APMA 1941G - HOMEWORK 9

Problem 1: (10 points)
Consider the following ODE on $(0,1)$, where $u^{\epsilon}=u^{\epsilon}(x)$

$$
\left\{\begin{array}{r}
\epsilon u_{x x}^{\epsilon}+u_{x}^{\epsilon}=2 x \\
u^{\epsilon}(0)=1, u^{\epsilon}(1)=1
\end{array}\right.
$$

We expect there to be a boundary layer at $x=0$
Follow the method used in lecture to find a good approximation u^{\star} of u^{ϵ} that incorporates the boundary layer

Note: You only need to limit yourself to the $O(1)$-terms. For the matching-part, you may use any method that you wish.

Problem 2: (10 points)
Consider the following ODE on $(0,1)$, where $u^{\epsilon}=u^{\epsilon}(x)$

$$
\left\{\begin{array}{r}
\epsilon u_{x x}^{\epsilon}+u_{x}^{\epsilon}+u^{\epsilon}=0 \\
u^{\epsilon}(0)=0, u^{\epsilon}(1)=1
\end{array}\right.
$$

We expect there to be a boundary layer at $x=0$
Follow the method used in lecture to find a good approximation u^{\star} of u^{ϵ} that incorporates the boundary layer (TURN PAGE)

Note: This time, go up to the $O(\epsilon)$-terms. For the matching part, you may use any method you wish (but I think you'll be forced to apply Method 2).

