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Problem 1

For this problem, you may use the following integration-by-parts formula, assuming the boundary
terms are zero: ∫

W

Df ·Dgdx = −
∫
W

div(Df)gdx, (1)

(a)

Suppose u is a minimizer of

I[u] =

∫
W

1

2
|Du|2 + f(u) + |x|2dx (2)

where x = (x1, ..., xn) ∈ Rn, W ⊆ Rn, f = f(s), and ′ = d
ds . Mimic the derivation of the Euler-

Lagrange equation to show
−∆u+ f ′(u) = 0. (3)

Proof. Let v be an arbitrary function (say smooth and compactly supported on W ). Let h ∈ R.
Then we can evaluate

Φ(ϵ)
.
= I[u+ ϵv] =

∫
W

1

2
|D(u+ ϵv)|2 + f(u+ ϵv) + |x|2dx.

We know since u is a minimizer by assumption, d
dϵΦ(ϵ)|ϵ=0 = 0. We now evaluate d

dϵΦ:

d

dϵ
Φ(ϵ) =

∫
W

1

2

d

dϵ
|D(u+ ϵv)|2 + d

dϵ
f(u+ ϵv) +

d

dϵ
|x|2dx

=

∫
W

d

dϵ

(
1

2
|Du|2 + ϵDu ·Dv + ϵ2|Dv|2 + f(u+ ϵv) + |x|2

)
dx

=

∫
W

Du ·Dv + 2ϵ|Dv|2 + f ′(u+ ϵv)vdx

=

∫
W

(−∆u+ f ′(u+ ϵv))v + 2ϵ|Dv|2dx,

where in the last line, we used integration by parts and the assumption that v vanishes on the
boundary. We also know that when ϵ = 0,

0 =
d

dϵ
Φ(ϵ)|ϵ=0 =

∫
W

(−∆u+ f ′(u))v + dx.

By the fundamental theorem of the calculus of variations though, since v was arbitrary, we may then
conclude exactly (3),

−∆u+ f ′(u) = 0.

(b)

This part refers to Example 7 (An Eikonal/Continuity PDE): Suppose that a0 and θ0 minimize
I0[a0, θ0]. By doing a variation in θ0, show that θ0 must satisfy the equation

−div(|a0|2Dθ0) = 0. (4)

Proof. We recall from class that

I0[a0, θ0] =

∫
Rn

1

2
|a0|2|Dθ0|2 + 1

2
V (x)|a0|2dx. (5)
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Now let v ∈ C∞
0 (Rn) and consider a variation in θ0. We then evaluate

Ψ(ϵ)
.
= I0[a0, θ0 + ϵv] =

∫
Rn

1

2
|a0|2(|Dθ0|2 + 2ϵDv ·Dθ0 + ϵ2|Dv|2) + 1

2
V (x)|a0|2dx.

We compute as before

d

dϵ
Ψ(ϵ) =

∫
Rn

|a0|2Dv ·Dθ0 + |a0|2ϵ|Dv|2dx.

At ϵ = 0, we then have

0 =

∫
Rn

|a0|2Dv ·Dθ0.

Using integration by parts, the assumption on v, and changing the notation from D· to divergence,
we obtain

0 = −
∫
W

div((a0)
2Dθ0) = 0.

Again using the fundamental theorem of the calculus of variations, we have exactly the identity (4)
as claimed.

(c)

Let f and ϕ be fixed functions. Find L = L(p, z, x) so that

−∆u+Dϕ ·Du = f(x)

is the Euler-Lagrange equation corresponding to the functional

I[u] =

∫
W

L(Du, u, x)dx.

Solution. Following the hint, we first find a Lagrangian corresponding to the simpler PDE −∆u = f .
Inspired by an example from class, we try L(p, z, x) = 1

2 |p|
2 − zf . Now we check it. The Euler-

Lagrange equation is given by

−
n∑

i=1

(Lpi(p, z, x))xi + Lz(p, z, x) = 0.

