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A new stimulus set is described that could prove useful for a wide variety of different cognitive
experiments. Each stimulus is a schematic representation of a fish and the stimulus ensemble
could potentially be varied on many dimensions. These new stimuli have a number of attractive
properties, including 1) a higher degree of ecological validity than most stimuli used in cogni-
tive research, and 2) a large number of qualitatively different types of dimensions that can be
varied. Psychophysical properties of the stimuli were studied in two experiments. Experiment
1 measured just noticeable differences on two prominent dimensions, and Experiment 2 used
multidimensional scaling to study the structure of the underlying perceptual representations.
The result is an ecologically valid stimulus set with a well-understood perceptual representa-
tion.

Introduction

Research on any basic cognitive process is facilitated
when stimuli are used that have a well understood dimen-
sional structure. Trying to understand a cognitive process
is easiest when there is no ambiguity about perceptual pro-
cessing. For this reason, many cognitive studies have used
simple, artificial stimuli that vary on only a few dimensions.
Included in this list are Gabor patches that vary in spatial
frequency and orientation, and lines that vary in length and
orientation.

Unfortunately, simplistic, low-level stimuli of this type are
far removed from the natural, real-world objects and events
that shaped the evolution of our cognitive systems. For this
reason, another large group of cognitive studies have used
more complex stimuli – such as natural images, or cartoon
figures that vary on a number of binary values. One problem
with these studies is that – in most cases – we have only a
vague understanding of how participants perceive these stim-
uli, and this uncertainty makes it difficult to draw strong in-
ferences about the cognitive processes under study.

These concerns served as motivation for this article.
Specifically, our goal was to develop a set of stimuli that have
more ecological validity than Gabor patches, that do not ap-
peal to any pre-existing categories, that are easy to generate
and control in a laboratory setting, and that have a known
perceptual structure. Our solution was to create a set of car-
toon caricatures of fish – illustrated in Figure 1 – that poten-
tially could be varied on many different dimensions. Mat-
lab code that generates these images is available through the
Open Science Framework at osf.io/bwcvy.

The entire list of stimulus attributes that can be manipu-
lated are shown in Table 1. Specifically, numerical values of
any of these 14 constants can be set in the Matlab code that
generates the stimuli. Our initial investigations varied five
of these dimensions: 1) mouth angle (i.e., denoted by A1 in

Figure 1. An example fish stimulus, along with labels on
every dimension that can be manipulated.

Figure 1), 2) dorsal fin height (i.e., L1), 3) tail height (i.e.,
L2), 4) pectoral fin color (i.e., C1), and 5) belly color (i.e.,
C2).

We investigated the perceptual representations of these
new stimuli in two separate experiments. Experiment 1 es-
timated the just noticeable difference (jnd) of mouth angle
(A1) and dorsal fin height (L1). Ideally, all stimulus dimen-
sions listed in Table 1 should be scaled in jnd units. If so, then
the perceptual salience of a one unit change in one dimension
would be approximately equal to the perceptual salience of
a one unit change in any other dimension. We expect tail
height and pectoral fin height to have similar jnds as dorsal
fin height. We did not estimate jnds for any color dimensions
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because the structure of color space has been studied meticu-
lously in many prior experiments (e.g., Jameson & Hurvich,
1959).

In Experiment 2, participants rated the similarity of stim-
ulus pairs that varied on five dimensions – mouth angle, dor-
sal fin height, tail height, belly color, and pectoral fin color.
The data were then analyzed via multidimensional scaling to
examine the structure of perceptual space and especially the
relationship among the various perceptual dimensions.

Table 1
Manipulable Stimulus Values

Item Description Type Value
A1 Mouth Angle Variable NA
L1 Dorsal Fin height Variable NA
L2 Tail height Variable NA
L3 Pectoral Fin Height Constant 15
C1 Pectoral Fin Color Variable NA
C2 Belly Color Variable NA
c1 Pectoral Fin Location Constant (0,0)
c2 Overall Fish Height Constant 100
c3 Mouth Length Constant 100
c4 Belly Height Constant 15
c5 Tail Base Height Constant 40
c6 Dorsal Fin Width Constant 30
c7 Pectoral Fin Width Constant 30
c8 Tail Width Constant 20

Experiment 1

Experiment 1 estimated jnds of mouth angle and dorsal
fin height in an attempt to create units of measurement on
each dimension that equate changes in perceptual salience.
A QUEST staircase procedure (implemented in psychotool-
box) was used to select stimuli and to determine the final
estimated JNDs. The JNDs were then used to find a mathe-
matical function that identifies the physical units of degrees
(in the case of mouth angle) and number of pixels (in the case
of dorsal fin height) that correspond to any given number of
jnds. These transformations allow researchers to construct
stimuli that have any desired configuration in a perceptual
space where the units on each dimension are jnds.

