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Introduction

We derived the following KdV equations of general form
Uy + autly, + by, = 0.

We look for solutions of the form u(t,x) = ¢(z — ct), which is called solitons or
traveling waves.
If we put u(t, z) = ¢(x — ct) into KAV, then

¢" + f(¢) =0,
where a c
— A2y _ =
10) = 5 (%) — 5o,
In fact, this is explicitly solvable. Multiplying ¢’ to the equation, then we can get
1

S ()2 + F9)=C,

where F' is an antiderivative of f and C' is a constant. In other words, we have

2 VAT,

By using separable variable, we get implicit formula for ¢.

1.1 Theoretical aspects

What does
f~ag+ae+ae®+---

means?
Let {ax}32, be a sequence in R and f = f(¢g) : (0,00) — R. We write f has an
asymptotic expansion if f ~ Y 77 are® as e — 0 provided that for all N

N
fle) = Z are® = o(eM)
k=0

as € — 0. We say that ZZOZO are® is an asymptotic expansion for f at € = 0.
Lemma 1.1. If f ~ Y77 axe® and f ~ Yo bpe®, then ay, = by, for all k.

Proof. Note that

N N
g akek — E bksk
k=0 k=0

Hence by letting ¢ — 0+, we have

e N <eg N +e N

N N
Zaksk — f(e) Z bre® — fe)
k=0 k=0

N N
. —-N k_ k| _
al—l>%l+ 15 Z are Z bre® =0
k=0 k=0
for each N. Then the result is followed by induction. O
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1. INTRODUCTION

Remark. (a) This is not a power series expansion. If f ~ Y27 ape® and g ~
S0 ake®, then f and g may not be equal. Take f() = e~'/¢ and g(¢) = 0. Then
0 is the asymptotic expansion of f and g.

(b) We do not claim that the series >~ are® converges for any e.

Lemma 1.2 (Borel’s lemma). Given any sequence {ar}32, there ezists a function
[ such that f ~ 332 axe®.

Proof. Start with §o = 1 and choose §; > 0 such that 0 < §; < 1/2 and |a1¢] <
1]ape’| for € € (0,61). Continue this procedure, i.e., choose &, such that 0 < &y, <
Sk—1/2 and |apy 165t < 27 age®| for all € € (0, 6;).

For each k, choose a cut-off function v, so that ¢, =1 on [0, d+1] and ¢, =0
outside [0, §x]. Fix k and let I € N. We claim that

k41 1 k
larritbry(e)e™| < §|ak5 \

for all I. Since ¥y1;(e) = 0 for € > 04y, then the estimate is obvious. If 0 < & <
Ok+1, then since 0 < ¢, < 1, it follows that

k+l| < kti-1)

1
|arr1¥r4(e)e" ] < larrie Slaksi-1e
2

Then by induction, we get
1
|akr1trri(e)e™| < Jape™| < §|ak€k|

since (076k+l) C (0,(5k).
Now define

oo

£&) = (arthi(e))e”.

k=0

Then the function f is well-defined since

00 00 0 k41
1
ITACIEES SIVEIES I €3 IR

It remains for us to show that f ~ Z;’;O ape®.

e -sieae

e—0+ EN




Asymptotic evaluation of integrals

2.1 Laplace’s method

From now on, we assume that ¢ : R — R is smooth, has a unique global max at 0,
and ¢'(0) = 0, ¢”(0) < 0. We also assume that a € C°(R) and 0 € suppa. The
goal is to understand

Ie] = / a(x)e®@/edx  as e — 0.

We first study a special case to look at the asymptotic behavior of I[e].

Theorem 2.1. Consider

> 2
Ie] = / a(z)e /(29 dy

—00

for some € > 0. Then

— a®)(0 1
I[E]NZ k'( )Cks T

where

Observe that Cy, = 0 if k is odd.

Proof. Fix 0 < e <1 and let » = r(g) > 0 which will be determined. Then

I[s]:/ a(x)e*bwz/(zs)dx:/ a(w)efbasz/(gg) der/ a(x)e E=p
o0 - R\(=r,r)

=A+B.

We first estimate B. Since a is bounded, it follows that

22
|B| < / e 5 du
R\(=r,7)
< / e~ b‘f: 6_% dx
R\(=r,7)

2
< e / e g,
R\(=7,7)

A change of variable gives

= Cef?;s%\/g e~ gy
R\(=r/+/e,r//e)

Se ¥z



2. ASYMPTOTIC EVALUATION OF INTEGRALS

Next we estimate A. By a change of variable, we have

r/VE

A=z a(Vey)e " 2dy.
—r/VE
Now expand
2 (k) N r(k)
avan) =3 D (a =3 L Oty ogag )
k=0 k=0 ’
Then
r/VE (k) b, 2
A= e <Z . ( ) (Vay) + O(Iﬁle“)) e 3V dy.
—r/vVe \k=0

We further decompose this integral into the following way:

1= 5

Ve [ ia(k)(O)M e
* Je\rivEnive = K e Y
r/VE b,2
+E O(IVey|N e =¥ dy.
/e

O (veyyetoay

To estimate the first integral, one can easily check that it is equal to

N (k) .
Z a (O) Ckfk%.

k!
k=0

The second integral can be estimated in a similar way as in B, which is bounded
by Cle—br?/4e.
To estimate the last integral, by the definition, it is bounded by

r/VE

y2
a (VE)  y[M e dy
—r/VE

< CyferVtl /r/\/E e~ /24

= Yy
—r/\E

< COyerVN T

In the end, we get

2

k41
2

br2
S VerV T peme,

k=0

Then the desired result follows by choosing r = €%, where 2(N+1) <o<1/2. O
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2.1. Laplace’s method

In fact, the general case also holds. The result follows from the Morse lemma
and the previous case.

Theorem 2.2. We have

I[e] ~ > (Lara) (0)e 5,

k=0

where
(Laka)(0) = b%a(0) + b'a’ (0) + - - - + b*a?%) (0)

and b°, 0%, ... b*F € R.

Remark. In the previous case, we note that

W =0,b =0, b2 =0, b’f:%,...,b%:o.

Proof. Let ¢ (and U and V) be given by the Morse lemma. Let n be a smooth
support function satisfying n = 0 outside V and m = 1 on (—4,d) C V for some
0 > 0. Decompose

Ife) = /Oo n(x)a(z)e? @/ dz + /Oo (1 = n(@))a(z)e?@/* de.

— 00 — 00

We will show that the second integral is exponentially small. Since 7 = 1 on (=4, §),
it follows that

‘/0;(1 —n(x))a(z)e? @)/ dx

< / |a(z)]e®@)/¢ da.
R\(—4,6)

Also, ¢(x) < —y on R\ (=4, 9) for some v > 0. This implies that

<e /e / la(z)|d
R\(—4,6)

It remains for us to estimate the first integral. Since suppn C V, a change of
variable gives

‘/Z(l —n(z))a(z)e? @/ dz

/ n(z)a(z)ed@/ dx = / n( () a(tb(y))e? POV (y)dy
R Pp=H(V)

= /Ra(zb(y))nw(y))iﬁ'(y)e’%dy-

Define a(y) = a(y(y))n(¥(y))y'(y). Then a is compactly supported and so the
above integral becomes

o 2 > (@)*) k41
:/ a(y)eV /2€dy ~ Z MckeT.
- k=0

Here we used Theorem 2.1. If we define (Lgra)(0) = w, then we get the
desired result. O



2. ASYMPTOTIC EVALUATION OF INTEGRALS

Example 2.3. Let us calculate the first temr.

I1e] ~ Lo(a)(0)VZ + o(/2).

Recall that
Lo(a)(0) = a(0)co = a((0))n(4(0))y’ (0)co.

It is easy to see that

(o)
co = / yoe_yz/Qdy =2r.
—00

Since ¢(¢(y)) = —y?/2 and ¢(y) = 0 implies y = 0, it follows that 1)(0) = 0. By
chain rule, we have

' (b)Y (y) = —y.

Since ¢'(0) = 0, we cannot extract any information from this. By taking differen-
tiation, we have

¢" (VW)W (y))* + ¢ (W ()" (y) = 1.
Plugging y = 0 in the expression, we get

¢"(0)9'(0)* = -1,

i.e., )
1 2 _
YO =y
Hence if we choose 9'(0) > 0, then
1
¥'(0
0= NIEZOR
From this, we conclude that
1 27
L 0) =a(0)n(0) —=v2r =a(0)4| —7=-
O(G)( ) a( )77( ) |w//(0)|ﬁ Cl( ) ‘¢//(0)|

Remark. (i) If ¢(0) # 0, then we can write

e z)—
Ie] :e¢(0)/8/ a(2)e 2252 gy

and we apply the our previous result.
(ii) If ¢ attains a maximum at x¢ instead of 0, then by using a change of variable
with translations, we get

I

where ¢(y + x¢) becomes a function which attains at a maximum at y = 0. Hence
if ¢ attains a global maximum at xo, ¢'(zo) =0, and ¢”(z¢) < 0, then

o0
2 x
Ile] ~ > (Laka) (wo)e? @025 = | |2 —a(ag)e = + o(VE).
k=0 ¢ (o)



2.2. Stationary phase method

Observe that the above result can be generalized to higher dimensional as well.

