APMA 1941G Homework 9 Solutions Lulabel Ruiz Seitz
 April 12, 2024

With collaboration from Will Kwon.

Problem 1

Consider the following ODE on $(0,1)$, where $u^{\epsilon}=u^{\epsilon}(x)$,

$$
\begin{array}{r}
\epsilon u_{x x}^{\epsilon}+u_{x}^{\epsilon}=2 x \\
u^{\epsilon}(0)=1, u^{\epsilon}(1)=1 \tag{1}
\end{array}
$$

We expect there to be a boundary layer at $x=0$. Follow the method used in lecture to find a good approximation of u^{*} of u^{ϵ} that incorporates the boundary layer. You will only need to use the $O(1)$ terms and the matching part can be done with any method.

Solution. First, we construct the outer solution, which is near $x=1$.
Outer Solution. For this, we use the usual ansatz, $u^{\epsilon}(x)=u^{0}(x)+\epsilon u^{1}(x)+\ldots$. Substituting this into (1), we obtain

$$
\begin{equation*}
\left(\epsilon u_{x x}^{0}+\epsilon^{2} u_{x x}^{1}\right)+\left(u_{x}^{0}+\epsilon u_{x}^{1}\right)+\ldots=2 x . \tag{2}
\end{equation*}
$$

The $O(1)$ terms yield just

$$
\begin{equation*}
u_{x}^{0}=2 x . \tag{3}
\end{equation*}
$$

We can solve this to obtain that $u^{0}(x)=x^{2}+C$. Imposing the boundary condition at 1 , we have that $u(1)=1+C=1$, so $C=0$. Then our outer solution is just

$$
u^{0}(x)=x^{2} \text {. }
$$

Inner Solution. Now we construct the solution near $x=0$. We use the change of variables $y=x / \epsilon^{\alpha}$, where α is to be determined. Let $\bar{u}^{\epsilon}(y) \doteq u^{\epsilon}(x)$. Then we can compute

$$
\begin{aligned}
u_{x}^{\epsilon} & =\frac{d \bar{u}^{\epsilon}}{d y} \frac{d y}{d x}=\frac{1}{\epsilon^{\alpha}} \bar{u}_{y}^{\epsilon} \\
u_{x x}^{\epsilon} & =\frac{1}{\epsilon^{2 \alpha}} \bar{u}_{y y}^{\epsilon}
\end{aligned}
$$

from which the original ODE becomes

$$
\begin{equation*}
\epsilon^{1-2 \alpha} \bar{u}_{y y}^{\epsilon}+\epsilon^{-\alpha} \bar{u}_{y}^{\epsilon}-2 y \epsilon^{\alpha}=0 \tag{4}
\end{equation*}
$$

In order to apply the method of dominant balance, label $A \doteq \epsilon^{1-2 \alpha} \bar{u}_{y y}^{\epsilon}, B \doteq \epsilon^{-\alpha} \bar{u}_{y}^{\epsilon}$, and $C \doteq-2 y \epsilon^{\alpha}$. If $A \sim B$ and C is smaller, then $1-2 \alpha=-\alpha$, so $\alpha=1$, in which case C is of the order ϵ. This is indeed smaller that ϵ^{-1} when taking the limit as $\epsilon \rightarrow 0^{+}$, so this works. To be sure, we verify the other options from dominant balance do not work. If $A \sim C$ and B is smaller, then $1-2 \alpha=\alpha$, so $\alpha=1 / 3$, but then B is of the order $\epsilon^{-1 / 3}$ which is not smaller than $\epsilon^{1 / 3}$ as $\epsilon \rightarrow 0^{+}$, violating our assumption B is smaller. If $B \sim C$ and A is smaller, then $\alpha=0$, but then $y=x$ and we have no boundary layer. Accordingly, we do need $\alpha=1$. Rewriting (5) with this knowledge,

$$
\begin{equation*}
\epsilon^{-1} \bar{u}_{y y}^{\epsilon}+\epsilon^{-1} \bar{u}_{y}^{\epsilon}-2 y \epsilon=0 \tag{5}
\end{equation*}
$$

Multiplying through by ϵ,

$$
\bar{u}_{y y}^{\epsilon}+\bar{u}_{y}^{\epsilon}-2 y \epsilon^{2}=0 . .
$$

Now we can make our usual ansatz, $\bar{u}^{\epsilon}(u)=\bar{u}^{0}(y)+\epsilon \bar{u}^{1}(y)+\ldots$. Substituting this in, we obtain

$$
\bar{u}_{y y}^{0}+\epsilon \bar{u}_{y y}^{1}+\bar{u}_{y}^{0}+\epsilon \bar{u}_{y}^{1}-2 y \epsilon^{2}+\ldots=0 .
$$