Methods

Participants and Design. Eighty participants were re-
cruited from the University of California at Santa Barbara
community. All participants were undergraduates who re-
ceived course credit in return for their participation. Each
session consisted of 10 blocks of 50 trials and lasted approx-
imately 45 minutes.

Procedure. Participants were instructed to determine
which of a pair of fish had a larger value along a given dimen-
sion. Participants were informed of the dimension of inter-

est before each block and that they were to make judgments
about that dimension on all trials during the block. Mouth
angle was the target dimension for half of the 10 blocks of
50 trials and dorsal fin height was the target for other half.
On each trial, one fish was presented for 500ms, then a white
noise mask was presented for 250ms, and then a second fish
was displayed for 500ms. The participant would then re-
spond with the fish that they thought was larger along the
targeted dimension by pressing either A for the first fish or B
for the second fish.

Stimuli and Apparatus. On every trial, one of the two
fish, randomly selected, had a base value on the relevant di-
mension (i.e., 20, 40, 60, 80, or 100 degrees or pixels, for
mouth angle and dorsal fin height, respectively). The other
fish had a dimensional value that was selected by the QUEST
procedure. All other stimulus dimensions remained constant
for the entire experiment and were set to values shown in Ta-
ble 1. No feedback was given after any response, and the
next trial started after a 250ms pause. For all thresholds,
data points were determined to be outliers if they fell outside
three standard deviations from the median or were reported
by QUEST as guessing.

Results

The results are shown in Figure 2. Each dot represents the
estimated jnd for one participant. Table 2 lists the mean jnds
across participants. To investigate more closely how the jnd
changes with stimulus value, we performed tests for linear
and quadratic trend. The linear trend was highly significant
in both conditions [mouth angle: F(1, 156) = 100.27, p <
.001; dorsal fin height: F(1, 148) = 154.81; p < .001],
whereas the quadratic component of the relationship was
nonsignificant in both cases [mouth angle: F(1, 156) =

.432; p = 0.51; dorsal fin height: F(1, 148) = 1.374; p =

0.24]. Figure 2 also shows the best-fitting lines, which had
slopes of 0.105 for mouth angle and 0.109 for dorsal fin
height and intercepts of 2.8 for angle and 0.3 for fin height.
Note that the slopes provide estimates of the Weber fractions
for each dimension. Weber’s law predicts intercepts of 0, so
the 2.8 intercept for mouth angle represents a slight violation
of Weber’s law, which we suspect is due to the temporal sep-
aration and noise mask between stimuli. Note that the Weber
fraction for fin height matches traditional Weber fraction es-
timates of approximately .1 for line length (i.e., Tudusciuc &
Nieder, 2010).

Table 2
Mean jnds (across participants) for each stimulus value

Dimension 20 40 60 80 100
Mouth Angle 4.9 7.0 9.1 11.2 13.3
Dorsal Fin Height 2.5 4.7 6.8 9.0 11.2

This new stimulus set will be most useful for cognitive
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Figure 2. JNDs and the best-fitting linear regression. Each
dot is the jnd for a single participant.

research if experimenters have an easy method to generate
stimuli in a space where the units are jnds. For example, this
would mean that the perceptual difference on each dimension
between stimulus values 5 and 6 would be the same as the
perceptual difference between stimulus values of say 9 and
10. But for the length and height dimensions, experimenters
most naturally would work in units of pixels, whereas for
the angle dimensions the natural units are degrees or radians.
So we need transformations that convert a desired number of
jnds to pixels and degrees.

First consider fin height. Let X denote the subjective di-
mension where the units are jnds. The best-fitting regression
line for fin height in Figure 2 was

jnd = 0.109H + 0.3, (1)

where H is fin height in pixels. For simplicity, round this to

jnd = 0.1H. (2)

The subjective dimension X has a fixed unit of one jnd,
but the zero point is rather arbitrary. So we will arbitrarily
assume that X = 0 for a fin height of H = 10 pixels. Given
this assignment, the Appendix shows that the transformation
between X and H is accomplished via

H = 10 × 1.1X . (3)

So, for example, to create 3 dorsal fin heights that are spaced
3 jnds apart (e.g., at X = 3, 6, and 9), an experimenter would
create fin heights of 13, 18, 24 pixels, respectively (after
rounding to the nearest pixel). We expect that this same
transformation should prove equally effective for all height
and width dimensions listed in Table 1.

