APMA 0350 - HOMEWORK 10 - SOLUTIONS

Problem 1: Setting x^{\prime} and y^{\prime} equal to 0 , we find

$$
\begin{aligned}
& x^{\prime}=0 \Rightarrow 0=y-x^{2} y=y\left(1-x^{2}\right) \Rightarrow \text { either } y=0 \text { or } x= \pm 1 \\
& y^{\prime}=0 \Rightarrow 0=y^{2} x-4 x^{2} \Rightarrow y^{2} x=4 x^{2} \Rightarrow \text { either } x=0 \text { or } y= \pm 2 \sqrt{x}
\end{aligned}
$$

Thus, the points that work are $(0,0),(1,2),(1,-2)$
Problem 2: Find and classify the equilibrium points of

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+x^{2} \\
y^{\prime}=x+y
\end{array}\right.
$$

Setting these both to zero, we see that

$$
\begin{equation*}
0=x-y+x^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
0=x+y \tag{2}
\end{equation*}
$$

From (2), we see that any points will satisfy $x=-y$. Solving (1) gives $-y-y+y^{2}=0$. Thus, $y=0$ or $y=2$. Finally, we have $(0,0)$ and $(-2,2)$. We are left to classify the points. We have the linearzation

$$
\nabla F(x, y)=\left[\begin{array}{ll}
\frac{\partial\left(x^{\prime}\right)}{\partial x} & \frac{\partial x^{\prime}}{\partial y} \\
\left.\frac{\partial y^{\prime}}{\partial x}\right) & \frac{\partial y^{\prime}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial}{\partial x}\left(x-y+x^{2}\right) & \frac{\partial}{\partial y}\left(x-y+x^{2}\right) \\
\frac{\partial}{\partial x}(x+y) & \frac{\partial}{\partial y}(x+y)
\end{array}\right]=\left[\begin{array}{cc}
1+2 x & -1 \\
1 & 1
\end{array}\right]
$$

For $(0,0)$, we thus have

$$
A=\nabla F(0,0)=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

The eigenvalues of A are $1 \pm i$
Since the real part is positive, $(0,0)$ is unstable.
For ($-2,2$), we thus have

$$
A=\nabla F(-2,2)=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]
$$

The eigenvalues are $-1-\sqrt{3}<0$ and $-1+\sqrt{3}>0$. Because of the mixed sign, we see this is a saddle.

Problem 3: Setting both equations equal to 0 gives us:

$$
\begin{gather*}
0=x(3-x-2 y) \tag{3}\\
0=y(2-x-y) \tag{4}
\end{gather*}
$$

From equation (3) : $x(3-x-2 y)=0 \Longrightarrow x=0$ or $x=3-2 y$
From equation (2) : $y(2-x-y)=0 \Longrightarrow y=0$ or $y=2-x$
This gives us $(0,0),(0,2),(3,0),(1,1)$
Now, we must classify the points. The linearization gives us

$$
\nabla F(x, y)=\left[\begin{array}{ll}
\frac{\partial\left(x^{\prime}\right)}{\partial x} & \frac{\partial x^{\prime}}{\partial y} \\
\frac{\partial\left(y^{\prime}\right)}{\partial x} & \frac{\partial y^{\prime}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial}{\partial x}\left(3 x-x^{2}-2 y x\right) & \frac{\partial}{\partial y}\left(3 x-x^{2}-2 y x\right) \\
\frac{\partial}{\partial x}\left(2 y-y x-y^{2}\right) & \frac{\partial}{\partial y}\left(2 y-y x-y^{2}\right)
\end{array}\right]
$$

$$
\nabla F(x, y)=\left[\begin{array}{cc}
3-3 x-2 y & -2 x \\
-y & 2-x-2 y
\end{array}\right]
$$

For $(0,0)$, we find $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ This has eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=2$, thus it is unstable

For $(0,2)$, we find $\left[\begin{array}{cc}-1 & 0 \\ -2 & -2\end{array}\right]$ This has eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=$ -1 , thus it is stable

For $(3,0)$ we find $\left[\begin{array}{cc}-3 & -6 \\ 0 & -1\end{array}\right]$ This has eigenvalues $\lambda_{1}=-3$ and $\lambda_{2}=-1$ which are stable

For $(1,1)$ we find $\left[\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right]$
This has eigenvalues $\lambda_{1}=-1-\sqrt{2}$ and $\lambda_{2}=-1+\sqrt{2}$. Thus, the eigenvalues are positive and negative, so it is a saddle point.

Problem 4:

(a) We find the system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-0.4 x(t)+0.2 y(t) \\
y^{\prime}(t)=0.4 x(t)-0.2 y(t)
\end{array}\right.
$$

(b)

$$
\left\{\begin{aligned}
x^{\prime}(t) & =-0.4 x(t)+0.2 y(t)=0 \\
y^{\prime}(t) & =0.4 x(t)-0.2 y(t)=0 \\
& \Longrightarrow 0.2 y(t)=0.4 x(t)
\end{aligned}\right.
$$

$$
\Longrightarrow y(t)=2 x(t)
$$

Thus, we've found the equilibrium point $(x, 2 x)$

We classify the stability:

$$
\nabla F(x, y)=\left[\begin{array}{cc}
-0.4 & 0.2 \\
0.4 & -0.2
\end{array}\right]
$$

Taking

$$
\begin{aligned}
|\nabla F(x, 2 x)-\lambda I| & =(-0,4-\lambda)(-0.2-\lambda)-(0.4)(0.2) \\
& =\lambda^{2}+0.6 \lambda \\
& =\lambda(\lambda+0.6)=0
\end{aligned}
$$

Thus, $\lambda=0$ and $\lambda=-0.6$
Since one of the eigenvalues is 0 , the equilibrium points ($x, 2 x$) are "neither stable nor unstable"

Note: Here we also accept the answer "stable"

