April 12, 2024

With collaboration from Will Kwon.

Problem 1

Consider the following ODE on (0, 1), where $u^{\epsilon} = u^{\epsilon}(x)$,

$$\epsilon u_{xx}^{\epsilon} + u_{x}^{\epsilon} = 2x$$

$$u^{\epsilon}(0) = 1, u^{\epsilon}(1) = 1$$
(1)

We expect there to be a boundary layer at x = 0. Follow the method used in lecture to find a good approximation of u^* of u^{ϵ} that incorporates the boundary layer. You will only need to use the O(1) terms and the matching part can be done with any method.

Solution. First, we construct the outer solution, which is near x = 1.

Outer Solution. For this, we use the usual ansatz, $u^{\epsilon}(x) = u^{0}(x) + \epsilon u^{1}(x) + \dots$ Substituting this into (1), we obtain

$$(\epsilon u_{xx}^0 + \epsilon^2 u_{xx}^1) + (u_x^0 + \epsilon u_x^1) + \dots = 2x.$$
(2)

The O(1) terms yield just

$$u_x^0 = 2x. (3)$$

We can solve this to obtain that $u^0(x) = x^2 + C$. Imposing the boundary condition at 1, we have that u(1) = 1 + C = 1, so C = 0. Then our outer solution is just

 $u^0(x) = x^2.$

Inner Solution. Now we construct the solution near x = 0. We use the change of variables $y = x/\epsilon^{\alpha}$, where α is to be determined. Let $\overline{u}^{\epsilon}(y) \doteq u^{\epsilon}(x)$. Then we can compute

$$u_x^{\epsilon} = \frac{d\overline{u}^{\epsilon}}{dy}\frac{dy}{dx} = \frac{1}{\epsilon^{\alpha}}\overline{u}_y^{\epsilon}$$
$$u_{xx}^{\epsilon} = \frac{1}{\epsilon^{2\alpha}}\overline{u}_{yy}^{\epsilon}$$

from which the original ODE becomes

$$\epsilon^{1-2\alpha}\overline{u}_{yy}^{\epsilon} + \epsilon^{-\alpha}\overline{u}_{y}^{\epsilon} - 2y\epsilon^{\alpha} = 0.$$
⁽⁴⁾

In order to apply the method of dominant balance, label $A \doteq \epsilon^{1-2\alpha} \overline{u}_{yy}^{\epsilon}$, $B \doteq \epsilon^{-\alpha} \overline{u}_{y}^{\epsilon}$, and $C \doteq -2y\epsilon^{\alpha}$. If $A \sim B$ and C is smaller, then $1 - 2\alpha = -\alpha$, so $\alpha = 1$, in which case C is of the order ϵ . This is indeed smaller that ϵ^{-1} when taking the limit as $\epsilon \to 0^+$, so this works. To be sure, we verify the other options from dominant balance do not work. If $A \sim C$ and B is smaller, then $1 - 2\alpha = \alpha$, so $\alpha = 1/3$, but then B is of the order $\epsilon^{-1/3}$ which is not smaller than $\epsilon^{1/3}$ as $\epsilon \to 0^+$, violating our assumption B is smaller. If $B \sim C$ and A is smaller, then $\alpha = 0$, but then y = x and we have no boundary layer. Accordingly, we do need $\alpha = 1$. Rewriting (5) with this knowledge,

$$\epsilon^{-1}\overline{u}_{yy}^{\epsilon} + \epsilon^{-1}\overline{u}_{y}^{\epsilon} - 2y\epsilon = 0.$$
⁽⁵⁾

Multiplying through by ϵ ,

$$\overline{u}_{yy}^{\epsilon} + \overline{u}_{y}^{\epsilon} - 2y\epsilon^{2} = 0..$$

Now we can make our usual ansatz, $\overline{u}^{\epsilon}(u) = \overline{u}^{0}(y) + \epsilon \overline{u}^{1}(y) + \dots$ Substituting this in, we obtain

$$\overline{u}_{yy}^0 + \epsilon \overline{u}_{yy}^1 + \overline{u}_y^0 + \epsilon \overline{u}_y^1 - 2y\epsilon^2 + \dots = 0.$$