To do this, we introduce some notations which involve multi-indices. We write

x=(r1,...,on) ERY a=(a1,...,ay) ENV. |a| = a; + -+ + ay is the order

of index, and a! = a1!- - - an!. Also, we write
«

« « «@ 8“1‘
1 N
¥ =x7t---x and D= ————.
1 N aq an
Ox( -+ Oxy

In particular, we will use Taylor’s formula in high-dimension:

f@)= 3 (D F)0)2* +of|2l")

lo|<N

as || — 0.

Let a : RN — R be a smooth and compactly supported and ¢ : RY — R which
has a global matrix at 0 with D¢(0) = (¢4,(0),...,¢4,(0)) = 0. We also assume
that D?¢(0) is negative definite, i.e., the Hessian D?¢(0) has all strictly negative
eigenvalues.

Theorem 2.4. Suppose that ¢(x) = —% Zf\il a;x? with a; > 0. Then

D*a(0 a
T~ 3 e

as € = 0, where
Ca = / y®e Wy,
RN

By using the Morse lemma as well, we can prove the general version as well.

e N/2
Tle] ~ 3 (L) )00 26 N)/2 %a(%)ewo)/e +o(y7).
2 et D29 (a0)]

2.2 Stationary phase method

We assume that a = a(x) and ¢ = ¢(x) are smooth, a has compact support. We
are interested in evaluating the following integral

ig(x)

Ie] = /]RN a(x)e = dz.

We call ¢ as phase. We will find an asymptotic behavior for I[e].
We first consider the rapid decay case.

Theorem 2.5. If V¢ # 0 everywhere on the support of a, then

for all M.



2. ASYMPTOTIC EVALUATION OF INTEGRALS

Proof. Given any v, define

N
€
L= —— " ¢y 1.
voP &
It is easy to see that L(e'?/¢) = ¢/, Hence it follows that

f(Lg)de = / (Sf)gdz.
RN RN

where

SNV
=3 (wap?*).,

j=1

Hence for any M, we have

Ie]l = / aLM(e/%) dx = M SM(f)et®/® da,
RN RN

which implies that
[I[e]| < M. O

Hence it is legitimate to consider the case V¢(xo) = 0 for some zo. We first
consider the case ¢(z) = g;v2, where b # 0. In this case, ¢'(0) = 0. So the previous
theorem cannot be applied.

To study this type of integral, we review notions of the Fourier transform and
its properties.

Definition 2.6. For sufficiently good function f, we define
~ s .
o= [ e

We list several properties of the Fourier transform.
Proposition 2.7. For sufficiently good function f, we have

(i) (Fourier Inversion) we have

f@) =5 [ Feed

/_Z fgde = /_Z fde.

FIT-RNAN . ]
(e—) _ 2Tz sen(o) - €2
lc]

in the sense of distribution.

(ii) Plancherel

(iii) For all ¢ # 0, we have

10



2.2. Stationary phase method

(iv) For all f®)(€) = ehik f(¢).
Theorem 2.8 (Stationary Phase). We have

Ie] ~2m 2ME i sn) il e kla@k)(O)
0] K\2) b '

k=0
Proof. We may assume that b = 1. By Plancherel’s identity and Proposition 2.7
(iil), we have
Ie] = / a(z)e=i@*2e dy = €1 \/27rs/ a(€)e~2°1E g = 1% V2areJ (¢).

It remains for us to estimate J(g). For each N, we have

Nk
J(e) = Z HJ(k)(O) +o(e™)
k=0 "

_ é <_;>k /N a(€)€2* dt + o(eM).

— 00

By Proposition 2.7 (iv), we get

* 2k
= 2727m( )(0),
which implies the desired result. O

Now we move to the general case. The proof is an immediate consequence of
the previous proposition with Morse’s lemma.

Theorem 2.9. Suppose that ¢'(xg) = 0 and ¢"(x0) # 0, and xq is the only critical
point of ¢. Then

i6(20)
Il ~e = ) (Laga)(ao)e" /2,
k=0

where (Laga)(xo) is a some linear combination of a and its derivatives.

Remark. (a) In particular,

2me

|9 (o)

(b) The multi-dimensional case is as follows: if Vé(zg) = 0 and D?¢(zg) is
nonsingular, then

- 2 - ()
el sen(¢ (xO))e’quLa(ajo) + o(\/e).

I[e] =

id(@g)
Ife] ~e -« Z(Lgka)($0)8k+N/2.
k=0
In particular,

(2me)N/2
| det[D?¢ (o)

;o " ; ¢(=0)
Ie] = ¢ En(@ (@0)) i 2 4 () 4 o(eN/2),

11



2. ASYMPTOTIC EVALUATION OF INTEGRALS

2.3 Applications: group and phase velocity

In this section, we give several applications of Laplace method and stationary phase
method. Let us consider the following Airy equation:

Ut + Upze = 0. (2.1)
Definition 2.10. A plane wave solution is a solution of the form
u(z,t) = V(&x — a()),
where V =V (s) : C — C is given, £ a fixed, and ¢ = o(§) is to be found.

The origin of the word comes from the following observation: note that u is
constant on planes of the equation £z — o (&)t = c.
Put u(z,t) = "&=7©Y  where we chose V(s) = e**. If we plug into the
expression
Ug + Ugge = 0,

then one can easily verify that
(<io(§) + (i€)")e' €7 = 0.
Hence o (&) = —£3. Note that o is real.

Definition 2.11. If ¢ is real in Definition 2.10, then the PDE is called dispersive.
Note that o(£)/|£] is called the phase speed.

It can be shown that the solution of
Ut + Ugpr =0 In R x (0,00), u(z,0)=g(z) onR

is given by
1

u(x,t) = %

| ey (22)

Up to so far, there is no connection with the stationary phase method. Sur-
prisingly, there is a connection when we study the asymptotic behavior of u as
t — oo.

Consider u on the line z = c¢t. Then

T 21

1 [, 1 [
u(ett) = o / et NG (g)dg = o~ / e N g(e)de.

If we define a(§) = 5-9(£), ¢(£) = € — (), and € = 1/t, then we can apply the
method of stationary phase to the above integral. Note that

Dé(€) = ¢ — 3Do(€) = 0.

Do () is sometimes called the group velocity.

Remark. In general, group velocity and phase velocity are not equal.

12



Multiple scales
3.1 Rapidly oscillating coefficients
Consider the following ODE on (0, 1):

(o (%) ut) = (@),

ue(0) = us(1),

(3.1)

where a = a(y), a > 0, is periodic of period 1. We are interested in the behavior
of u. as ¢ — 0. However, the problem is that a(x/e) oscillates wild. Think about
sin(2000x). Hence it is not clear what the limiting ODE looks like.

From (3.1), we have

T

—a(z/e)ul — éay (7> ul = f. (3.2)

€
We first try to put the ansatz u. = ug + euy + e2us + - -+ into (3.2), and find
ug = lim,_,9 ue. Then
" " 1 / r
—aug —cauy + - — Zaylp — Gyl = f
Observe that in O(1/¢g)-term
—ayup =0

From this, we see that wug is constant. Next, we analyze O(1)-term. Then

l — —f(l‘)

—ayuy = f, le., uj(x) PRETEE

The above identity shows that this is not a good ansatz.
Next natural trial is

ue = ug(x, x/e) + euy (x, x/e) + 2ug(x, /) + ...

to capture the high frequency. Then put this ansatz into (3.2). Then we have

T

—a (g) [(uo(z,z/€))" + e(ur(z,x /)" + &*(ua(z, /) +---].

Then we have

—éay(a:/e) [(uo(z,x/e)) +e(ur(z, x/e)) + 2 (ug(, z/e))] = f(x). (3.3)

Note that 1
[ (z,x/e)]' = uli(z,z/e) + EU’;(x,w/e)

and

1
kg k

2
k " o_ k
[w(z,z/e)]" = uzax” + Clny T gy

13



3. MULTIPLE SCALES

Hence (3.3) becomes

2 1 1
0 0 0 1 1 1 2,2 2 2
a {um + 6umy + = Uy + EUgy + 2uy, + 6uyy +eug, + 2eug, + Uy, +

- éay {ungiu2+sui+u;+€2ui+5u§+-~
~ 1),
(3.4)
The ultimate goal is to find ug. We will check that by analyzing O(1/e?)-term, we
will show that wg does not depend on y. Then by analyzing O(1/e)-term, we will
write u1 in terms of ug, and finally we will find ug from O(1).

