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Predicting human performance in perceptual categorization tasks in which category member-
ship is determined by similarity has been historically difficult. This article proposes a novel
biologically motivated difficulty measure that can be generalized across stimulus types and
category structures. The new measure is compared to 12 previously proposed measures on
four extensive data sets that each included multiple conditions that varied in difficulty. The
studies were highly diverse and included experiments with both continuous- and binary-valued
stimulus dimensions, a variety of different stimulus types, and both linearly- and nonlinearly-
separable categories. Across these four applications, the new measure was the most successful
at predicting the observed rank ordering of conditions by difficulty, and it was also most accu-
rate at predicting the numerical values of the mean error rates in each condition.
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Introduction

Humans are incredibly accurate at categorization.
Whether deciding if your dog is hungry or whether a wine
is a cabernet sauvignon or a merlot, humans are continually
categorizing objects and events in their environment, often
without conscious awareness. For the most part we perform
incredibly well at this task, but when we fail – for example
when a tumor is categorized as normal tissue – the conse-
quences can be dire.

As machine learning and artificial intelligence methods
progress, it is becoming ever more common to augment hu-
man performance in an effort to reduce categorization errors.
Self-driving cars, parking assist, and auto-correct all exist to
minimize human error and this trend is likely to continue in
the future. If the goal is to increase human categorization
performance, it is essential that we start explicitly looking for
situations in which humans are likely to fail. There are a vari-
ety of factors that impact the difficulty of category learning,
ranging from subjective factors, such as fatigue or motiva-
tion, to paradigm/environmental factors such as distractions
or pressure (McCoy, Hutchinson, Hawthorne, Cosley, & Ell,
2014). But perhaps an even more fundamental factor is the
difficulty of the task itself. Some category structures are fun-
damentally easier for humans to learn than others, but what
is it that makes this learning easier? Intuitively we know it
must be something to do with the structure of the categories,
but what aspects of category structure affect difficulty and

why?
One reason that this is still an open question is that the

answer depends on the nature of the category-learning task.
Rule-based (RB) category-learning tasks are those in which
the category structures can be learned via some explicit rea-
soning process. In this case, categorization difficulty de-
pends primarily on the complexity of the rule that must be
learned (e.g., Feldman, 2000). Some prior studies have ex-
amined this issue (e.g., Salatas & Bourne, 1974). For exam-
ple, rules based on two stimulus dimensions are more diffi-
cult to learn than rules based on one dimension, and among
two-dimensional rules, disjunctions are more difficult than
conjunctions. In prototype-distortion tasks, the category ex-
emplars are created by randomly distorting a single category
prototype, and difficulty increases with the amount of distor-
tion (Posner & Keele, 1968). In an unstructured category-
learning task, the stimuli are visually distinct and are as-
signed to each contrasting category randomly, and thus there
is no rule- or similarity-based strategy for determining cate-
gory membership. In this case, difficulty increases with the
number of exemplars in each category.

On the other hand, predicting categorization difficulty is
more problematic in information-integration (II) tasks, in
which accuracy is maximized only if information from two
or more stimulus components (or dimensions) is integrated
at some predecisional stage. In II tasks, perceptual similar-
ity determines category membership, and the optimal strat-
egy is difficult or impossible to describe verbally. Explicit-
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rule strategies can be applied in II tasks, but they generally
lead to suboptimal levels of accuracy because explicit-rule
strategies make separate decisions about each stimulus com-
ponent, rather than integrating this information.

Some previous work has tried to identify properties of
II tasks that make learning difficult (Alfonso-Reese, Ashby,
& Brainard, 2002), but the measures that were investigated
were not derived from any theory of human category learn-
ing and they were only tested on some very limited category
structures. This prompts the goal of this project: to develop a
difficulty measure for II category learning based on the best
current theories of human learning.

In the next section, we present a difficulty measure based
on the most successful neurobiologically detailed model of
II category learning – namely the procedural-learning com-
ponent of COVIS (Ashby, Alfonso-Reese, Turken, & Wal-
dron, 1998; Ashby & Waldron, 1999; Cantwell, Crossley, &
Ashby, 2015). This model assigns a key role to the striatum,
and as a result, we refer to the new difficulty measure as the
Striatal Difficulty Measure (SDM). The COVIS procedural-
learning model contains the most popular cognitive model of
categorization – that is, the exemplar model – as a special
case (Ashby & Rosedahl, 2017). Thus, the SDM is compati-
ble with both models.

Methods

This section describes the SDM, overviews the other mea-
sures that the SDM is compared against, and describes the
data sets that were used to compare all these measures.

Derivation of the Striatal Difficulty Measure (SDM)

The procedural-learning model of COVIS mimics the ar-
chitecture of the direct pathway through the basal ganglia,
which is illustrated in Figure 1. The computational version of
this model is often called the striatal pattern classifier (SPC).
The simplest version is a two-layer feedforward neural net-
work that includes a large array of sensory cortical units in
the input layer and a small set of striatal medium spiny units
(MSNs) in the output layer – specifically, one MSN for each
response alternative. Downstream units in the internal seg-
ment of the globus pallidus (GPi), the thalamus, and the pre-
motor cortex are often omitted from the model since nothing
that happens in these units can change the category response.

Initially, the sensory cortical and striatal layers are fully
interconnected, with each unit in sensory cortex projecting
to a unique synapse (on a spine) on each MSN. The strengths
of these synapses are modified based on whether the feed-
back is positive or negative according to a biologically real-
istic form of reinforcement learning. On each trial, the most
active MSN controls the response.