The O(1) terms yield

$$\overline{u}_{yy}^0 + \overline{u}_y^0 = 0.$$

Solving this,

$$\overline{u}^0(y) = Ae^{-y} + B.$$

Using the boundary term for the inner solution, so near zero, we have $\overline{u}^0(0) = 1$. Then 1 = A + B, so B = 1 - A, and $\overline{u}^0(y) = A(e^{-y} - 1) + 1$. We need to match this with the outer solution to find A. We do so by using the first method from class. We see that

$$\lim_{x \to 0} x^2 = 0 \text{ and } \lim_{y \to \infty} A(e^{-y} - 1) = -A + 1.$$

We then need to set A = 1 to have matching, which means that the inner solution is

$$\overline{u}^0(y) = e^{-y} \,.$$

Overall Solution. We construct u^* by

$$u^*(x) = u^0(x) + \overline{u}^0(y) -$$
common part .

We saw the common part was zero, so assembling what we found for $u^0(x)$ and $\overline{u}^0(y)$ and using the change of variables $y = x/\epsilon$,

$$u^*(x) = x^2 + e^{-x/\epsilon}$$

Problem 2

Consider the following ODE on (0, 1) where $u^{\epsilon} = u^{\epsilon}(x)$

$$\epsilon u_{xx}^{\epsilon} + u_{x}^{\epsilon} + u^{\epsilon} = 0$$

$$u^{\epsilon}(0) = 1, u^{\epsilon}(1) = 1$$
(6)

We expect there to be a boundary layer at x = 0. Follow the method used in lecture to find a good approximation of u^* of u^{ϵ} that incorporates the boundary layer. This time, go up to the $O(\epsilon)$ terms.

Solution. We follow the same overall method, first constructing the outer solution and then the inner solution, and using those to construct the overall solution.

Outer Solution. We use the ansatz $u^{\epsilon}(x) = u^{0}(x) + \epsilon u^{1}(x) + \dots$ as before. Substituting this ansatz into (6), we obtain

$$(\epsilon u_{xx}^0 + \epsilon^2 u_{xx}^1) + (u_x^0 + \epsilon u_x^1) + (u^0 + \epsilon u^1) + \dots = 0.$$
(7)

The O(1) terms from (7) yield

 $u_x^0 + u^0 = 0,$

which we solve to obtain $u^0(x) = Ae^{-x}$. Since $u^0(1) = 1$ (we are in the outer region, so we use the boundary condition at 1), we obtain that $Ae^{-1} - 1 = 0$, so A = e. We have found the outer solution

$$u^0(x) = e^{1-x}$$

Now considering the $O(\epsilon)$ terms from (7), we have

$$u_{xx}^0 + u_x^1 + u^1 = 0.$$

Substituting in what we found for u^0 , we have that

$$u_x^1 + u^1 = -e^{1-x}.$$

Solving this using the method of undetermined coefficients, we have that

$$u^{1}(x) = Ae^{-x} - xe^{-x+1}.$$

Since $u^{1}(1) = 1$ as well, $Ae^{-1} - 1 = 0$, so A = e. We then have found the outer solution

$$u^{1}(x) = e^{1-x}(1-x)$$
.

Inner Solution. We again use the change of variables $y = x/e^{\alpha}$, where α is to be determined. Again denoting $\overline{u}^{\epsilon}(y) = u^{\epsilon}(x)$, we can write the ODE in terms of y:

$$\epsilon^{1-2\alpha}\overline{u}_{yy}^{\epsilon} + \epsilon^{-\alpha}\overline{u_y}^{\epsilon} + \overline{u}^{\epsilon} = 0.$$
(8)

Now label $A \doteq \epsilon^{1-2\alpha} \overline{u}_{yy}^{\epsilon}$, $B \doteq \epsilon^{-\alpha} \overline{u_y}^{\epsilon}$, and $C \doteq \overline{u}^{\epsilon}$. Using the method of dominant balance, we have that $A \sim B$ and C is small, so $\alpha = 1$ (indeed, then C is constant in ϵ , which is smaller than ϵ^{-1} as $\epsilon \to 0^+$). We can then rewrite (8), after multiplying through by ϵ , as

$$\overline{u}_{yy}^{\epsilon} + \overline{u}_{y}^{\epsilon} + \epsilon \overline{u}^{\epsilon} = 0.$$