Evaluating this for our guess, we see that we obtain

−
n∑

i=1

(Diu)xi
− f = 0,

which is exactly −∆u = f . Following the hint, we multiply by an exponential term involving ϕ. We
try the simplest option:

L(p, z, x)
.
= e−ϕ(x)

(
1

2
|p|2 − zf

)
. (6)

Plugging this into the Euler-Lagrange equation,

−
n∑

i=1

(e−ϕ(x)Diu)xi
− e−ϕ(x)f = 0.

Using the product rule, this is

−
n∑

i=1

e−ϕ(x)Diiu−Diϕ(x)e
−ϕ(x)Diu = e−ϕ(x)f.

Multiplying through by eϕ(x),

−
n∑

i=1

Diiu−Diϕ(x)Diu = f,

which we can rewrite as
−∆u+Dϕ ·Du = f(x),

which is what we wanted. Thus, the desired Lagrangian is indeed (6).
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Problem 2

Consider the following ODE on (0, 1){
ϵu′′

ϵ + u′
ϵ + uϵ = 0

uϵ(0) = 0, uϵ(1) = 1

and apply the ansatz

uϵ(x) = u0
(
x,

x

ϵ

)
+ ϵu1

(
x,

x

ϵ

)
+ ...

where uk = uk(x, τ).

(a)

Find the O
(
1
ϵ

)
terms to get a formula for u0(x, τ) in terms of constants A(x) and B(x).

Solution. In order to collect terms, we first need to substitute in our ansatz. To do so, we first
calculate

d

dx
uϵ(x) = u0

x +
1

ϵ
u0
τ + ϵu1

x + u1
τ

and

d2

dx2
uϵ(x) = u0

xx +
1

ϵu0
τx

+
1

ϵ
u0
τx +

1

ϵ2
u0
ττ + ϵu1

xx + 2u1
xτ +

1

ϵ
u1
ττ

= u0
xx +

2

ϵ
u0
xτ +

1

ϵ2
u0
ττ + ϵu1

xx + 2u1
xτ +

1

ϵ
u1
ττ .

Substituting these into the original equation, we obtain

1

ϵ

(
u0
ττ + u0

τ

)
+ u1

ττ + 2u0
xτ + u0

x + u1
τ + u0 + ϵ(u0

xx + 2u1
xτ + u1

x + uϵ) + ... = 0 (7)

Now extracting the O( 1ϵ ) terms, we have

u0
ττ + u0

τ = 0.

Integrating in τ once, we obtain u0
τ = A(x)e−τ . Integrating in τ again, we obtain

u0(x, τ) = −A(x)e−τ +B(x).

(b)

Find the O(1)-terms to get an ODE of u1 in terms of u0. Kill the resonance terms to find (the general
form of) A(x) and B(x).

Solution. Now considering the O(1) terms from (7), we have

u1
ττ + 2u0

xτ + u0
x + u1

τ + u0 = 0. (8)

From part (a), we find that
u0
x = −e−τA′(x) +B′(x)

and
u0
xτ = e−τA′(x).

We then rewrite (8) as

u1
ττ + u1

τ + e−τA′(x) +B′(x)−A(x)e−τ +B(x) = 0,

or equivalently,
u1
ττ + u1

τ = e−τ (A(x)−A′(x))−B′(x)−B(x)

Due to the left-hand side, we see the homogeneous equation would have the same form as before, so
we have to kill the resonance terms by setting

A′(x) = A(x) and B′(x) = −B(x).

Solving these, we then get the forms A(x) = C1e
x and B(x) = C2e

−x.
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(c)

Finally, impose the conditions u0(0) = 0 and u0(1) = 1 to find an explicit formula for u0(x) = u0(x, x
ϵ ).

Solution. From (b), we have that A(x) = C1e
x and B(x) = C2e

−x. Then using the result from (a),
we have that

u0(x, τ) = −C1e
xe−τ + C2e

−x.

Since u0(0) = 0, we have that
−C1 + C2 = 0,

so C2 = C1. Since u0(1) = 1, we have that

1 = −C1e
1−1/ϵ + C2e

−1 = C1(−e1−1/ϵ + e−1).

We then have that

C1 =
1

−e1−1/ϵ + e−1
=

e

1− e2−1/ϵ
.

Overall, then

u0(x, τ) =
e

1− e2−1/ϵ
(e−x − ex−x/ϵ).
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