: 2 0 0_0 i
By comparing O(1/e?)-term, we have —auy, — a,uy =0, ie.,

—(au)), =0. (3.5)

Multiplying u® and integrating it over [0, 1], we have

1
/ alug |* dy = 0.
0

by the periodicity. Hence a(ug) =0and a > 0, ie., ug = 0 on [0,1]. Hence u°

depends only on z. The limiting function u° has no oscillations.
Next, we analyze O(1/¢) term. We have

0 1 0 1_
—2aug, — au,, — ayu, —ayu; = 0.

Observe that u, = 0. From this, we can rewrite it into
~(aul)y = ayud, (36)

which is the PDE for u!'. We will rewrite it in terms of 0.
To solve (3.6), introduce auxiliary function w = w(y) satisfying

—(a(y)wy)y = ay(y), w(0) =w(l).

Such a solution exists by using the Fredholm alternative. Define u!(z,y) = w(y)ul ().
Then, it is a solution (3.6). From this, we see the O(1)-term:

1

—au, — 2au,, — au,, — ayu; — ayu = f. (3.7)

vy
Put all 2 on the left, so

2 2_ 0 1 1
=AUy, — Gyly = QUg, + 20Uy, + ayu, + f.

In other words,
2

—(auy,)y = aul, + 2au310y + ayui + f.
By using u'(z,y) = w(y)ul(z), we can rewrite it into

—(auy)y =ud (a+ wya + way) + f. (3.8)

14



3.2. Oscillator with damping (Duffing’s equation)

By taking integration over (0, 1), we have

1 1 1
0= / f(aug)ydy = / ugm(a + 2wy a + way)dy + / f(x)dy
0 0 0

by the periodicity of a and w,. Since u” depends on z, we have

0= ug,(z) /1(a + 2wya + way)dy + f(x).
0

If we write L
a= / (a + 2wya + way)dy,
0

then we get

3.2 Oscillator with damping (Duffing’s equation)

Consider the ODE

u +u. +e(ug)® =0, (3.9)
u.(0) =1, w.(0) =0, '
where u. = u.(t) and ¢ > 0. We will find a ‘good’ approximation of u* and find a
‘nice’ function f = f(¢t,&) with u® = f + o(e).
Note that this ODE has a conserverd quantity: let

(we(t) | (ue(0)” | e(ue(t))’
2 * 2 + 4

g(t) =

which is called the first integral of the system which came from Noether’s theorem.
Then
g = ulul +ucul +eudul = ul(ul +ue +e(u)?) = 0.

So g is constant. In particular,

(ue()? _ @h(6)? | (ue(t)? | e(ue)’
2 = 2 + 2 + 4

=9(t) +C,

which proves that u. is bounded and similarly, u. is bounded (the bound could
depend on ¢).
We first try the following ansatz

ue(t) = uo(t) + e (t) + e2us(t) + - -
Then we have
ug +euf + -4+ ug+euy + - +e(ug)® +o(e) = 0.
Note that ug(t) = cost and wu; satisfies

3

u +up = —(up)® = — cos® t.

15



3. MULTIPLE SCALES

We assume u1(0) = 0 and u}(0) = 0 (for simplicity). Then one can easily show

that

ul(t)

1
fgt sint + 3 (cos(3t) — cos(t)) .

Note that u; is unbounded. So for fixed €, u. = ug +euy + - - -
this contradicts our previous observation on u.. This shows that our ansatz is not
appropriate for studying this problem.

Next, we try

uf(t) = ul(t, et) + eul (t, et) + 2u(t, et) +

Write uy(t) = u”(t,et). Then

Similarly, we have

Finally, we get

uf, = ul(t,et) + eul(t,et).

"
u = ul, + 2euf +¢

2, k
uy .

0 0 2,0 1 2,1 3,1
Ugy + 26U + €7UL . + Uy + 267Uy, + €7 UL,

+u® + eut +e(u®)? + 32 (u®)?uy 4+ - =0,

We first look the O(1)-term: note that the general solution of

is

u®(t, ) = A(T) cost + B(7)sint.

0 0
Ugy +u- =0

Next we look the O(e)-term:

In other words,

ZU?T + u%t +ul + (uo)3 =0.

ugy +ut = —(uo)

If we put (3.10) in the expression, then

up;, +u' = —(Acost + Bsint)® —2(Acost + Bsint),

3_

is unbounded but

(3.10)

= (—=A3cos®t — 3A%Bcos’tsint — 3AB? costsin®t — B3sin®t)
+ (2A’sint + B’ cost)

16

= —%A3 — ZAB2 — QB’} cost
o 5 _
+ _ZAS + ZABQ cos(3t)
[ 3 2 3 3 / :
+ _ZA B—ZB + 4+2A"| sint
- L
+ —%AZBJF ZB3 sin(3t).




3.2. Oscillator with damping (Duffing’s equation)

To remove the effect of resonance, we seek A and B so that

Al = S(A2B + B3,
3.11
B' = —%(A?’JFAB?) e

which is called the modulation equations. We impose A(0) = 1 and B(0) = 0 from
the problem. In fact, this is Hamiltonian ODE, which guarantees the solution A
and B to be global. Even though we are interested in the behavior of solutions for
small €, ¢t could be large, so it might have an issue to guarantee the limit. Hence the
global existence is important to justify all calculation. Hence we get the following

u®(t) = A(et) cost + B(et) sint + O(e).

Now we are going to study what Hamiltonian ODE is. Recall that there is a
classical example that has a local solution but does not have a global solution.

Example 3.1. Consider

Note that y(t) = 1/(1 —t) is a solution to the ODE but it blows up at t = 1.

Definition 3.2. Let H = H(z,p) : R x R — R. We say that (z(¢),p(t)) is a
Hamiltonian ODE associated to H if

Lemma 3.3. If (z(t), p(t)) is a Hamiltonian ODE associated with H, then H (x(t), p(t))
is conserved.

Proof. By the chain rule, we have

Remark. Moreover, if H is coercive, in the sense that

Alz@)]+ [p(®)))* < H(2(t), p(t))
for some g > 0, then (x(t), p(t)) is global.
Note that if we define

3

H(A,B) = =

(A2 T B2>2,

and if (A4, B) is a solution to (3.11), then one can easily see that (A, B) is Hamilto-
nian ODE associated with H. Hence by the remark, the solution (A4, B) is global.
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3. MULTIPLE SCALES

3.3 Wentzel-Kramers-Brillouin’s method
We consider the following linear ODE
u + (w(et))?u. =0 (3.12)

where w = w(7) > 0 and ue = u.. One example is a pendulum of varying length.
We try the following ansatz

ue(t) = u’(t,et) +eul(t,et) + -,

k = uF(t,7). Then we get

where u
() + eu) + P (et) (o + €ur + ) = 0.
So
(ufy + 2eul. + 2ul + euf, + 2e%uf, + 3ul,)
+ (w(7))?ug + (w(7))?u; = 0.
Let us ignore w(7)-term for a moment even though 7 = et. Then O(1)-term is

upy + (w(7))*ug = 0,

which gives
uo(t) = A(7) cos(w(7)t) + B(7) sin(w(7)t).

Similarly, O(¢) term is
2ud 4+ uf, + (w())?u; = 0.

So

upy +wu' = =20 = —2(Acos(wt) + Bsin(wt))sr
= 2[(Aw), — Bww'(t)] sin(wt) — 2[(Aw), — Bww'(t)] cos(wt)

To avoid resonance, we need to find A and B so that the coefficients are zero.
However, unlike the previous example, this ODE might not have a global solution.
Hence we need to use another ansatz to solve the problem. Define

u® = u’(oc(t),et) +eu (0°(t),et) + - - -,
where u* = u¥(s,7) and o° is to be determined. We will impose 0°(0) = 0,
(0%)(t) >0, (6°) = O(1), ()" = O(e).
By chain rule, we have

(Wh) = uk (0% et)(0%) + uF (0, et)e

and

18



3.3. Wentzel-Kramers-Brillouin’s method

Now we put this expression into the equation. Then
uly(0")? + 2D )e(0) + <2
+u(0") + eugy(0")? + 2ug,e(0") + ugp, €
+ul(0")e + wug + ew?uy = 0.
By considering the restriction o’ = O(1) and ¢” = O(e), we get
0(1) : ul,(0")* + wug = 0.

To solve this equation, we choose 0/ = w. Then

Since w and its derivatives are bounded, it follows that
(@°)(0) =0, (0°)' =w>0, (o) (t) =w(et) =0(1),
and
o = ew,(et) = O(e).
From this construction, one can get

(u0)ss +u® =0, u’=u"(s,1).

From this, we get
u® = A(et) cos(a(t)) + B(et) sin(o(t)).