The transformation from X to degrees of mouth angle θ is
similar since the slope of the regression line is also approxi-
mately 0.1. However, in the case of mouth angle the regres-
sion intercept is large enough that it should not be ignored.
So the empirical constraint we will try to preserve is

jnd = 0.1θ + 2.8, (4)

where θ is mouth angle in degrees. The Appendix shows that
this more complex relationship produces the transformation

θ = 38 × 1.1X − 28. (5)

So, for example, to create 3 mouth angles that are spaced 3
jnds apart (e.g., at X = 3, 6, and 9), an experimenter would
create fish with mouth angles of 22.6◦, 39.3◦, and 61.6◦. To
preserve the fish-like qualities of the stimulus, mouth angles
should be less than 180◦, which corresponds to a jnd value of
X = 17.8. Therefore, researchers should select X values for
mouth angle that fall in the range [0,17].

To convert stimulus values from X space back to a space
where the dimensions are in the physical units of degrees
and pixels, one can just solve Equations 3 and 5 for H and θ,
respectively, which produces

XH = 10.5 ln H − 24.2 (6)

and
Xθ = 10.5 ln(θ + 28) − 38.2. (7)

Discussion

In Experiment 1, we estimated jnds for two of the pri-
mary dimensions of the fish stimuli: mouth angle and dor-
sal fin height. As predicted by Weber’s law, the relation-
ship between jnd and stimulus value was linear for both di-
mensions, and in both cases the slope was approximately
0.1 – a value that closely matches prior psychophysical re-
search (e.g., Tudusciuc & Nieder, 2010). These results were
then used to identify transformations to a perceptual space in



4 FISH

which the units on every dimension are jnds. For example,
by using Equations 3 and 5, an experimenter could choose
levels of mouth angle and any of the height or width dimen-
sions that are an equal number of jnds apart. Note that in this
case, a change from one level to the next would be equally
perceptually salient on every dimension.

Creating similar transformations for the color dimensions
is a much trickier process because color vision varies widely
across individuals and depends critically on previous color
exposure (Jameson & Hurvich, 1959). In addition, careful
pyschophysical control of color dimensions requires exten-
sive calibration (e.g., of the monitor and ambient light). As a
result, we did not vary any color dimensions in Experiment
1. For these reasons, we recommend using the color dimen-
sions cautiously in any experiment where it is important to
control the number of jnds that separate different levels on
each dimension.

Experiment 2

Experiment 1 provided a method for creating perceptual
dimensions in which the unit of measurement is the jnd. Ex-
periment 2 uses multidimensional scaling (MDS) to examine
the relationships among dimensions.

Methods

Participants and Design. Sixty-six participants were re-
cruited from the UCSB community. All participants were
undergraduates who received course credit in return for their
participation. Each session consisted of 496 trials and lasted
approximately one hour.

Procedure. For each trial, participants saw two fish side
by side and provided a similarity rating on a scale from 1-7,
with 1 meaning not at all similar and 7 meaning extremely
similar. Five dimensions were varied: mouth angle, dorsal
fin height, tail height, pectoral fin color, and belly color. Two
values were selected for each dimension, resulting in 496
pairs of stimuli. Each subject saw each pair once throughout
the course of the experiment.

Stimuli and Apparatus. Values of 40/80 degrees and
40/80 pixels were used for mouth angle and both fin heights
respectively. For the color dimensions, two colors pairs were
selected from Munsell space for each color dimension and
converted to RGB values. The colors chosen and their RGB
values are listed in Table 3. The fish were presented side by
side on the screen and participants could take up to 3 seconds
to supply a similarity rating. If they took longer, they were
prompted to respond faster.

Figure 3. MDS Stress

Table 3
Fin and Belly Colors Used in Experiment 2

Dimension Munsell RGB
Fin 1 10PB 8/6 [.781,.769,.953]
Fin 2 10PB 4/6 [.387, .355, .539]
Belly 1 7.5PB 4/6 [.340, .367,.539]
Belly 2 7.5PB 4/14 [.266, .340, .739]

All participants performed a similarity rating on every pair
of fish. There were 2 values on each of 5 dimensions, which
resulted in 32 different fish (i.e., 25). All possible pairs were
presented to each participant, except the 32 possible identical
pairs, which were omitted. This resulted in a total of 496 dif-
ferent pairs of fish. The similarity ratings were then averaged
across all participants and combined into a dissimilarity ma-
trix for analysis. Nonmetric MDS was then done in Matlab
using mdscale to minimize Kruskal’s normalized stress-1 (a
commonly used MDS stress measure).