All versions of the SPC share similar properties. In partic-
ular, responding depends strongly on the summed similarity
of the presented stimulus to the previously seen exemplars in
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Figure 1. Architecture of the procedural-learning model of
COVIS, which mimics the direct pathway through the basal
ganglia. MSN = medium spiny neuron; GPi = internal seg-
ment of the globus pallidus.

each contrasting category. These similarity effects occur for
several reasons. First, units in visual cortex respond maxi-
mally to some ideal stimulus and at a lower rate to stimuli
similar to the ideal stimulus. This is modeled via Gaussian
tuning curves (mathematically identical to radial basis func-
tions). Thus, if we let xiK denote the ith exemplar in category
CK , then on trials when xiK is presented, activation in sensory
unit j equals

A(xiK , s j) = exp
[
−d2(xiK , s j)/γ

]
(1)

where s j is the stimulus that maximally excites sensory unit
j, d(xiK , s j) is the Euclidean distance between the perceptual
representations of objects xiK and s j, and γ captures how
tightly sensory units are tuned. Thus, A(xiK , s j) increases
with the similarity of the presented stimulus to s j.

Second, because of the nature of reinforcement learning,
similarity effects in the SPC are consolidated at cortical-
striatal synapses. In fact, Ashby and Rosedahl (2017)
showed that under certain simplifying assumptions, the
synaptic strength between sensory unit j and striatal unit K
is proportional to the summed similarities of object s j to all
previously seen exemplars from category K. Since synaptic
strength drives striatal activation, the probability of respond-
ing K on a trial when stimulus s j is presented therefore in-
creases with this sum.

Ashby and Rosedahl (2017) also showed that these
summed similarities are mathematically identical to the
summed similarities that are the basis of exemplar models of
categorization (Nosofsky, 1986). So the exact same difficulty
measure could be derived from exemplar theory. Although
the two approaches are mathematically equivalent, they make
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very different cognitive assumptions. Exemplar theory as-
sumes that each sum is computed from scratch on every trial.
For example, to compute the summed similarity of the pre-
sented stimulus to the exemplars of category K, exemplar
theory assumes that the subject activates the memory repre-
sentation of every previously seen exemplar from category
K, computes the similarity of the presented stimulus to each
of these memory representations, and then sums all these
similarities. Thus, exemplar theory predicts that as a subject
gains experience at a specific classification task, more and
more computation is required on each trial (because there are
more terms in the sum). In contrast, the SPC assumes that the
sums are encoded in the cortical-striatal synaptic strengths as
a result of a reinforcement-learning process. Thus, the SPC
assumes that no memory representations are retrieved during
the categorization process.

On every classification trial, the SPC striatal units enter
a winner-take-all competition to select the response. There-
fore, the weaker the activation of the striatal unit correspond-
ing to the correct category and the stronger the activation of
the striatal units corresponding to incorrect categories, the
more difficult the judgment. Activation is proportional to
similarity, which suggests that task difficulty should increase
with the simple ratio

D =
S B

S W
, (2)

where S B is between-category similarity and S W is within-
category similarity.

The SPC suggests specific forms for S B and S W . In par-
ticular, S B should equal the similarity of every category ex-
emplar to all exemplars in every contrasting category:

S B =

R∑
K=1

R∑
L,K

nK∑
i=1

nL∑
j=1

A(xiK , x jL), (3)

where R is the number of contrasting categories, nK is the
number of exemplars in category K, nL is the number of
exemplars in each contrasting category L, and as in Eq. 1,
A(xiK , x jL) is activation in the sensory unit that is maximally
excited by stimulus x jL. Similarly, S W should equal the sim-
ilarity of every exemplar to all exemplars in the same cate-
gory:

S W =

R∑
K=1

nK∑
i=1

nK∑
j,i

A(xiK , x jK). (4)

Putting all this together produces the Striatal Difficulty Mea-
sure (SDM):

S DM =

R∑
K=1

R∑
L,K

nK∑
i=1

nL∑
j=1

exp
[
−d2(xiK , x jL)/γ

]
R∑

K=1

nK∑
i=1

nK∑
j,i

exp
[
−d2(xiK , x jK)/γ

] . (5)

For completely overlapping categories this measure equals 1
because within-category similarity is equal to between cate-
gory similarity. For infinitely separated categories (where the
between-category similarity goes to 0), the measure equals 0.

Note that the only free parameter in Eq. 5 is γ, which is a
measure of how tightly tuned the subject’s sensory system is
to changes in the stimulus. Technically, γ could differ across
stimulus dimensions, but in practice such differences would
have to be extreme for SDM to change its predicted ordering
of tasks by difficulty. Thus, a single value of γ will suffice
in almost all applications. Furthermore, the numerical value
of γ could be estimated from separate sensory discrimination
data. As we will see however, the ordinal predictions of the
SDM as to which of two (or more) conditions is most diffi-
cult, typically do not change when γ changes. So the actual
numerical value of γ chosen does not appear to be critical.
In the empirical applications considered below, we compute
SDM by averaging across a wide range of γ values.