Now we will find A and B so that it has good dynamics to control. Note that
the O(e)-term is

0
2“57‘

(") + wus +ut,w? +ulw, =0
We first estimate

wiul, +wut = —2ul —ul.w = —2[A(T) cos s + B(7)sin(s)]sr — ws[A(T) cos(s) 4+ B(T) sin sy
= —2w[—A'(7)sins + B'(7) cos 5]
— w,[—A(7)sins — B(7) cos s]
= [-2B'w+ Buw'|cos s + [24'w + Aw'] sin s.
In order to avoid the resonance, we assume A and B so that
—2B'w+Bw =0 and 24w+ Aw' =0.

Note that we put (et) in the parameter. Then we can solve the equation by sepa-
ration of variables:

A(r) = Clw—1/2(7_) and B(r) = Czw_l/Q(T).

19



3. MULTIPLE SCALES

Therefore,

() ~ :zgt) cos ( /0 tw(er)dr>+ :?Et) sin ( /O tw(er)dr).

On the other hand, if we define (1) = [
gives

W (f) = clT)COS(G(st)>+ CQT)Sin<@(€t)),

w( € w( €

w(s)ds, then a change of variable

where 7 = &t.
This is of the form

U <@(€t),et> ’
5
where . .
U(m,7) = cos(m) + sin(m).
Vw(7) Vw(7)
3.4 Nonlinear oscillator with damping
Consider
(ue)” + @' (ue) + eul =0, (3.13)
where J 1D
! UE o /I __
e = ug(t), wuL= pr D =9(s), P'= I

Here ® is some nonlinear function or potential with ®(0) = 0. Although this seems
complicated, we will use a modified ansatz motivated from the previous section.

We write o
et,e
u€u< ( ’),et,z?)
€

for some u = u(n, 7,¢) and © = O(7,¢) which will be determined later.
Note that

(ue) = dcillt =U, (e(it’g)ﬁt,s) O, (et,e) + U, (G(EZ’E),Et,E) €

and
(ue)” = (uny)(07)% + UuprOre + uyOrre + Upr (7)€ + Urre®.
If we put these expression into (3.13), then
(U (07)* + 2Upr O + UyOrre + Urre” + & (u) + £(uyO; + euy) = 0.
Now we put
v=u'4eut+--., =040+ .,

where
ub =uF(n,7) and OF = 0F(r).

20



3.4. Nonlinear oscillator with damping

We impose ug(n, 7) to be 2m-periodic in n for all k. This is expectable since our
model exhibits periodic orbits.
We will find appropriate u° and ©° because then we have

W (1) ~ (@0(?’5),@,% +0(e).

If we plug the ansatz, then

0 1 \/p0 1,2 0 0 0\/0
(unn + Eunn)(e‘r + 867) + 2(“7}7)(@7)5 + (’U’n)(@TT)E
+ e2-term + @' (u® 4 eut) + s(u%@?) +0(%) =0.

The O(1)-term is
uy, (09)% + @' (u°) = 0.

We write w® = @9

T

(which means an angular momentum). Then

u(,)m(o.)o)2 + @' (u®) = 0.

This is an ODE in n with an interesting conserved quantity:

Bl 7] = 5 ()W) + 2(u’)

By using chain rule, one can see that

OE 1

8777 = 5(W0)22UOU0 + @l(uo)ug = 0,

nnm

which means that F depends only on 7. We will express the system by this energy.
We write v = w’uj). Then

Elr] = %qﬂ + D).

For fixed 7, we have v = 4/2(E — ®(u?)). Because of ®, we assume that ®(u®) =
E for some u°. We write a(E) and b(E) for such values as the turning points of
the energy.

If we fix a point 7, then u® = u°(n,7) = u%(n). Let a = u°(0) and ° = u%(r).
By definition of v, we have

0
wo% = 2(E — o(u)).
Write s = 0. Then p
“’OCT; = V2(E — 3(s)).

By using a separation of variable, we have

d”) ds.

/ab md - /: (i
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3. MULTIPLE SCALES

If we write s = u’(n), then

wO/ab\/wdjW:/Ode.

0 _ b(B) ds >_1 -
()= (/aus) 2(E — ®(s)) '

Similarly, integrating from a to u(t), we get

Hence

uo (t) ds -t
WOUE) = —_—— .
(®) < a \/2(E—<I>(s))> !

(3.14)

(3.15)

So if we know E and w?, this gives us an implicit formula for u°. Moreover, we

can also figure out ©° because ©% = w® which implies that

/OT 0°(s)ds = /OT w¥(s)ds,

T

07':0 WOS S.
0°(r) @<o>+/0 (s)d

and hence

Let w = u%. Then we have
(1) ()2 + @/(u°) = 0.

If we differentiate it in w, then
Wy (W?)? + @ (u”)w = 0.

Observe that it is a linear differential equation in w.
Then we look at O(e)-terms. Then

2wnw’w’ + uy, (w°)? + 2w,w” + ww) + @ (u0)u' + ww’ = 0.

So

(W) uy, + 0" (W)u! = —20w'w, — ww? — 2ww’ — ww

(3.16)

(3.17)

We multiply it by w = u% and integrate it. Recall that the function is periodic.

Then on the left-hand side, it becomes
2
/ (W uy,w + @ (u®)u'wdn =0
0
by (3.17). On the right hand side,

2m
/ (—2ww'w, — ww? — 2w,w" — ww®)w dn.
0
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3.5. Nonlinear wave equation

Since w® and w! does not depend on 7, we get

2m 2m 2m
/ —w?w? — 20w, wdn = / —ww? — WO (w?), dn = —/ (w?w®),dn.
0 0 0

If we let o
A(E(r) = / SO(E(r))uldn,

then it follows from the above observation that A satisfies

So
A(E(T)) = A(E(0))e ™.

From the relationship, we can figure out what E is, and then we can figure out
WY from (3.14), and figure out u° from (3.15), and finally we figured out ©° from
(3.16).

We will recall the following fact: if we write

2
A = area of orbit = {% +®(u’) < E}.

Then
dA B 2T

dE ~  WO(E)’
3.5 Nonlinear wave equation
Consider the following Klein-Gordon equation:
uf, —ul, + 9 (u) =0, (3.18)

where ® = ®(s) satisfies ®(0) = 0.
We are looking solutions of the form

O(ex,ct, e
ut(x,t) = u <(I2),sx,5t,5) ,
€

where u = u(n,§, 7,¢) and 6 = 0({, 7,¢) which will be found later.
Note that

0-
u; = Uy () €+ u,(e),

£

and
ug, = u,m(HT)2 + 2up,0r€ + upb e + UrrE2.

In other words,
e __ 2 2
Uyy = UppwW” — 2UprEW — UpyWr€ + UrrE°,

where w = —6, (which is called the local frequency). Similarly,
US, = Upyk® + 2Upr €K + Upke€ + Ugee”,
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3. MULTIPLE SCALES

where £ = ¢ (which is called the local wave number).
Hence if we plug u® into (3.18), then

(w? = KUy + P (1) — £(Wrty + 2Wtkyyr + Kty + 2KUne ) — €% (Uge —urr) = 0. (3.19)
Now we expand
u=1uy+eu+--- and 0=10y+¢eb +---

for up = ug(n, &, 7) which is 27-periodic in 7 and 6 = 0 (n, ).
Observe that
—0, =0° — <0}

and
W= wpy + Ew1.

Focusing only on O(1) and O(e)-terms, we get

((w0)? = (ko) + e((w°)? = (K°)%)upy,

+ @ (ug) + cur ®” (up) — ewlu v 9

0 0 0 0,0 _
n — 2E8W Uy, — ERgU, — 26K Upe = 0.

For O(1)-term, we have
q)/(’LLo) + ((UJO)2 — (Ko)z)u%n =0.
Like before, if

(Wo)2 - (FEO)2

Bl 7l = (SR g+ v
then one can easily see that E, = 0 and hence E = E[¢, 7]. So if we define

0

v =/(wo)? — (ko))

then we have 5

% +B(ug) = B, v=2v/2(E — ¥ (ug)).
Note that v2/2 + ®(u’) = E forms a closed curve in uv-plane. We recall that

%7 27
dE w(E)’

Let )
A= Vi =02 [ )2 an
0
Then the formula for this becomes

dA 27

dE  \/(wo)? — (ro)?

)

which implies that
dE 1
/ = — = — 2 _ 2
E'(4) dA ~ o (wo) (K0)?.
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3.5. Nonlinear wave equation

Just as before, O(1) implies that w = uf). Then w solves
((wo0)? = (Ko)*)wy, + @ (ug)w = 0. (3.20)
On the other hand, if we observe O(e)-term, then

((w0)? = (0)* )ty + ' @ (uo)

= (W)W + 20w, + Kzgw + 2k%w;.

Multiplying it by w and taking integration on [0, 27] with respect to 7, we get
2m 2m
| (=0 byt o) dn = [ ([0~ (o0 @ (= 0
0 0
from equation (3.20). On the other hand, we have
2
w)w? + w2w,w + (KD w? + kP 2wwedn.
T ¢ carn
0

Since

(w?); =2w,w  and  (ww®); = W +w? + O (w?),

and
(w?k")e = (ng)w2 + K 2wwe,

27 27
(wo/ w2) + (no/ w2) =0.
0 T 0 §

A= /(wo)? - (HO)Q/O i widn = QWE’(A)/O i w?dn.