Making the usual ansatz and substituting it in,

$$(\overline{u}_{yy}^0 + \epsilon \overline{u}_{yy}^1) + (\overline{u}_y^0 + \epsilon \overline{u}_y^1) + \epsilon (\overline{u}^0 + \epsilon \overline{u}^1) + \dots = 0.$$

The O(1) terms from this yield that

$$\overline{u}_{yy}^0 + \overline{u}_y^0 = 0,$$

which we can solve to find that $\overline{u}^0(y) = A + Be^{-y}$. Using the boundary condition $\overline{u}^0(0) = 0$, then B = -A, and $\overline{u}^0(y) = A(1 - e^{-y})$. In this case, we can use the first matching method to find A. Since $\lim_{x\to 0^+} e^{1-x} = e$, and $\lim_{y\to\infty} A(1 - e^{-y}) = A$, we set A = e and obtain that

$$\overline{\overline{u}}^0(y) = e(1 - e^{-y}).$$

Now we consider the $O(\epsilon)$ terms. We obtain that

$$\epsilon \overline{u}_{yy}^1 + \epsilon \overline{u}_y^1 + \epsilon \overline{u}^0 = 0.$$

Multiplying through by ϵ^{-1} , and substituting in what we just found for \overline{u}^0 , we obtain that

$$\overline{u}_{yy}^1 + \overline{u}_y = -e(1 - e^{-y})$$

Solving this and using the boundary condition $\overline{u}^1(0) = 0$, we find that

$$\overline{u}^{1}(y) = A(1 - e^{-y}) - ye(1 + e^{-y}).$$

We need to use a matching method to find A, but we cannot use the simpler method in this case because the limit of the above as $y \to \infty$ does not converge. Instead, we use the second method. Define the intermediate variable $x = x/\epsilon^{\beta}$, where $x \in (\epsilon^{\alpha_1}, \epsilon^{\alpha_2})$ as in class (this interval is within (0,1), and z is defined so that it is between x and $y = x/\epsilon$). Notice that $y = \epsilon^{\beta-1}z$. Now rewriting $u^0(x), \epsilon u^1(x)$ and $\overline{u}^0(y) + \epsilon \overline{u}^1(y)$ in terms of z,

$$u^{0}(x) + \epsilon u^{1}(x) = e^{1-\epsilon^{\beta}z} + \epsilon(1-\epsilon^{\beta}z)e^{1-\epsilon^{\beta}z}$$
$$\overline{u}^{0}(y) + \epsilon \overline{u}^{1}(y) = e(1-e^{-\epsilon^{\beta-1}z}) + \epsilon(A(1-e^{-\epsilon^{\beta-1}z})) - \epsilon \cdot \epsilon^{\beta-1}ze(1+e^{-\epsilon^{\beta-1}z})$$

Taking the limit as $\epsilon^{\beta}z \to 0$ and $\epsilon^{\beta-1}z \to \infty$, we see that $u^{0}(x) + \epsilon u^{1}(x)$ goes to $e + \epsilon e$, while $\overline{u}^{0}(y) + \epsilon \overline{u}^{1}(y)$ goes to $e + \epsilon A - 0 = e + \epsilon A$. Matching these, we have that $e + \epsilon e = e + \epsilon A$, which means we want to set A = e. Then

$$\overline{u}^{1}(y) = e(1 - e^{-y}) - ye(1 + e^{-y})$$
.

Overall Solution. We construct u^* by

$$u^*(x) = u^0(x) + \epsilon u^1(x) + \overline{u}^0(y) + \epsilon \overline{u}^1(y) -$$
common part .

From the previous step, we saw that the common part was $e + \epsilon e = e(1 + \epsilon)$. By assembling all the parts we found and changing variables $y = x/\epsilon$, we obtain the overall solution

$$u^{*}(x) = e^{1-x} + \epsilon e^{1-x}(1-x) + e(1-e^{-x/\epsilon}) + \epsilon \left(e(1-e^{-x/\epsilon}) - \frac{x}{\epsilon}e(1+e^{-x/\epsilon})\right) - e(1+\epsilon)$$