The SDM is closely related to a number of previously
proposed difficulty measures. First, many machine-learning
measures are based on an inverse of the Eq. 2 ratio:

D =
DW

DB
, (6)

where DW and DB are some measures of the within-
and between-category dissimilarities, respectively (e.g.,
Fukunaga, 2013). Most commonly, dissimilarity is defined
as some increasing function of distance. Of these measures,
perhaps the most similar to the SDM is the ratio of intra- to
extra-class nearest-neighbor measure, which is often referred
to as the N2 measure (Lorena, Garcia, Lehmann, Souto, &
Ho, 2018). The N2 difficulty measure takes the form of Eq.
6 with

DW =

R∑
K=1

nK∑
i=1

min
j,i

d(xiK , x jK), (7)

As it should, note that this sum increases with the distance
between category exemplars, so when incorporated into Eq.
6, the N2 difficulty measure predicts that categories in which
the exemplars are more widely distributed are more difficult
to learn than categories in which the exemplars are tightly
clustered. Analogously, the N2 measure defines between-
category separation as

DB =

R∑
K=1

nK∑
i=1

min
j

L,K

d(xiK , x jL). (8)

Note that this sum increases with the distance between the
category exemplars that are in contrasting categories, and
thus, when incorporated in Eq. 6, the N2 measure predicts
that classification difficulty decreases with between-category
separation.
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Note that the SDM differs from the N2 difficulty measure
in two important ways. First, the SDM depends on all cat-
egory exemplars, whereas N2 assumes that only the nearest
neighbors affect difficulty. Leading theories of human cate-
gory learning assume that classification decisions depend on
all previously seen category exemplars – not just the near-
est neighbors (e.g., Estes, 1986; Medin & Schaffer, 1978;
Nosofsky, 1986).

Second, N2 depends on distance, whereas SDM depends
on a nonlinear transformation of distance – namely, similar-
ity. Considerable independent evidence suggests that human
classification and generalization are determined primarily by
similarity, rather than by distance (e.g., Shepard, 1987). This
difference between SDM and N2 changes the impact that
stimulus spacing has on predicted difficulty. The Gaussian
similarity function described in Eq. 1 has an inflection point
at an intermediate distance. SDM therefore predicts that
increasing distances for intermediately spaced stimuli will
have a greater impact on difficulty than increasing the separa-
tion for either nearby or distant stimuli by the same amount.
In contrast, defining difficulty in terms of distance, rather
than similarity (e.g., as in the N2 measure), predicts that all
changes of a fixed distance should have equal effects on clas-
sification difficulty.

Previous Measures

To our knowledge, only one previous study has tried to
predict human learning difficulty in II tasks. Alfonso-Reese
et al. (2002) compared the ability of several different mea-
sures to predict the difficulty of five different category struc-
tures (shown in Figure 2). Included in this list were a mea-
sure of covariance complexity, a measure of class separation,
and the error rate of an ideal observer. In contrast, many
alternative difficulty measures have been proposed within
the machine-learning literature – some that have the form of
Eq. 6 and some that do not. Many of these were reviewed
by Lorena et al. (2018), who divided the measures into six
groups: feature overlapping measures, linearity measures,
neighborhood measures (which includes N2), network mea-
sures, dimensionality measures, and class balance measures.

The remainder of this article compares SDM to the mea-
sures examined by Alfonso-Reese et al. (2002) and to a va-
riety of the machine-learning measures described by Lorena
et al. (2018). All of these measures are compared in their
ability to predict difficulty across a variety of different cat-
egory structures. The structures are highly diverse, and in-
clude both continuous- and binary-valued stimulus dimen-
sions, linearly- and nonlinearly-separable categories, and a
variety of different stimulus types. As we will see, of all
these measures, the SDM most accurately predicts human
learning difficulty across all these very different conditions.

We will now provide a brief description of the difficulty
measures used in this article. The equations are included for

the more straightforward measures, whereas a qualitative de-
scription is provided for the others. More detailed descrip-
tions of these latter measures can be found in Lorena et al.
(2018).

Measures Considered by Alfonso-Reese et al. (2002)

The following measures were used by Alfonso-Reese et
al. in their attempt to quantify procedural categorization dif-
ficulty.

Covariance Complexity (CC). Alfonso-Reese et al.
(2002) used a covariance complexity (CC) measure proposed
by Bozdogan (1990)

CC =
1
2

rank(Σ) ln
[
trace(Σ)
rank(Σ)

]
−

1
2

ln|Σ|, (9)

where Σ is the common within-category variance-covariance
matrix. Note that this measure is undefined if the contrasting
categories are characterized by different within-category
variance-covariance matrices.

Class Separation (Csep). Following (Fukunaga, 2013),
Alfonso-Reese et al. (2002) defined class separation (Csep)
as

Csep = trace
(
Σ−1S

)
, (10)

where Σ is the common variance-covariance matrix. The ma-
trix S for a two category condition with categories A and B
is defined as

S =
1
2

(µ
A
− µ)(µ

A
− µ)′ +

1
2

(µ
B
− µ)(µ

B
− µ)′ (11)

where µ is a vector which is the mean of µ
A

and µ
B
. In the

case where the two categories are characterized by different
variance-covariance matrices ΣA and ΣB (e.g., as in the Ashby
& Maddox, 1992 experiments),

Σ =
1
2

ΣA +
1
2

ΣB. (12)

Error Rate of the Ideal Observer (eIO). This is the er-
ror rate that results from applying the optimal classification
strategy.

Machine-Learning Measures

The following measures were designed for machine learn-
ing algorithms. More details on all the measures can be
found in Lorena et al., 2018.
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Volume of Overlapping Regions (VOR). The volume
of overlapping regions (VOR) is a measure of feature overlap
that depends on the amount of overlap of the category dis-
tributions on each stimulus dimension. Specifically, VOR is
computed by finding the range of values on each dimension
that are shared by both categories, multiplying these ranges
together, and then normalizing.

Collective Feature Efficiency (CFE). Collective
feature efficiency (CFE) is another measure of feature
overlap that is based on the percentage of stimuli that can
be correctly classified using bounds perpendicular to each
stimulus dimension.

Error Rate of Nearest Neighbor Classifier (eNN).
The error rate of nearest neighbor classifier (eNN) is the
error rate of a classifier that assigns the stimulus to the
category of its nearest neighbor among all other stimuli in
the two categories.