Results

Stress, which measures the goodness-of-fit of the MDS
solution, is plotted in Figure 3 as a function of the number
of MDS dimensions. Lower stress means a better fit, and
note that, as expected, stress decreases sharply up until the
solution has five dimensions. Increasing the number of di-
mensions above five produces only negligible decreases in
stress (i.e., of about 1%). Thus, the optimal MDS solution
has five dimensions, and any additional dimensions are likely
just fitting noise.

An examination of stress values, as in Figure 3, is a good
way to determine the optimal dimensionality, but a poor way
of determining whether the best MDS solution provides a
good or bad account of the data, because absolute stress val-
ues are difficult to interpret. A better way to assess the quality
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Figure 4. MDS Shepard plot for the five-dimensional MDS
solution. The line has slope one and intercept zero. The
Pearson correlation coefficient is .974.

of the MDS solution is to examine the Shepard plot, which
is a scatter plot with one point for each pair of stimuli that
plots the distance between the stimuli in the MDS solution
against their rated dissimilarity1 The Shepard plot for the
five-dimensional MDS solution is shown in Figure 4. The
inter-point distances in a good MDS solution should mirror
the participant dissimilarity ratings, so the closer the points
are to a line with slope one (and intercept zero), the better the
fit. As can be seen, the data are clustered nicely around this
line with a Pearson correlation coefficient of .974, showing
that the MDS solution provides a good account of the judged
similarities.

The main purpose of Experiment 2 was to examine the
relationships among pairs of stimulus dimensions for the fish
stimuli. Consider four fish that are constructed by factori-
ally combining two dorsal fin heights and two mouth angles.
The common graphical representation of these stimuli would
be as four points that form a rectangle in a two-dimensional
stimulus space that has fin height as one dimension and
mouth angle as the other. The main goal of Experiment 2
was to examine whether the orthogonality of this stimulus
representation is preserved in the perceptual representation
– that is, in the best MDS solution. Under appropriate con-
ditions, orthogonality of perceptual dimensions signals that
the stimulus dimensions are perceived independently (Ashby
& Townsend, 1986), so another way to describe the goal of
Experiment 2 is that we are examining whether the different
pairs of stimulus dimensions are perceived independently.

The dimensions of an MDS solution are arbitrary, as is
the unit of measurement. Thus, to compare the MDS solu-
tion to the standard orthogonal stimulus representation that is

used to describe any set of stimuli created by a factorial com-
bination of binary-valued dimensions, we aligned the MDS
representation to the orthogonal stimulus representation as
closely as possible using a Procrustes transformation.

Procrustes transformations are shape preserving, so the
only operations allowed are translation, reflection, rotation,
and uniform stretching or shrinking. In particular, it is impor-
tant to note that a Procrustes transformation can not change
any angles in a group configuration. If four points fall on
vertices of a rectangle before Procrustes transformation then
they must fall on the vertices of a rectangle after the transfor-
mation (and vice versa).

Figure 5 shows the stimulus coordinates (black diamonds)
for each pair of stimulus dimensions along with the MDS co-
ordinates (empty circles) after a Procrustes transformation.
Note that in every case, the orthogonality of the stimulus di-
mensions is preserved in the MDS solution. Thus, these re-
sults support the hypothesis that the various stimulus dimen-
sions that define the fish stimuli are perceived independently
of each other, at least for the five stimulus dimensions varied
in Experiment 2.

Discussion

Experiment 2 provided a variety of reassuring results that
strengthen the case for the use of the fish stimuli in cognitive
research. First, the stress analysis strongly confirmed that
participants attended separately to all five stimulus dimen-
sions that we varied. Thus, at least for the five dimensions
we varied, we found no evidence that participants ignored a
dimension or that they combined two dimensions into one
emergent perceptual dimension. Thus, our results suggest
that if researchers create a set of stimuli that vary on the five
dimensions manipulated in Experiment 2, then the resulting
perceptual representations will also be five dimensional.

Second, Experiment 2 supported the hypothesis that all
five dimensions that were varied are perceived independently
by participants. Thus, if researchers choose a set of stimuli
by factorially combining a set of discrete values on some sub-
set of the dimensions that were varied in Experiment 2, then
the orthogonality of the dimensions that were selected should
be preserved in the perceptual representations.

