\tau} A^{\prime}(x)+B^{\prime}(x)-A(x) e^{-\tau}+B(x)=0,
$$

or equivalently,

$$
u_{\tau \tau}^{1}+u_{\tau}^{1}=e^{-\tau}\left(A(x)-A^{\prime}(x)\right)-B^{\prime}(x)-B(x)
$$

Due to the left-hand side, we see the homogeneous equation would have the same form as before, so we have to kill the resonance terms by setting

$$
A^{\prime}(x)=A(x) \text { and } B^{\prime}(x)=-B(x) .
$$

Solving these, we then get the forms $A(x)=C_{1} e^{x}$ and $B(x)=C_{2} e^{-x}$.
(c)

Finally, impose the conditions $u^{0}(0)=0$ and $u^{0}(1)=1$ to find an explicit formula for $u^{0}(x)=u^{0}\left(x, \frac{x}{\epsilon}\right)$.
Solution. From (b), we have that $A(x)=C_{1} e^{x}$ and $B(x)=C_{2} e^{-x}$. Then using the result from (a), we have that

$$
u^{0}(x, \tau)=-C_{1} e^{x} e^{-\tau}+C_{2} e^{-x}
$$

Since $u^{0}(0)=0$, we have that

$$
-C_{1}+C_{2}=0
$$

so $C_{2}=C_{1}$. Since $u^{0}(1)=1$, we have that

$$
1=-C_{1} e^{1-1 / \epsilon}+C_{2} e^{-1}=C_{1}\left(-e^{1-1 / \epsilon}+e^{-1}\right)
$$

We then have that

$$
C_{1}=\frac{1}{-e^{1-1 / \epsilon}+e^{-1}}=\frac{e}{1-e^{2-1 / \epsilon}}
$$

Overall, then

$$
u^{0}(x, \tau)=\frac{e}{1-e^{2-1 / \epsilon}}\left(e^{-x}-e^{x-x / \epsilon}\right)
$$