Fraction of Borderline Points (FBP). The fraction
of borderline points (FBP) is a function of the number
of stimuli that are connected to a stimulus belonging to
the contrasting category in the minimum spanning tree
constructed from the data.

Fraction of Hyperspheres Covering Data (T1). The
fraction of hyperspheres covering data measure (called T1
in Lorena et al., 2018) is constructed by first centering a hy-
persphere on each stimulus and setting the radius equal to
the distance between that stimulus and the nearest stimulus
from the contrasting category. All hyperspheres that are com-
pletely contained in another hypersphere are then removed
and the measure is simply the fraction of hyperspheres that
remain.

Average Density of the Network (Density). Several
machine-learning difficulty measures are derived from the
representation of the categories as a graph. Each category
exemplar is represented as a node or vertex in the graph, and
nodes are connected if their corresponding distance in stimu-
lus space is less than some criterion value. Finally, edges that
connect exemplars from contrasting categories are pruned.

The average density of the network (density) is the num-
ber of edges in the graph divided by the maximum possible
number of edges in a graph with the same number of nodes.
Thus, if the graph has N edges and n nodes, then

density =
N

n(n − 1)/2
. (13)

Clustering Coefficient (ClsCoef). The clustering coef-
ficient (ClsCoef) is a measure of network average local den-
sity. First, for each node, define its neighborhood as the set

of all nodes that are directly connected. The ClsCoef is the
mean density of each of these neighborhoods.

Note that ClsCoef is smaller for less dense networks or
for structures where the categories overlap (leading to many
non-connected stimuli from opposing classes within the
neighborhood of any given stimulus).

Hub Score (Hubs). The hub score (Hubs) is another
network measure equal to the number of connections a node
has weighted by the number of connections of each of its
neighbors.

This leads to stimuli that are connected to many other
stimuli that are also highly connected having a large score.
Less dense categories and a higher degree of overlap between
categories will both cause this measure to predict higher dif-
ficulty.

Data Analysis

We compared the efficacy of the SDM to all of the other
measures described in the previous section at predicting hu-
man categorization performance in four different published
studies. The studies all used different stimulus types and
included categorization conditions that differed in difficulty.
The data sets from these four studies included five cate-
gory structures from Alfonso-Reese et al. (2002), six clas-
sic structures from Shepard, Hovland, and Jenkins (1961),
three structures from Ashby and Maddox (1992), and three
from Ell and Ashby (2006). Each of these studies used dif-
ferent stimulus types. Shepard et al. (1961) used binary-
valued stimulus dimensions, whereas the other studies used
continuous-valued dimensions. Alfonso-Reese et al. (2002)
and Shepard et al. (1961) used stimuli that varied on three
dimensions, whereas the stimuli used by Ashby and Mad-
dox (1992) and Ell and Ashby (2006) varied on two stim-
ulus dimensions. Alfonso-Reese et al. (2002) and Ell and
Ashby (2006) used linearly separable categories, Ashby and
Maddox (1992) used nonlinearly separable categories, and
Shepard et al. (1961) included both linearly and nonlinearly
separable categories.

Our primary analysis focused on the ability of each diffi-
culty measure to correctly rank order the observed classifi-
cation error rates from each condition of these four studies.
Some of the measures increase with predicted classification
difficulty (e.g., CC, eIO, VOR), whereas the others decrease
with predicted difficulty (e.g., Csep, Density, ClsCoef). For
measures in this latter group, we generated a predicted rank
ordering by inverting the order of the measure. So for exam-
ple, the condition with the smallest Csep was ranked as most
difficult and the condition with the largest Csep was ranked
as least difficult.

For each category structure, the SDM was calculated by
randomly selecting 300 stimuli from the category distribu-
tions and averaging across 10 such sets to determine the
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SDM value for a single γ. This process was repeated for all
values of γ ranging from 5–50 in 5 step intervals (so 5, 10,
15, ..., 45, 50) and the final difficulty score was the average of
the scores for all values of γ. In practice, the value of γ can
be found by fitting previous results using the same stimuli,
but here we are interested in a priori difficulty predictions
of SDM, rather than in its ability to account for difficulty
post hoc by adjusting the value of γ. The machine-learning
measures were computed using the R package provided by
Lorena et al. (2018).

Results

Alfonso-Reese, Ashby, and Brainard (2002)

Alfonso-Reese et al. (2002) compared the ability of the
CC, eIO, and Csep difficulty measures to rank order hu-
man performance on the five different classification tasks de-
scribed in Figure 2. A fourth measure was also included
(orientation of the optimal bound), but because it failed to
make any differential predictions for the majority of the cate-
gory structures they analyzed, it was excluded from compar-
ison here. In all tasks, the stimuli were bar graphs that dis-
played the numerical values of blood pressure, white blood
cell count, and serum potassium level of a hypothetical pa-
tient. The subject’s task was to use these three values to di-
agnose the patient with either disease A or B.

Table 1 shows the observed rank ordering of the tasks ac-
cording to the mean percent errors of subjects during the
last block of training, along with the predicted rank order-
ing according to the SDM, the eight measures selected from
Lorena et al. (2018), and the three measures from Alfonso-
Reese et al. (2002). Also shown (in the rightmost column)
is Spearman’s rank correlation for each model that measures
the ordinal agreement between the predicted and observed
orderings. Note that the SDM, N2, T1, and Density measures
performed best and that the former three measures all made
identical ordinal predictions – mispredicting only one pair of
conditions (conditions 3 and 5).