From this, we get

it follows that

Recall that

o~ (wndin) * ()

Here A is independent of 7. Also, recall that k° = Gg and w® = —0%. This implies
that
K2 +wg =02, — 02 =0.

Therefore, we obtained three PDEs for A, wg, and kg in terms of £ and 7.

(en). + (5in), -

3.21
VO~ (WP = 27 (4) 20
/12 + wg =0.
We can solve for A, w®, and x° and therefore, we can solve for §° using wy = —69

and kg = 92.
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3.6 A diffusion-transport PDEs
Consider the following diffusion-transport PDEs
ui + (w(z)u®), = eu,, (3.22)

where u® = u®(z,t) which is 2m-periodic in z and w = w(x) > 0 and 27r-periodic
in x. We want to know what happens when ¢ — 0.
We put
uf(z,t) = u®(x,t,et) + eu' (z,t,et) 4+ - -

and we assume that u* = u¥(x,t,7) are 27r-periodic in 2. So
(uF(z,t,et))y = ulf 4 eul
and
(u*(z,t,et))p = uk.
So

€
TxT?

u + (wu®), = eu
and this implies that
(u® + eul)y + (w(x)(u® + eul))p = e(u® + cul) e
In other words, we have

u) +eud + euf + %ul + (w(x)u®), + e(w(z)u), = eul, +2ul,.

Hence
ug + (w(:b)uo)m =0,

which is the first order linear PDEs. Write v* = w(z)u’, where v° = v%(z, ¢, 7).

Then 0
(@)t + (%), = 0.

(%) +wol =0,

From this, we have

which can be solved by using the method of characteristic.
Consider

0'(t) = w(O(t)), 6(0) = 0.

Then w is Lipschitz since w is continuous and 27-periodic. Hence the solution
exists globally. By a chain rule, one can see that v°(6(¢),t) is constant. Indeed, we
have
d W0
a’

Also, one can easily see that v is constant along the curve (0(t — a),t) for any
a € R. Hence, given (z,t), we need to figure out on which translate of 6 (z,t) is on.
Given (z,t) define s = s(z,t) by 6(t — s) = z. The s-translate that goes through
(x,t). Sometimes, it is called the foliation of curves.

Hence the value of s

(6(2),1) = 02060/ (1)) + v = ow +of =0
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3.6. A diffusion-transport PDEs

1. completely determines which curve we are on;

2. completely determines value of v°.

In particular, v°(z,t) = v°(6(t — s),t) depends only on s since v° is constant

on curves. We write this by ©°(s). However, for simplicity, we write v° instead of
7%, So
V02, t,7) = 00(s, 7)
and hence
v0(z,t,7) v9(s,7)

ul(z,t,7) = = :
(z,t,7) w(z) w(f(t — s))

Let us compute O(g)-term. Recall that

u? +ut + (wul), = ul

’UO ’U1 ’UO
(2).+(2), - (5).
w T w t w TT

If we multiply it by w, then

20

vg—i—vtl +wv}c =w () .
w

Trx

and then

Note that
do(t — s)

dzr

0'(t —s) (—Zi) =1

On this trajectory, 8’ = w(f) = w(x). From this, one can see that

d\_(_1\(d
de )] w ds /)’
In particular, we have
N 4 Lds (N _d (1d (W
Y\ w m_wdx wd \w T ds \wds \ w '

d (1d [(2°
1 1_afLa v\ o
vt—’_wvx_ds (wds(w)) U

vgs 3/ 1 o 1/ 1 0 0
:w2+2<w2>8”5+2(w2>550 —ur=

which is the first-order linear PDE. We can solve this PDE by a method of char-
acteristic.

We will use this to find a simple PDE for v°. We want solutions that do not
blow up. The following criteria can be proved by using the Fredholm alternative
theorem.

O(t—s) =z andso =1.

In other words,

Hence
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Proposition 3.4. v! becomes unbounded unless fOT fdt =0.

Since w > ¢ > 0, 8’ > c¢. Hence it follows that 0(t) — oo as t — oco. Hence
there exists the smallest T so that 0(T") = 2x. Since w is 2m-periodic and solutions
to the characteristic ODE areq unite, it follows that 6(t + 1) = 6(¢) 4+ 2= for all ¢.

Now we note that

[ )= a )
- (=), =0

since w(f(t — s)) is T-periodic. Indeed, note that
w@t+T —3s)) =w(@(t—s)+27) =w(O( —s)).

Similarly, one can show that

From these, we see that

/fdt:vgs/ — dt—&-fvg/ — dt+f/ — dt—vﬂ/ 1dt
0 0 'UJ2 2 0 w2 s 2 0 'UJ2 ss 0
7
:vgs/ <2> dt — 2T,
0 w

i.e.,

0

where v° = v%(s, 7) and

7: e dt-
“ / 0t —s))?

In the limit, we get a diffusion equation.

3.7 Interlude: the calculus of variations

Consider the following minimal surface equation

where u = u(x1,...,2x), z = (z1,...,2n5) € RY.
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3.7. Interlude: the calculus of variations

It is hard to find a solution to the above equation by solving the equation
directly. Instead, we could think a minimization of

Iu] = /W V' 1+ |Dul?dz,

where W is an open set. It is quite handy because it means the surface area of the
graph of u. It turns out that the minimizer u of I[u] solves the PDE above.

To be rigorous, we introduce some notions. Given L = L(p,z,x), the La-
grangian, let

Iu] = /W L(Du(z),u(x),x)dx

which is called the energy functional. For instance, if

1
L(p,Z,I) = §|p|27

then )
Iu] = 7/ |Dul|? dz,
2 Jw

which is the Dirichlet energy.
Another example is

L(p, 2, 7) = /T4 P, I[u]:/ V1§ [Duldz.
w

We want to find u that minimizes I[u] among all functions u. Why do we care
about the minimizer?

Theorem 3.5. If u minimizes I[u], then u solves the Euler-Lagrange PDE
—div (DpL(Du, u,x)) + L,(Du,u,z) = 0.

Proof. For simplicity, let us consider the case N = 1. Suppose that u minimizes [
and let v be arbitrary. Define

g(h) = Iu+ hv] = / L + W', u + hv, z)dz.
w

Since ¢ attains a minimum at h = 0, ¢’(0) = 0. Then
g (h) = /W Ly(u' 4+ ', u+ hv,z)v" + Ly (v + h',u + ho, z)v dx.
So
0=4¢'(0)= /W[Lp(u’, u, 2)v" + L, (v, u, x)v]dw
= /W[—(Lp(u’7 u,z)) + L, (v, u, z)|vdr.

Since the above identity is true for all v, we finally get

—(Lp(u,u,2)) + Ly (v, u,z) = 0. O
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Example 3.6. Consider
L oo 1 2
L(p,z,z) = =|p|° and I[u] = —|Dul® d.
2 w2
Then the corresponding Euler-Lagrange equation is
—Au = —div (Du) = 0.

Example 3.7. Consider

L(p,z,x) = %\/1 +[pl? and I[u]= / %L(Du)2 dx.

w

Then the corresponding Euler-Lagrange equation is

D
—div [ ——— | =0,
V1+|Dul?
which is the minimal surface equation.

Hence the minimizer problem produces a PDE. Conversely, given a PDE, if you
can write the PDE into Euler-Lagrange equation for some functional I, then the
PDE is called variational and this is good.

Example 3.8. The nonlinear Poisson equation
—Au= f(u)

is variational. Indeed,
1
Iu] = / —|Du|?® = F(u)dz,
w2

where F(t) = fot f(s)ds.

3.8 An Eikonal and Continuity equation

Consider

—e?Auf + V(x)u® =0, (3.23)
where u® = u®(z), z = (21,...,2n5) € RY and v = v(x) is given and real. Here
u® € C.

In fact, the equation is variational. Indeed, if

g? 1
] = /RN S ADu R 4+ SV (@) d,

then the corresponding Euler-Lagrange equation is (3.23).
We choose the ansatz by

UE<LL‘) — ae<x)ei95(x)/s,
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3.8. An Eikonal and Continuity equation

where a® = a°(z) and 6° = 6°(x) are real. Note that

|ua|2 _ ‘CLE|2.