The $O(1)$ terms yield

$$
\bar{u}_{y y}^{0}+\bar{u}_{y}^{0}=0 .
$$

Solving this,

$$
\bar{u}^{0}(y)=A e^{-y}+B
$$

Using the boundary term for the inner solution, so near zero, we have $\bar{u}^{0}(0)=1$. Then $1=A+B$, so $B=1-A$, and $\bar{u}^{0}(y)=A\left(e^{-y}-1\right)+1$. We need to match this with the outer solution to find A. We do so by using the first method from class. We see that

$$
\lim _{x \rightarrow 0} x^{2}=0 \text { and } \lim _{y \rightarrow \infty} A\left(e^{-y}-1\right)=-A+1
$$

We then need to set $A=1$ to have matching, which means that the inner solution is

$$
\bar{u}^{0}(y)=e^{-y} \text {. }
$$

Overall Solution. We construct u^{*} by

$$
u^{*}(x)=u^{0}(x)+\bar{u}^{0}(y)-\text { common part } .
$$

We saw the common part was zero, so assembling what we found for $u^{0}(x)$ and $\bar{u}^{0}(y)$ and using the change of variables $y=x / \epsilon$,

$$
u^{*}(x)=x^{2}+e^{-x / \epsilon} .
$$

Problem 2

Consider the following ODE on $(0,1)$ where $u^{\epsilon}=u^{\epsilon}(x)$

$$
\begin{array}{r}
\epsilon u_{x x}^{\epsilon}+u_{x}^{\epsilon}+u^{\epsilon}=0 \\
u^{\epsilon}(0)=1, u^{\epsilon}(1)=1 \tag{6}
\end{array}
$$

We expect there to be a boundary layer at $x=0$. Follow the method used in lecture to find a good approximation of u^{*} of u^{ϵ} that incorporates the boundary layer. This time, go up to the $O(\epsilon)$ terms.

Solution. We follow the same overall method, first constructing the outer solution and then the inner solution, and using those to construct the overall solution.

Outer Solution. We use the ansatz $u^{\epsilon}(x)=u^{0}(x)+\epsilon u^{1}(x)+\ldots$ as before. Substituting this ansatz into (6), we obtain

$$
\begin{equation*}
\left(\epsilon u_{x x}^{0}+\epsilon^{2} u_{x x}^{1}\right)+\left(u_{x}^{0}+\epsilon u_{x}^{1}\right)+\left(u^{0}+\epsilon u^{1}\right)+\ldots .=0 \tag{7}
\end{equation*}
$$

The $O(1)$ terms from (7) yield

$$
u_{x}^{0}+u^{0}=0
$$

which we solve to obtain $u^{0}(x)=A e^{-x}$. Since $u^{0}(1)=1$ (we are in the outer region, so we use the boundary condition at 1), we obtain that $A e^{-1}-1=0$, so $A=e$. We have found the outer solution

$$
u^{0}(x)=e^{1-x} \text {. }
$$

Now considering the $O(\epsilon)$ terms from (7), we have

$$
u_{x x}^{0}+u_{x}^{1}+u^{1}=0
$$

Substituting in what we found for u^{0}, we have that

$$
u_{x}^{1}+u^{1}=-e^{1-x} .
$$

Solving this using the method of undetermined coefficients, we have that

$$
u^{1}(x)=A e^{-x}-x e^{-x+1}
$$

Since $u^{1}(1)=1$ as well, $A e^{-1}-1=0$, so $A=e$. We then have found the outer solution

$$
u^{1}(x)=e^{1-x}(1-x)
$$

Inner Solution. We again use the change of variables $y=x / e^{\alpha}$, where α is to be determined. Again denoting $\bar{u}^{\epsilon}(y)=u^{\epsilon}(x)$, we can write the ODE in terms of y :

$$
\begin{equation*}
\epsilon^{1-2 \alpha} \bar{u}_{y y}^{\epsilon}+\epsilon^{-\alpha} \bar{u}_{y}^{\epsilon}+\bar{u}^{\epsilon}=0 . \tag{8}
\end{equation*}
$$

Now label $A \doteq \epsilon^{1-2 \alpha} \bar{u}_{y y}^{\epsilon}, B \doteq \epsilon^{-\alpha}{\overline{u_{y}}}^{\epsilon}$, and $C \doteq \bar{u}^{\epsilon}$. Using the method of dominant balance, we have that $A \sim B$ and C is small, so $\alpha=1$ (indeed, then C is constant in ϵ, which is smaller than ϵ^{-1} as $\epsilon \rightarrow 0^{+}$). We can then rewrite (8), after multiplying through by ϵ, as

$$
\bar{u}_{y y}^{\epsilon}+\bar{u}_{y}^{\epsilon}+\epsilon \bar{u}^{\epsilon}=0 .
$$