It should be noted that due to the similar error rates be-
tween conditions 3, 4, and 5 (32.1%, 29.6%, and 30.0% re-
spectively), it is unclear whether there is any real difficulty
difference among these conditions.

A. Condition 1 

B. Condition 2

C. Condition 3

D. Condition 4

E. Condition 5

Figure 2. Alfonso-Reese et al. (2002) category structures.

Table 1
Predicted and Observed Difficulties for the Alfonso-Reese et
al. (2002) Category Structures

Measure Difficulty r
ClsCoef C5>C1>C2>C4>C3 -.40
Csep C5>C1>C2>C3=C4 -.31
eIO C5>>C1>C2>C3=C4 -.31
VOR C2>C3>C4>C5>C1 .30
CC C3=C4>C2>C1=C5 .47
CFE C2>C3>C5>C4>C1 .40
eNN C5>C3>C4>C1>C2 .80
FBP C5>C3>C4>C1>C2 .80
Hubs C3>C4>C5>C1>C2 .80
Density C3>C4>C5>C2>C1 .90
T1 C5>C3>C4>C2>C1 .90
N2 C5>C3>C4>C2>C1 .90
SDM C5>C3>C4>C2>C1 .90
Observed Ordering C3>C5>C4>C2>C1
Percent Errors 32.1>30.0>29.6>18.3>13.5

A natural question is whether the good performance of the
SDM depends on the specific numerical value chosen for γ.
To investigate this question, we examined how the ordinal
predictions of the SDM change as a function of γ. The re-
sults are shown in Figure 3, which shows the predicted value
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γ
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Figure 3. Predicted difficulty in the Alfonso-Reese et al.
(2002) conditions as a function of the SDM γ parameter.

of the SDM in each condition across a wide range of different
γ values. The rank ordering in Table 1 was computed from
the mean SDM from each of these curves. Note that none
of the curves cross, which means that the ordinal predictions
of the SDM are invariant across different values of γ. We
performed similar analyses for each of the other empirical
applications considered below, and in every case, none of the
curves crossed. Thus, at least for the empirical applications
considered in this article, the ordinal predictions of the SDM
do not depend on the specific numerical value chosen for γ.

Shepard, Hovland, and Jenkins (1961)

Shepard et al. (1961) compared categorization perfor-
mance for six category structures created from stimuli that
varied across trials on three binary-valued dimensions. Each
stimulus was a geometric object that varied in shape (triangle
versus square), size (small versus large) and color (black ver-
sus white). The category structures are described abstractly
in Figure 4.

These six tasks have been replicated many times with a
variety of different stimulus types and are perhaps the most
widely used category structures for testing new theories of
categorization. For example, ALCOVE (Kruschke, 1992;
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994),
the context model (Nosofsky, 1984), the generalized context
model (Nosofsky, 1986), COVIS (Ashby et al., 1998; Ed-
munds & Wills, 2016), and SUSTAIN (Love & Medin, 1998)
have all been shown to account for the consensus difficulty

I II III

IV V VI

Figure 4. Shepard, Hovland, and Jenkins (1961) category
structures. Black dots represent stimulus coordinates of cat-
egory A exemplars and blue dots represent stimulus coordi-
nates of category B exemplars.

ordering of VI > III = IV = V > II > I (e.g., Nosofsky et
al., 1994; Smith, Minda, & Washburn, 2004). These demon-
strations all required estimating a large number of free pa-
rameters however, and for this reason, we did not include
any of these models in the analyses included here. For ex-
ample, Nosofsky (1984) estimated 18 free parameters when
he showed that the context model was consistent with the
Shepard et al. (1961) difficulty order. On the other hand, it
is important to note that after this parameter-estimation pro-
cess, the resulting models also provide good fits to the learn-
ing curves – an ability that is beyond the scope of the SDM.
The SDM is not proposed as a model of categorization or
category learning. Rather, we propose the SDM as a measure
that makes a priori predictions of categorization difficulty.

Class separation is undefined with some of these cate-
gories because the within-category variance-covariance ma-
trix is singular. As a result, we compared all other measures
to the consensus ordering from the six conditions. Values
of 0 and 100 were used for each binary-valued dimension to
approximately equate the range of stimulus values to those
used in the other experiments. Results are shown in Table
2. Note that SDM performs better than all the previous top
performers – correctly ordering the difficulty of all condi-
tions except type II. Three measures that performed poorly
on the Alfonso-Reese et al. (2002) data outperform SDM
here: VOR, CFE, and FBP. However, note that two of these
measures (VOR and CFE) predict no difference between cat-
egory structure VI and structures III, IV, and V. In contrast
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to this prediction, many studies have shown that the type VI
categories are, by far, the most difficult for people to learn
(Nosofsky et al., 1994; Smith et al., 2004).

Table 2
Predicted and Observed Difficulties for the Shepard et al.
(1961) Category Structures

Measure Difficulty r
ClsCoef IV>I>III>V>II>VI -.39
Hubs II>V>IV>III>I>VI -.33
T1 I=II=III=V=VI>IV -.14
eNN I=II=III=IV=V=VI 0.0
eIO I=II=III=IV=V=VI 0.0
N2 I=II=III=IV=V=VI 0.0
CC V>III>IV>I=II=VI .29
Density VI>V>II>I=III>IV .31
SDM VI>II>V>III>IV>I .58
CFE II=III=IV=V=VI>I .70
VOR III=IV=V=VI>I=II .88
FBP VI>V>III=IV>II>I .95
Observed Ordering VI>V=IV=III>II>I
Percent Error 14.3>7.5=6.5=6.1>3.2>1.0

Note. The difficulty ordering for the covariance complexity
measure was computed by Alfonso-Reese et al. (2002). The

error rates used here are from Nosofsky et al. (1994).