Recall that |2|? = 2z. Using this, we note that

e e Do*
Duf = (Da5)619 /e + aseze /e <Z>
S

Tm — (Das)e—wf/s + ase—wf/s (Dfs(_z))
Then of our interest is
|Duf|? = |Daf|* + gwafﬁ
So

If[uf)

€ 2 2|D‘96‘2 1 2
5 (|Da8| + |a®| e —|—§V(x)|a5| dx

2
6’96]-

/.
Fla

Now put a® = a® +ea' +--- and 6° = 0 + 6! + ---. We will find a PDE for a°
and #°. Then

I[a%, 67]
2 DO° + D02 1
= / < (|Da0 +eDa'|? + |(a")? 4 £(a')]? x t;') + §V(x)|a0 + ea*|? da.
RN
Expanding this, we have
2 22 |21 DO 1
— Z (1Da%1? + ... L e T 012 da.
[, S0+ + T 4 ot P o

The O(1) term is
07,0 90 L 021 np0p2 . L 02
I'a”,0"] = —|a’|?|DO°|* + =V (x)]a”|* dx.
RN 2 2

Since we want to minimize I¢[a®, 6¢], select a® and ° to minimize 1°[a’, 6°].
Let a be arbitrary and let

1 1
g(h) = I°[a" + ha,0°] = / 5\(10 + ha|*|DO°|* + §V(x)|a0 + hal? dz.
RN
Then
g(h) = / (a*ha)|DO°)?a + V(x)(a® + ha)a dz.
RN

Since ¢'(0) = 0, it follows that

a’|D6°)? + V (x)a® = 0.
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This implies that
|DO°12 + V(z) = 0.

Similarly, if we do a variation in 6, then
—div((a®)?D6%) =0

can solve for 69 and then for a°.

3.9 Homogenization

Consider

—(a(?)u’g)zf(a:) inW, u®=0 ondW,

where W C R. Here u® = u®(z) and a = a(y) > 0 and 1l-periodic. So a(z/e) is
e-periodic.

Problem 3.9. One can show that u® — u® where u° = u"(x). What PDE does
u? satisfy?

We use the following exotic ansatz
€ 0 1 €
u®(z) =u’(z) +eu (x,f> +
€

where u! = u'(z,y) and u!(z,y) is 1-periodic in y.
Note that this PDE is variational with

I[u®] = /W % (a (g) u’s) ul — fu®dx.

Observe that

Then the result is

1

Iuf] = /W 3¢ (g) [ud + uglj}z — fu®dz + o(1).

Note that the above function is still a function of y. By taking integral on [0, 1],
we get

1
1
T, u'] :/ / —a(y)[u® —|—u;]2 — fu® dxdy.
o Jw 2
If we take the variation in u', then we get the following Euler-Lagrange equation
~la(y)uyly = [uga(y)ly-

Here u? is given. To solve this PDE, define u!(x,y) = w(y)ul(x). Then if we put
this into the PDE, then
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3.9. Homogenization

Then we can solve for w, and so does for u!. Then if we plug u! into the functional
I[u®, u!], then we get

I°Mu®, wul] :/ —a(ul)? — fu® da,
w

where @ = fol a(y)(1 +w'(y))%dy.
Now if we do the variation in 4, then

—(Eug)x =f

(compare this to —au?, = f).
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Boundary layers

4.1 Introduction

We give some examples of boundary layers. Consider two different chemicals A and
B and react to each other. Then there would be a layer between two chemicals.
We could also see the seashores between sand and sea.

We will find an approximation of wwvarepsilon that takes into account the
boundary layer. First, we move the usual ansatz far from the boundary layer.
In the inner solution, we use a change of variable y = x/varepsilon to open up the
boundary layer, making the system more manageable. Then do ansatz on smoother
solution @w®, and we combine the two to get our approximation u*.

Example 4.1. Consider
eus, +2ul +2u* =0, u°(0)=0, u(1)=1,

where u® = uf(z) and 0 < z < 1. It turns out (numerically) that there is a
boundary layer at x = 0. We will find an approximation of u® that takes into
account the boundary layer.

We put u(z) = u°(z) + eul(z) + 2u?(x) + - --. Then

e(ul, +2ul +2u') +3(ul,) + 2ud +2u° = 0.
Comparing this with O(1)-term, we have u®(z) = Ae™®. Since u°(1) =1, A =e,
and hence u°(z) = e! =%,

Next, we choose the change of variable. Let y = x/e®, where o will be deter-
mined later. Define @ (y) = u®(x). Chain rule gives

. dutdy 1 _,
u, = = =1
Y odydx  ex Y
1

This implies that

In other words, we have

1—2a—¢ —Q—€ —E __
€ uyy+25 uy+2u =0.

We write
A=¢e"? . B=2"u,, C=2u.

We divide several cases. Suppose that B ~ C(same order) and A is smaller.
This means that e = €%, so & = 0. But then y = 2 but there is no boundary
layer. Suppose that A ~ C' and B is smaller. Then a = 1/2. But B ~ ¢~ /2 is not
small. Finally, let us suppose that A ~ B, and C' is smaller. Then o = 1. Note
that e~! is bigger than constant as € — 0+. So our ODE becomes

ﬂzy + QEZ + 2eu® = 0.
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4. BOUNDARY LAYERS

Now we put @ (y) = u’(y) + eu' (y) + - - - into the ODE. Then

uy, + ely, + 20, + 2e0,, + 260’ + 270" = 0.

vy

So
uy, +2u) =0, u'(y)=A+ Be .

If we impose @°(0) = 0, then
w’(0)=A+B=0, andsoB=—A,

and hence
To(y) = A— Ae™ % = A(1 — e ).

Now, we match two solutions to find A.

Method 1: Matching in asymptotic limit as * — 0+ and y — oco. By using this,

A = e. This methodology does not always work.

Method 2: Matching in overlapping regions. Suppose that the overlap region is
(e%1,e%2), where as < a; < 1. Let z € (¢%1,e°2) and let z = x/¢” be an
intermediate variable in between = and z/e = y, where 0 < 8 < 1 is to be

determined. Note that

() =e"% and wW(y) = A(1—e 2%/%) = A1

We want to claim

i [u(z) — ()] = 0

— €

7255z/s).

under appropriate value on A and 3. If € — 0+, then what happens to z7 It
turns out that as e — 04, we have e’z — 0 and €?~'z — oco. Therefore, we

get

Jim [u” (@) =7 (y)] = 0,

which implies that A = e.

Now it remains to show that as € — 04, we have ez — 0 and /712 — oo.

Since € < z < € and z = 7z, it follows that

el < Py < g2,

Since € — 0 and 2 — 0, it follows that ¢z — 0. Also, since =12 >

e“~1 we have €71z — 00 as € — 0+ since oy < 1.
Now we are ready to construct solution u*. Define
u*(z) = u®(z) + @°(y) — common part.

Then

w(r)=e T fe(l—e W) —e=e"Tfe(l—e /) —e=¢

This solution reflects our intuition.
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4.1. Introduction

Example 4.2. We study the same problem but we will pay attention to higher
order on €:
eus, +2u; +2u® =0, «°(0)=0, u°(l)=1,

where u® = u®(x) and 0 <z < 1.
We will look at O(g)-terms to get a better approximation of u®. We put the
usual ansatz to the equation:

(eul, +®ul ) + (2ul + 2eul) + (2u® + 2eut) 4 ... = 0.

By looking at O(1)-terms, we get u’(z) = e'~% if we impose u°(1) = 1. By looking
at O(e)-terms, we get
w4 2ul +2ut =0

and so i )
1 1 0 13
uy +u = —QlUas = ~5€ £

We can solve this differential equation using undetermined coefficients to get
1 _ —x € —x
u(x) = Ae™ " — Fze "

From the boundary condition, we can put u!(1) = 0. Then one can see that
A =¢/2 and so

ul(z) = %(1 —x)e! .

Next, we find an inner solution and let y = x/e®, where « is to be determined.
Define @®(y) = u®(x). We rewrite the ODE in terms of y:
e 7Ru, + 267U + 2u° = 0.

Then by a method of dominated balance, we see that o = 1.
Therefore, we get
Uy, + 22Uy, + 2eu° = 0.

By using the usual ansatz for ©®(y), we get
(Uy,, + Ty, ) + (20 + 267,) + (2c0° + 26°0') = 0.
By considering O(1) terms, we get
7’ (y) = A+ Be .
Since u°(0) = 0, we see that B = —A. Hence
7 (y) = A(1 — e~ ).

By using a matching method, one can see that A = e. By looking at O(e)-term,
we get
w,, + 20, = —2u" = —2e(1 — e~ ).

We impose @' (0) = 0 and hence we can easily get

a'(y) = A(l —e ) —ye(l + 7).
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4. BOUNDARY LAYERS

Note that method 1 is not applicable since %' (y) does not converge.

To use the second method, let z = x/&” and let z € (¢**,£°2) be an intermediate
variable.

Write u®(z) + eul (z) and u°(y) + eu' (y) in terms of z. By direct computation,
we get

u’(x) + eul(z) = e 4 (1- Eﬁz)el_aﬁz.