Making the usual ansatz and substituting it in,

$$
\left(\bar{u}_{y y}^{0}+\epsilon \bar{u}_{y y}^{1}\right)+\left(\bar{u}_{y}^{0}+\epsilon \bar{u}_{y}^{1}\right)+\epsilon\left(\bar{u}^{0}+\epsilon \bar{u}^{1}\right)+\ldots=0 .
$$

The $O(1)$ terms from this yield that

$$
\bar{u}_{y y}^{0}+\bar{u}_{y}^{0}=0,
$$

which we can solve to find that $\bar{u}^{0}(y)=A+B e^{-y}$. Using the boundary condition $\bar{u}^{0}(0)=0$, then $B=-A$, and $\bar{u}^{0}(y)=A\left(1-e^{-y}\right)$. In this case, we can use the first matching method to find A. Since $\lim _{x \rightarrow 0^{+}} e^{1-x}=e$, and $\lim _{y \rightarrow \infty} A\left(1-e^{-y}\right)=A$, we set $A=e$ and obtain that

$$
\bar{u}^{0}(y)=e\left(1-e^{-y}\right) .
$$

Now we consider the $O(\epsilon)$ terms. We obtain that

$$
\epsilon \bar{u}_{y y}^{1}+\epsilon \bar{u}_{y}^{1}+\epsilon \bar{u}^{0}=0 .
$$

Multiplying through by ϵ^{-1}, and substituting in what we just found for \bar{u}^{0}, we obtain that

$$
\bar{u}_{y y}^{1}+\bar{u}_{y}=-e\left(1-e^{-y}\right) .
$$

Solving this and using the boundary condition $\bar{u}^{1}(0)=0$, we find that

$$
\bar{u}^{1}(y)=A\left(1-e^{-y}\right)-y e\left(1+e^{-y}\right) .
$$

We need to use a matching method to find A, but we cannot use the simpler method in this case because the limit of the above as $y \rightarrow \infty$ does not converge. Instead, we use the second method. Define the intermediate variable $x=x / \epsilon^{\beta}$, where $x \in\left(\epsilon^{\alpha_{1}}, \epsilon^{\alpha_{2}}\right)$ as in class (this interval is within $(0,1)$, and z is defined so that it is between x and $y=x / \epsilon)$. Notice that $y=\epsilon^{\beta-1} z$. Now rewriting $u^{0}(x), \epsilon u^{1}(x)$ and $\bar{u}^{0}(y)+\epsilon \bar{u}^{1}(y)$ in terms of z,

$$
\begin{aligned}
& u^{0}(x)+\epsilon u^{1}(x)=e^{1-\epsilon^{\beta} z}+\epsilon\left(1-\epsilon^{\beta} z\right) e^{1-\epsilon^{\beta} z} \\
& \bar{u}^{0}(y)+\epsilon \bar{u}^{1}(y)=e\left(1-e^{-\epsilon^{\beta-1} z}\right)+\epsilon\left(A\left(1-e^{-\epsilon^{\beta-1} z}\right)\right)-\epsilon \cdot \epsilon^{\beta-1} z e\left(1+e^{-\epsilon^{\beta-1} z}\right)
\end{aligned}
$$

Taking the limit as $\epsilon^{\beta} z \rightarrow 0$ and $\epsilon^{\beta-1} z \rightarrow \infty$, we see that $u^{0}(x)+\epsilon u^{1}(x)$ goes to $e+\epsilon e$, while $\bar{u}^{0}(y)+\epsilon \bar{u}^{1}(y)$ goes to $e+\epsilon A-0=e+\epsilon A$. Matching these, we have that $e+\epsilon e=e+\epsilon A$, which means we want to set $A=e$. Then

$$
\bar{u}^{1}(y)=e\left(1-e^{-y}\right)-y e\left(1+e^{-y}\right) .
$$

Overall Solution. We construct u^{*} by

$$
u^{*}(x)=u^{0}(x)+\epsilon u^{1}(x)+\bar{u}^{0}(y)+\epsilon \bar{u}^{1}(y)-\text { common part } .
$$

From the previous step, we saw that the common part was $e+\epsilon e=e(1+\epsilon)$. By assembling all the parts we found and changing variables $y=x / \epsilon$, we obtain the overall solution

$$
u^{*}(x)=e^{1-x}+\epsilon e^{1-x}(1-x)+e\left(1-e^{-x / \epsilon}\right)+\epsilon\left(e\left(1-e^{-x / \epsilon}\right)-\frac{x}{\epsilon} e\left(1+e^{-x / \epsilon}\right)\right)-e(1+\epsilon) .
$$