The reduced performance of SDM on these data, relative
to the data of Alfonso-Reese et al. (2002) is driven by two
factors: the better than predicted human performance on type
II categories and the failure of SDM to predict exactly equal
performance on category types III, IV, and V. Note that for
the type II categories, perfect performance is possible with
the (explicit) disjunction rule: Respond B if the stimulus is
at level 1 on dimensions 1 and 3 or if the stimulus is at level 2
on both of these dimensions; otherwise respond A. Thus, one
possibility is that category types I and II are best described
as RB tasks, in which case the SDM should not be expected
to apply. Also, of course, the decision to set the observed
difficulties of types III, IV, and V equal in Table 2 is because
previous studies have generally not agreed on the ordering of
these types and any differences that have been reported were
small. SDM could be generalized to predict equal difficulties
by requiring, for example, that the predicted difficulties of
two tasks exceed some criterion before a strict ordering is
predicted.

Ashby and Maddox (1992)

Ashby and Maddox (1992) trained participants on the
three category structures described in Figure 5. Each cat-
egory was created by drawing 800 random samples from a
bivariate normal distribution. In all experiments, the two
category distributions had different variance-covariance ma-
trices, so in each case the optimal decision boundary was

Experiment 1

Experiment 2

Experiment 3

Figure 5. Ashby and Maddox (1992) category structures. In
each case, the categories were created by random sampling
from a bivariate normal distribution. In each experiment, the
distributions had different variance-covariance matrices.
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nonlinear (i.e., quadratic). The three experiments included
separate conditions (with separate subjects) that used the co-
ordinate values of the random samples shown in Figure 5
to create two different stimulus types: rectangles that varied
across trials in height and width, and circles with a radial line
that varied across trials in circle size and line orientation.1

The results are shown in Table 3. The observed accuracies
and difficulties were based on performance during the last
300 trials. Note that accuracy was highest in Experiment 3,
second highest in Experiment 1, and lowest in Experiment 2,
so the observed difficulty ordering was E2 > E1 > E3. This
same ordering held for both stimulus types, so in these ex-
periments at least, difficulty depended on category structure,
but not on the type of stimuli that were used.

SDM was one of four measures to correctly rank order the
three experiments by difficulty, joined by the Csep, Density,
and Hubs measures. The three measures that outperformed
SDM for the Shepard et al. (1961) categories (VOR, CFE,
and FBP) and two of the three measures that performed as
well as SDM on the Alfonso-Reese et al. (2002) categories
(T1 and N2) all failed to properly rank order the experiments.

Table 3
Predicted and Observed Difficulties for the Ashby and Mad-
dox (1992) Category Structures

Measure Difficulty r
ClsCoef E3>E2>E1 -.50
CFE E1>E2>E3 .50
CC E1>E2>E3 .50
eNN E2>E3>E1 .50
FBP E2>E3>E1 .50
T1 E2>E3>E1 .50
N2 E2>E3>E1 .50
VOR E1>E2>E3 .50
eIO E2>E1=E3 .87
Csep E2>E1>E3 1.0
Density E2>E1>E3 1.0
Hubs E2>E1>E3 1.0
SDM E2>E1>E3 1.0
Observed Ordering E2>E1>E3
Percent Errors 35>25>14

Ell and Ashby (2006)

Ell and Ashby (2006) studied the effects of category sepa-
ration on categorization performance by training participants
on category structures that varied on the distance between the
category means but were identical in all other aspects. The
categorization stimuli were Gabor disks that varied across tri-
als on spatial frequency and orientation. The category struc-
tures are described in Figure 6. As in the Ashby and Maddox
(1992) experiments, the stimuli comprising each category
were random samples from a bivariate normal distribution.
However, in these experiments, both category distributions

had identical variance-covariance matrices, so in each case
the optimal boundary was linear (as in the Alfonso-Reese
et al., 2002 conditions). Therefore, the different conditions
varied only in category separation.

As expected, performance improved substantially with
category separation. Thus, any measure sensitive to sepa-
ration will correctly order these conditions by difficulty. The
results, based on the last block of performance are shown
in Table 4. Note that all measures (including SDM) cor-
rectly rank order the conditions by difficulty, except for CC,
which predicts equal performance in the three conditions.
This is because the CC measure is sensitive only to the com-
plexity of the variance-covariance matrices that describe the
contrasting categories. Because the categories in the Ell
and Ashby (2006) experiments all had identical variance-
covariance matrices, the CC measure incorrectly predicts
equal performance in the three conditions.

Table 4
Predicted and Observed Difficulties for the Ell and Ashby
(2006) Category Structures

Measure Difficulty r
CC L=M=H 0.0
Csep L>M>H 1.0
CC L>M>H 1.0
CFE L>M>H 1.0
Density L>M>H 1.0
eNN L>M>H 1.0
FBP L>M>H 1.0
Hubs L>M>H 1.0
T1 L>M>H 1.0
eIO L>M>H 1.0
N2 L>M>H 1.0
VOR L>M>H 1.0
SDM L>M>H 1.0
Observed Ordering L>M>H
Percent Errors 47>21>1

Comparing Across All Experiments

The SDM performed best across all the data sets exam-
ined so far. Even so, these results must be interpreted with
caution because of the small number of category structures
examined in each application. Because of these small num-
bers, the Spearman’s rank correlations reported in Tables 1 –
4 are based on small sample sizes. This section attempts to

1Experiments 1 and 2 included a third condition in which the
stimuli were two connected line segments that varied across trials
in length. However, Ashby and Maddox (1992) did not include
those stimuli in their Experiment 3, and so those conditions are not
considered here. Even so, the difficulty ordering for the excluded
conditions was the same as for the other conditions, so the only ef-
fect of including the line-segment data would be to slightly change
the Experiment 1 percent correct listed in Table 3.
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Figure 6. Ell and Ashby (2006) category structures. In each
case, categories were created by random sampling from a
bivariate normal distribution. All distributions had identical
variance-covariance matrices. The three conditions varied
the inter-mean distance to create high, medium, and low class
separation.

alleviate this concern by comparing performance across all
the data sets examined above.