Do ™

On the other hand, we note that

@ (y) + et (y) =e(l —e ) +¢(A (1 —e W) —ye(1+e*Y))

—e (1 — 6_255712) Lze (1 + 6_25571>
B-

+e (A (1 —e 2 )) P 1ze(1 + 6_2813712)) .
By comparing coefficients of € and sending a limit, we get

A=<
2

Now we construct u* by
u*(z) = u’(z) + eu' (x) + 7 (y) + €a' (y)

—el—T _ 61721/6 + %(1 o I)Glim o 3617230/5 - 566(1 + efx/e).

Note that this solution contains the first example as well.

Example 4.3 (An internal layer). Consider

eul, + zus + x?uf =0,
{ (4.1)

u(—1) =a and (1) =4.

Here u® = u®(z) with —1 < 2 < 1 and «, 8 are given. We expect the boundary
layer at = 0.
We put u® (;U) =u%(z) + eul(x) + - -+ into the equation. Then
(eul, +2ul,) + (zul + exul) + (2%u’ + ex?ul) = 0.
By considering O(1)-term, we get

ud + 2u’ = 0.

It is easy to see that u®(z) = Ae~* /2 is a general solution of the equation.
Since we are dealing with 2 domains (—1,0) and (0, 1), we actually have

o Ae=®*/2  if —1<x<0,
u(x) = 2
Be~®7/? if 0 <z <1.

Since u%(—1) = a and u°(1) = B, we see that A = ae'/? and B = 3e'/? and hence

a2
0 ae s if —1<x<0,
’U,(:C): 1—a2

pe 2 if0<x <1,
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4.1. Introduction

Let us look at the inner solution. Let y = z/¢? and @°(y) = u®(z). Then a
tedious calculation gives

e 7Pu, + yu, + 2070 = 0.
By using a dominated balance principle, one can easily see that § = 1/2. So we get
w, + yu;, + ey’u = 0.
If we put our usual ansatz, then we get
(Hgy + sﬂ;y) + (yﬂg + Eyﬂ;)
+ (ey?@° + e2y*u') = 0.

Note that O(1) term becomes ﬂgy + yﬂg = 0. Then by using a method of
integrating factor, we get

Yy
w(y) = A/ e=/2dt + B.
0

Now we need to do match

z—04 y— 00
and

Jip o) =m0
Then we get

Similarly, we have

Hence we get

Therefore,

So

— x/\eE
ae=7)/2 4 (ﬁ a) \/E/ e At + (ﬁ—;—a) Ve
0

2/ VE _
) \/g/o 2t 4 <0‘25> /e
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4. BOUNDARY LAYERS

Example 4.4 (Earth-Moon spacecraft). Suppose that we launch the spacecraft
from earth (0,0) with the initial angle ex to the moon L(1,0) but deflect. We want
to calculate the deflection in terms of k.

Let M be the mass of earth and e M mass of moon, and let G be the gravitational
constant (for simplicity, we may assume that GM = 1) and let x be the mass of
spacecraft.

Let r(t) be the position of the spacecraft. By Newton’s second law, we have

it = ~ GMpr  G(eM)p(r — (1,0))
|2 r—(1,0)?

If we write r(t) = (2:(t), y-(t)), then z. and y. satisfy

x//(t) _ Le _ e(xe — 1)
e ()2 4 (¥)2)3/2 ((we — 1)2 4 (y.)2)3/2° 42)
y”(t) _ Ye (yg) ’

(@2 + G2 (e =12 + ()72

If we put x.(t) = zo(t) + ex1(t) and y.(t) = ey1(t) (since yo(t) = 0), then we get

0
0 () +e(--)
xi, +e(-r) = — + ().
R (O ) EE CTIO S L
So we get
0 2°(t) 1
T = 770y T T (40)2
(=) (%)
Note that (202
T 1
E(t) =L
(t) == D
is constant. So
(x9)” 1 _
2 z0
by choosing initial condition z°(0) = 2/(29(0))2. Then by solving this ODE, we
get
2/3
3 3
0
z(t)=—=t+ =C .
0=(5+%)
Since 2°(0) = 0, we have 20(t) = (9/2)'/3t?/3. So if we write t* = v/2/3, then
2°(v2/3) = 0.
Let us observe the ODE for y°. Then one can get
1 _ yl
= G

We impose y(0) = 0 and y5(0)/25(0) = ek. If we put the standard perturbation,
then we get
eyt (0) = ek (0) + 2kt (0).
So
v (0) = k) (0)
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4.1. Introduction

We claim that
J () = ().
Indeed, y*(t) and kz"(t) both solve

Wy = —ﬁ, w(0) =0, w(0) = rz?(0).

From (4.2), we derive an ODE for z:

1
i T 1

T T TR0 T (0 1)

Ast —t* = g, we have 2° — 1 and so z}, — —oo. This calculate indicates that
the deflection could happen near t = t*.

Next, we look at the inner solution (near t = t*). We define y = x/¢® and let
T=(t—1t%)/e, £ =(1—2%)/e, and n = y*/e. Write our ODE in terms of £, n, and

" V. 1 et (=)
e (M —e)2+ (en)?2)3/2 [(—e€)? + (em)?]3/?

If we put our standard perturbation £ = 0 4+e¢' + ... and n = n® +en' +---, then
we look at O(1/e)-terms to get

0 = — é—o
TT 0)2 0)2 3/2’
((€9) +g77 )?) (4.3)

0 _ _ n
T @)+ ()2

Those are the standard equations for Kepler’s motion. If 7(7) = (£°(7),n°(7)),
then r(7) solves v’ (1) = —r(7)/|r(7)|>. Then

~ (I+e)ro
r(0) = 1+ ecosf’

where ro = r(0) and e = |rg||vo|> — 1 with vy = 7/(0).
Next, we rotate the plane by a to get a horizontal asymptote. Then r(6)
becomes )
o) = 0T
1+ ecos(f — a)

We choose « so that limg_,, 7(6) = oo, i.e., find a so that

lim [1 4+ ecos(6 — )] = 0,

00—

and hence L

cosa’

This gives
(cosa+1)rg bsin «

r(0) =

cosa +cos(f —a)  cosa+ cos( — a)’
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4. BOUNDARY LAYERS

where
(cos a+1 )
b= ——— 1.
sin o

The quantity b denotes the impact parameter, the height of the horizontal asymp-
tote. We call the number 2« the deflection. We will calculate 2« in terms of
K.

Let

B0) = 50 OF -

which is a conserved quantity. From this, we have

MOl P 1 w1

2 7(0)] 2 @l 2 Jnf

Letting § — 7 so that |r(0)] — oo and |r'(0)] = veo, and so

(0o o _lol 1
2 2 To
and hence
tan o
2 _
(Voo)” = o

We will match outer solution and inner solution:

. O/p\ 1 40
Jim ad(t) = lim_—€0(r)

and
lim yf(t) = lim 7°(7).

Lt — T —00

We used 29 = —£% and 7 = (t—t*) /e and ) = y¢ /e, and so ° +ent = (y° +eyt) /e,
and so n° = y'.

In the first equation, the left side is v/2. In the second equation, the left hand
side is k. To calculate the right hand side, recall that

r(r) = (€°(r),1°(7)),

and so n%(—o00) = b. Since |r'(7)] = (£€2,79) and if we think about the limit, then
P (1) = ((£2)2)/2, and s0 —(€0). Hence

: _(¢0y : / — 00
im —(&7) = lim|r'(7)] = 0.

Putting everything together, we get v/2 = v, and s = b. Hence
a = tan"*(V2k).
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4.2. Singular variational problem

4.2 Singular variational problem

Let ® : R — R be a double-well potential function with ®(+) = 0 and ®(0) = 1.
We want to minimize

2
If[u] :/ EM + 1<I>(u) dx.
W 2 €

among all U : W — R such that U = g on OW. Let U¢ be a minimzer. We will
study lim._,04 U¢(z) =: U°(x).
For example, we might consider

W=W-uUWwture,

where
W~ ={z:U°—= -1}, WHr={z:U° =1}
and a boundary layer region I'® between.

Note that the Lagrangian is

2
1
L(p, z,x) = 5% + gq)(z)

So the Euler-Lagrange equation associated with this Lagrangian is
—2AU*+@'(U°) =0 inW on U°=g ondW.
We first seek an outer solution. We put the ansatz
Us(x) =U%@x) +eUa) +---,
and then
—?AUY + (U 4 eUY) = 0.
Taylor expansion gives
—20(U% + @'(U%) + 0" (U U = 0.

So ®'(UY) = 0 in W, which implies that U° has values in —1, 0, 1.

Since U is a minimizer of

1
U] :/ §|DU|2 + 20(U) da,
w g

UY has values in {—1,1}. This implies that U° is 1 in W+ and —1 in W~ because
of the continuity of U°.

To study the inner solution, let I'* = {—1+¢ < U® < 1 —¢} the thicker version
of I'. Now we work on an analog of dominant balance.