General Discussion

Almost all cognitive research has settled on one of two
types of stimuli – either simple artificial stimuli, such as Ga-
bor patches, that vary on only a couple of dimensions (e.g.,
spatial frequency and orientation) and have a well understood

1Participants rated similarity from 1 to 7, so we defined dissim-
ilarity as 8 − similarity. Note that this standard transformation is
linear, which means that the r2 for a plot of MDS distances against
dissimilarities is the same as the r2 for a plot of MDS distances
against similarities.
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Figure 5. Stimulus coordinates (black diamonds) and MDS
points (empty circles) after alignment via Procrustes trans-
formation.

perceptual representation, or more complex real-world stim-
uli (e.g., faces) that vary on an unknown number of dimen-
sions and have a poorly understood perceptual representa-
tion. The goal of this research was to bridge this gap by
developing a stimulus set of intermediate complexity that is
at least reminiscent of real-world stimuli, varies on many di-
mensions, has spatially separated features to better facilitate
feature attention studies, and has a simple and well under-
stood perceptual representation.

Experiment 1 showed how to construct a set of the fish
stimuli that lie in a space where the units on each dimension
are jnds. First one selects the desired stimulus coordinates of
all stimuli in the ensemble where the values on every dimen-
sion are jnds. Second, Equation 3 is used to find the length
in pixels of all height and width dimensions, and Equation 5
is used to find the angle in degrees of all mouth angles. After
constructing the stimuli in this way, Experiment 2 provides
reassurance that the spatial configuration of all stimuli in per-
ceptual space will closely match their spatial configuration
in physical jnd space. Finally, images of the fish that match
the selected stimulus ensemble can be constructed using the
Matlab code associated with this article.

In addition to the dimensions investigated in this article,
the fish stimuli also have a wealth of other attributes that
could be used as features if even higher dimensionality is
desired (e.g., distances between fins, eye size, or any of the
other constants from Table 1 or Figure 1). Additionally, fea-
tures such as texture can easily be integrated to increase the
dimensionality even further or if users desire to use a specific
feature type.

Another advantage of the fish stimuli is that they might
be more interesting for participants to interact with than typ-
ical low-dimensional artificial stimuli. In our own anecdotal
experience, participants have reported less fatigue and more
interest after categorizing fish than after categorizing Gabor
patches. To make cognitive tasks even more interesting, ex-
perimenters might present the experimental task as a game
– such as fishing for a specific hypothetical fish species that
might require a certain type of lure to catch.

There is a great need within cognitive research for high-
dimensional stimuli with some real-world properties that are
easy to construct and have straight-forward, well-understood
perceptual representations. We believe the new fish stimuli
described here have promising potential to fill this critical
void in the literature.
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Appendix

Derivation of Equation 3

Let H(X) denote the value of H when the number of jnds
equals X. Note that H(X) is one jnd greater than H(X − 1)
and the jnd at H(X − 1) is .1H(X − 1). Therefore,

H(X) = H(X − 1) + .1H(X − 1) = 1.1H(X − 1). (8)

Therefore,
H(2) = 1.1H(1) (9)

and
H(3) = 1.1H(2) = 1.12H(1) (10)

By induction
H(X) = H(1) × 1.1X−1 (11)

Equation 3 follows under the assumption that H(0) = 10.

Derivation of Equation 5

Let θ(X) denote the value of θ when the number of jnds
equals X. By the same logic that led to Equation 8, it follows
that

θ(X) = θ(X − 1) + [.1θ(X − 1) + 2.8]
= 1.1θ(X − 1) + 2.8 (12)

Therefore,
θ(2) = 1.1θ(1) + 2.8 (13)

and

θ(3) = 1.1θ(2) + 2.8
= 1.1 [1.1θ(1) + 2.8] + 2.8

= 1.12θ(1) + 2.8(1 + 1.1). (14)

Similarly,

θ(4) = 1.1θ(3) + 2.8

= 1.1
[
1.12θ(1) + 2.8(1 + 1.1)

]
+ 2.8

= 1.13θ(1) + 2.8(1 + 1.1 + 1.12). (15)

It follows by induction that

θ(X) = 1.1X−1θ(1) + 2.8
X−1∑
i=0

1.1i. (16)

The sum on the right is a geometric series. By standard rules

θ(X) = 1.1X−1θ(1) + 2.8
(

1 − 1.1X

1 − 1.1

)
= 1.1X−1θ(1) + 28 × 1.1X − 28

=
1.1
1.1

[
1.1X−1θ(1)

]
+ 28 × 1.1X − 28

=

[
θ(1)
1.1

+ 28
]

1.1X − 28. (17)

If we choose θ(1) = 11 then Equation 17 reduces to Equation
5.
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