First, we summarized the rank-order performance of each
measure by computing its mean Spearman’s r in all four ap-
plications described above (i.e., across Tables 1 – 4). Results
are shown in Table 5. Note that, overall, SDM performed
best, followed by FBP and Density and then distantly by
VOR.

Table 5
Average Spearman’s r Across All Category Structures

Measure Average Spearman’s r
ClsCoef -.07
CC .32
eIO .39
Csep .56
T1 .57
eNN .58
N2 .60
Hubs .62
CFE .65
VOR .67
Density .80
FBP .81
SDM .87

The rank orderings considered so far only examine ordi-
nal predictions of the difficulty measures. However, each
measure makes a quantitative prediction about the difficulty
of any particular category structure. And in all applications
considered above, we have an empirical quantitative estimate
of difficulty – namely, the average error rate of the human
learners. So a more ambitious question is to ask how well
the various measures predict the observed error rates.

Before proceeding, however, there are several complica-
tions to consider. First, the quantitative value of difficulty
predicted by each measure is not average error rate, but rather
some other statistic. For example, in the case of SDM, the
statistic is described by Eq. 5. Suppose we call the numerical
value of difficulty predicted by a measure D and the observed
average error rate of human learners E. Then the various
measures all predict that

E = f (D), (14)

where f is some strictly increasing function (and therefore
order preserving). However, none of the measures specify
the form of f . This is why we focused on predicted rank
orderings (because the predicted rank ordering is the same
for any increasing function f ). We will use the same strategy
here, but in addition, we will also compare the ability of the
most successful measures to predict the observed value of av-
erage error rate in all conditions and experiments considered
above, under the assumption that f is linear. However, it is
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important to note that, in general, there is no reason to expect
f to be linear.

A second complication is that the four applications con-
sidered above each included different amounts of training
and different instructions to the subjects. The measures are
blind with respect to these factors. Thus, they predict the
same quantitative value of difficulty regardless of whether
subjects received 100 or 1000 trials of training. Obviously,
we expect average error rates to be lower in the latter case,
so a mispredicted average error rate by a measure in a spe-
cific experiment does not necessarily mean that the measure
is flawed. For this reason, the results in this section should
be interpreted with caution. Despite these misgivings how-
ever, we believe that comparing the quantitative predictions
of the measures across all experiments is a useful exercise.
First, there is no reason to expect these issues to plague one
measure any more than the others. Thus, even if all the pre-
dictions are inaccurate, it could still prove useful to compare
the accuracy of different measures. Second, the most likely
effect of these complications should be to reduce the accu-
racy of prediction. Thus, whereas it might be problematic to
interpret results if all measures make inaccurate predictions,
the opposite scenario is less troubling. In particular, accu-
rate predictions by a measure are most likely to occur be-
cause that measure is a valid predictor of classification diffi-
culty, rather than because of either complication. With those
caveats in mind, we can proceed to the analysis.

For each category structure in the four data sets, we com-
puted the numerical value of difficulty predicted by each of
the measures (excluding category separation since it is not
defined for the SHJ data set) and then compared these to the
observed mean (across subjects) error rates. We evaluated the
accuracy of these predictions in two ways – by computing the
Spearman’s rank correlation and the Pearson’s squared cor-
relation between predicted difficulty and the observed error
rates. The results are shown in Table 6.

Table 6
Spearman’s rank correlation and Pearson’s squared corre-
lation between predicted difficulty and mean observed error
rate across all category structures considered in this article.

Measure Spearman’s r Pearson’s r2

CFE .05 .18
FBP .12 .09
Hubs .18 .02
VOR .25 .02
CC .39 .13
ClsCoef .54 .31
eIO .78 .73
Density .82 .76
N2 .83 .76
T1 .83 .83
eNN .87 .83
SDM .93 .87

Note that SDM performs best according to both measures,
with a Spearman’s r of .93 and a Pearson’s r2 of .87. The
nearest neighbor classifier (eNN) is second best, followed by
the hyperspheres (T1), N2, and density measures. Thus, de-
spite the complications described above, the SDM accounts
for an impressive 87% of the variance in the mean error rates
across study.

Figure 7 plots mean error rate in each study along with
predicted difficulty for the six best performing measures.
Also shown are the best-fitting regression lines and the
squared Pearson correlation. Note that the high r2 for the
SDM suggests that the function f from Eq. 14 is fairly linear
in these applications.

The performance of the SDM can be even further im-
proved by selecting the single best performing value of γ =

10. In this case the measure accounts for 91% of the vari-
ance. This could presumably be increased even further by
using values of γ tailored to each stimulus type (because each
stimulus has a different visual representation, the neural tun-
ing curves will differ across stimulus types, and therefore γ
should also differ). Even so, there are two different reasons
that we chose to base the r2 in Table 6 on the mean value of
SDM across a wide range of γ values. First, none of the other
measures include a free parameter, so to keep the compar-
isons fair, neither should the SDM. Second, the goal of this
article is to develop a difficulty measure that makes accurate
a priori predictions of difficulty.