Suppose that the width of T'c is O(e®), where « is to be determined. Recall
that W = W+ NW~ UTl*®, where

1[U] :/ §|DU|2 + Lo da.
w g
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4. BOUNDARY LAYERS

On W, U® ~ 1. So ®(U?) ~ 0, and |DU¢| =~ 0. So

2
/ LPUE Loy de ~o.
W+ 2 €

SImilarly, we can argue it for W—. Hence
€ 9 1
IU]) ~ i‘DU‘ +—-®(U)dx.
€ E
On the region I'®; we note that
2
|DU| ~ —.
80{

Also, on IT'¢, ®(U) ~ ®(0) = 1. Hence

2
e (2 1
I[U] ~ — | = —d
Y] /5 2 <5°‘> * e ™
m(251*2“+6*1)\1“5|

~ (2170 4 oY),

If o =1, then I[U] does not blow up.

Let I' = {U® = 0}. Then we choose an appropriate change of variables to turn
I into a graph 2V = s(z').

After translating, we may assume that s(0) = 0 and after rotating, we may
assume that Ds(0) = (0,...,0). Finally, change coordinates so that we are on s°
and boundary layer has width O(1).

Let y = (y',...,y") be such that y; = 2; for i = 1,...,N — 1, and yny =
(xn — s°)/e so that we can straighthen the boundary. Now let

T (y) = US(z) = T° (:1/, ”"”“) .

£

Now we seek a PDE that U" satisfies.
By a chain rule, we have

Umi = dr. = Uyz =+ UyN ( € ?
_ — Sz, = Sx; 2 = Swixs
Usizs = Oy + Wy (=22) + Uy (—22) + T (-2222)).

Finally, when ¢ = N, we have

— 1
UxNafN = UyNyN () .

22
These calculation show that U satisfies

N;
_ 2__ 1— 1—
—e? (E Uyiys — ginyN(Sxi) + ?Uywyw (S:cl)2 - EUyNSwiwi> ~Uynyn +®'(U) = 0.
i=1

(4.4)

44



4.2. Singular variational problem

However, we cannot perform a standard ansatz to U since s = s° also depends
on €. So we put s°(z) = s°(a’) +es'(2’) and put this ansatz to compute the PDE.
Then O(1) term gives

-1
—0 0 0
a Z UyNyN (52,5)2 - UyNyN + fI)/(U ) =0.

i=1

But recall that s(0) = 0 and Ds(0) = (s4,(0),...,5zy_,(0)) = (0,...,0).
If you evaluate this at y = (0,...,yn), then sgi = 0 and we get

—0

—T . (0,...,0,yn) + @' (T (0,...,0,yx)) = 0.

YNYN

Example 4.5 (Singular perturbation of eigenfunctions). Consider
—Au’ =X’ inW R} w’=0 on oW

By a standard PDE theory, there exists Ao > 0 which is called the principal
eigenvalue such that the problem has a non-trivial solution u® > 0 in W and
fW (u®)?dx = 1. This )¢ is called the principal harmonic and any other eigenval-
ues are called the overtones.

An interesting question is “can you hear the shape of a drum”? No in 2D if
your instrument has corners. Yes in 2D if instrument is smooth and convex. For
the higher dimension, there is a 16-dimensional counterexample.

Now we study a perturbation on the domain. Let W& = W \ B.. Consider

—Auf =X u® InW® and v* =0 ondoW®=0WUOIB,.

We will build A® as a perturbation of A\yg. Note that there is a boundary layer on
0B:.
We put the ansatz u® = u® +eu' +--- and A*> = A" 4 el 4 ... Then

—Au® —eAut + - = N0u® 4 e(A ' + N0ul) - -
So
—Au? = 2% and — Au' = M0 + 20!,

Then
—Au? = 2% and — Au' = Nu' = A\l

If we specify u' = 0 on dB,, then u' = 0 which is not interesting. Observe that
Ao, A1, Ug, and uq do not depend on €.
Letting € — 0+, we get

—Aut =A% =M’ in W\ {0} and u'=0 on OW.

By a PDE theory(?), u! blows up at 0.

Starting from here, we assume that |u!(z)||z| is bounded. This is for the outer
solution.

To study the inner solution near 0, let y = /. Define u®(y) = u®(x). Then

—Au® = Xuf
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4. BOUNDARY LAYERS

becomes L
—?Aﬂe =Xt in(1/e)W\B;y w =0 ondBj.
Now we put the ansatz
T =1’ 4 eu +---
A=A et +
Note that O(e~2)-term becomes —Au" = 0 in (1/e)W and @’ = 0 on 0B;.
Letting € — 0, we get
~Au’'=0 inR*\B; @’ =0 ondB.

One can construct that #°(y) = A + B/|y| is a solution to the problem and one
can show that B = —A since u"(y) = 0 on 9B;. Hence

2 (y) :A(1_|;|).

To match the solution, we need

lim @°(y) = lim «°().
ly|—o0 z—0
So

T 0/, — ,0
A—xgr(r)l+u (x) = u”(0).

Hence

w*(z) = u®(z) + @ (y) (1 - 5) —u2(0) = u¥(z) + ¢ (“0(x)> .

|| ]

On the one hand, u®(z) ~ u*(z) = u’(z) + ¢ (—u’(z)/|z|). On the other hand,
uf(z) = u®(x) + eul(z). We guess that u'(x) = —u®(0)/|z|.
Now we try to find A;. We try to find A\; so that

—Aut = Mut = \u® in W\ {0} and «'=0 on OW.

Fix § > 0 and we work on W5 = W \ Bs. We multiply the above equation by
u? and integrate it on Ws. Then

—/ (Aul)uodx—/\o/ uluodgc:)\l/ ul dx.
Ws Ws Wi

Integrating by parts gives

ou! oul
—/ (Aut)ul de = — 0 do — / T w0 do + Vul - Vil dr
Ws oB; OV Ws

1 0
= —/ %uoda%—/ ut <8u) da—/ u' (Au) dx
OB ov oWy ov Ws
1 0
)L ()
8Bs 8U 9Bs 61/
—/ u (= \ou?) dz.
Wi
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4.2. Singular variational problem

Hence

1 0
—/ (8u> uo—i—/ ut (8u do + )\0/ uut — )\) / uut do = )\1/ (u®)? da.
oBs \ OV dBs o Ws Ws Ws

Hence D! Iy
/\1/ (u")? dxz—/ iuO~G—/ W Z
Ws OB; ov OB; ov

The LHS becomes A1 as § — 0+. One can show that

a 0
/ ull—>0
dBs aV

as 6 — 0.
Note that ol
U
ey :(Dul) v
On 0Bg, we note that
yo B3
|| s
So
1 z  u?0)z  u°(0)
D 1 e 0 PR _—= — = ——.
o =00 (~pp) = T =
Hence
T (V)
o 82
So ol 0(0)
u' o u(0 / 0 0 2
— —u u (0) = 4w (u (0
/mau 5 0 = am0)

as § — 0+. Therefore, A\; = 47 (u®(0))2.

Example 4.6 (Crushed ice problem). Consider a glass of water W. In this region,
put N ice cubes, modeled by balls of radius e. Assume that N = C/e. As smaller
radius ¢, the larger number of ice cubes. The number of balls in V' is é fV p(x) dx
for some density p.

Let We =W\ Ufil B.(z;). Consider

—Au® =Xu* inW® and «* =0 on dW-.
Assume that A\* — \? and v® — u® as ¢ — 0+, where u° is smooth.

Let V be any subregion of W and let V¢ = V'\ Uf\il B (x;). Integrate —Au® =
Afuf over VE. Then we get

£
/ —Aufdr =\, u®.
1% Ve

It is easy to see that the RHS converges to \° fv u® as e = 0+.
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4. BOUNDARY LAYERS

On the other hand, then LHS gives
€
—/ (3u ) do
Ve (91/

B 1) 31/ Z~/83 (zi) 31’

Since u® — u°, we see that
— AUl dz.
/av 3” /

as € — 0.
Fix ¢. Note that

Here we assume that

0
€ ~ 0 o u (xl)
u®(z) ~ u’(x) P on B (z;)
50 0 0 0 oul
LA VRN G S W T Y T
o ov " (ml)au <|xxl|> ~ T e (2)-
Hence Sus
u
~ O(1)4me? — dmeu®(z).
Lo B =0 (&)
Hence

— = —47T€2NO ) + 4me u”(x;).
z . - z

Since N = CO/E, we have

N
Z/E)BE(;EI By~ ~Codme00) + 47“52%0(9%) - 477/ u® (z)p(z)da.

i=1 14

)\o/uodx:f/ Au0+47r/pu0dz,
v v v

—Au® +47pu’ — Nu® =0 in V.

Therefore, we get

and hence

In particular, if p = ¢, then
A =AN=0—4rc)u® inW, «w®=0 on oW
If we choose Aj as the principal eigenvalue for the Laplace operator, then Ay =

Ay + 4me, where ¢ is an extra cooling factor.
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