General Discussion

Across a wide range of category-learning data sets, the
SDM outperformed several difficulty measures that have
been used previously on human data (CC, eIO, and Csep), as
well as eight previously used measures from the machine-
learning literature (VOR, CFE, FBP, eNN, T1, Density,
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Figure 7. Scatterplots of predicted difficulty for six different
measures against mean observed error rate for all category
structures from the four applications considered in this arti-
cle. Also shown are the best-fitting regression line and result-
ing Pearson r2. Note that in the case of Density, the ordinate
is "Predicted Ease of Classification."

ClsCoef, and Hubs). All of these measures were compared
on four extensive data sets that each included multiple condi-
tions that varied in difficulty. The studies were highly diverse
and included experiments with both continuous- and binary-
valued stimulus dimensions, a variety of different stimu-
lus types, and both linearly- and nonlinearly-separable cat-
egories. Across these four applications, the SDM was the
most successful measure at predicting the observed rank or-
dering of conditions by difficulty with an average Spearman’s
r of .87, and it was also the most accurate measure of the six
tested at predicting the numerical values of the mean error
rates in each condition (accounting for 87% of the variance
in error rates across all conditions).

The only real failure in the ordinal predictions of the SDM
is that the Shepard et al. (1961) type II categories turn out
to be easier for humans to learn than the SDM predicts.
However, as noted earlier, the optimal strategy for the type
II categories has a straightforward verbal description (i.e.,
as a logical disjunction). This is also true for the type I
categories. Therefore, types I and II are best characterized
as rule-based tasks, whereas types III, IV, V, and VI seem
more like information-integration tasks. Multiple systems

theories of human category learning (e.g., COVIS; Ashby
& Valentin, 2017) predict that rule-based and information-
integration tasks are learned in qualitatively different ways,
and it for this reason that the SDM was developed specif-
ically to predict difficulty only in information-integration
tasks.

Another possibility however, is that none of the Shepard
et al. (1961) categories are learned procedurally because the
stimuli vary on only three binary-valued dimensions. For
example, Feldman (2000, 2004) showed that the difficulty of
the Shepard et al. conditions is perfectly predicted by the
Boolean complexity of the rule that describes category mem-
bership. If so, then the SDM should not be expected to accu-
rately predict the difficulty of any Shepard et al. conditions.
Whether or not any of these conditions are learned procedu-
rally is an open question. Even so, there is evidence that cate-
gories in which the stimuli vary on four binary-valued dimen-
sions are learned procedurally when Boolean complexity is
high (Waldron & Ashby, 2001). Also, of course, in almost all
real-world information-integration categories, objects vary
on continuous- rather than binary-valued perceptual dimen-
sions.2 Thus, the Shepard et al. (1961) conditions are not
representative of real-world categorization tasks. More re-
search on how people learn the Shepard et al. categories is
clearly needed. In any case, our hypothesis is that the SDM
will accurately predict the difficulty of any categories learned
procedurally.

One difference between the SDM and all other measures
considered in this article is that the SDM has a free param-
eter (i.e., γ), whereas the other measures do not. This is be-
cause the SDM was constructed to predict difficulty for hu-
man learners, whereas all other measures are meant to pre-
dict difficulty of an optimal classifier (i.e., an ideal observer).
The optimal classifier operates noise free, whereas even the
best human learner must deal with perceptual noise. The γ
parameter measures that noise (e.g., note from Figure 3 that
difficulty increases with γ).

In the current applications, SDM-predicted difficulty did
not depend much on γ (e.g., see Figure 3). Even so, the in-
clusion of γ in the measure allows the SDM to make some
unique predictions, relative to the other measures. For ex-
ample, adding a noise mask to the stimulus display should
increase the number of visual neurons that respond and there-
fore increase γ. Thus, the SDM predicts that adding a noise
mask increases difficulty. Similarly, SDM predicts that uni-
formly contracting the entire stimulus space will also in-
crease difficulty. In contrast, none of the other measures pre-
dict that either of these manipulations will have any effect

2One commonly cited counterexample is that animals either
have wings or they do not. However, this binary categorization is
the result of a decision. Perceptually there is enormous variability
in the structures that might be labeled wings. For example, consider
the differences among eagles, penguins, and seahorses.
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on difficulty because adding a mask or uniformly contracting
the space should not affect the performance of the optimal
classifier.

A future research project that might be worth pursuing
would be to add a noise-sensitive parameter to some or all
of the other measures considered here. This might improve
their ability to predict human difficulty, although Figure 3
suggests that this improvement might have little effect on the
measures’ ordinal predictions. Such a project is well outside
the scope of the current article however, because the compu-
tational implementation of a noise-sensitive parameter would
likely be unique to each measure. For example, none of the
other measures depend on radial basis functions or tuning
curves, so they include no structure that would allow a pa-
rameter identical to γ to be added.

The success of the SDM in the applications considered in
this article, relative to all other measures, suggests that the
SDM might be used to improve computer-assisted classifica-
tion. With access to the SDM, a computer would be in the
best possible position to determine when humans would be
in most need of computer assistance.

Conclusions

Overall the SDM has the potential to be a valuable tool in
both experimental design and human performance enhance-
ment. A future research goal should be to generalize the
SDM to account for many other factors that are known to
affect human category learning, including fatigue (Maddox
et al., 2009), stress (Ell, Cosley, & McCoy, 2011), and the
retinal location of the stimulus during training versus testing
(Rosedahl, Eckstein, & Ashby, 2018). The SDM can then be
used to improve human-computer partnerships for important
categorization tasks such as radiologists scanning x-rays for
tumors, TSA agents examining bag scans for banned items,
and more.
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