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Fractional partial differential equations (FPDEs) generalize the standard (integer-

order) calculus and PDEs to any differential form of fractional orders. That puts

existing PDEs into a subset of this larger family of mathematical models. In this

context, fractional calculus is the theory, which unifies and generalizes the notions of

integer-order differentiation and integration to any real- or complex-order [128, 142,

90]. Over the last decade, it has been demonstrated that many systems in science and

engineering can be modelled more accurately by employing fractional-order rather

than integer-order derivatives [32, 177].

Fractional PDEs open new possibilities for robust mathematical modeling of

physical processes that exhibit anomalous (sub- or super-) diffusion, nonlocal in-

teractions, self-similar structures, long memory dependence, and power-law effects.

In fact, FPDEs are the right tool for exploring fractal operators and for modeling

sharp interfaces in multi-phase problems, wave propagation in disordered media,

and multi-scale materials. There is now an extensive amount of experimental ev-

idence indicating that such phenomena occur in many applications in mechanics,

including non-Gaussian (Levy) processes in turbulent flows, non-Newtonian fluids

and rheology, non-Brownian transport phenomena in porous and disordered mate-

rials, and non-Markovian processes in multi-scale complex fluids and multi-phase

applications. Moreover, there exist many other critical applications in biomechanics

[115], such as anomalous thermo-fluid processes in human brain, nonlocal viscoelas-

ticity in human red-blood-cells, and power-law stress relaxation in wall-arteries. In

such applications, FPDEs naturally appear as the right governing equations lead-

ing to high-fidelity modeling and predictive simulations, which otherwise cannot be

achieved using the standard PDEs.
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Figure 1.1: Sub-diffusion, standard diffusion, and super-diffusion.

1.0.1 Anomalous Diffusion

Anomalous diffusion is a diffusion process with a nonlinear relationship to time, in

contrast to a standard diffusion process, in which the mean squared displacement

(MSD), σ2
r , of a particle is a linear function of time. Unlike the standard diffusion,

anomalous diffusion is described by a power law σ2
r ∼ Dτα, where D is the diffusion

coefficient and τ is the elapsed time. As shown in Fig. 1.1, in a typical diffusion

process, α = 1. If α > 1, the phenomenon is called super-diffusion. If α < 1, the

particle undergoes sub-diffusion (see e.g., [91] and references therein).

From the particle kinetics points of view, continuum-time random walk (CTRW)

is a rigorous and general mathematical model, which incorporates waiting times

and/or non-Gaussian jump distributions with divergent second moments to account

for the anomalous jumps called Lévy flights [126, 33, 125]. The continuous limit for

such models leads to a fractional in time and/or space diffusion equation [128, 142,

90]. However in practice, many physical processes take place in bounded domains in

finite times and have finite moments. Therefore, the divergent second moments may

not be applicable to such processes. In order to overcome this modelling barrier,
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there are different techniques such as discarding the very large jumps and employing

truncated Lévy flights [120], or, adding a high-order power-law factor [161]. How-

ever, the most popular, and perhaps most rigorous approach to get finite moments,

is exponentially tempering the probability of large jumps of Lévy flights, which re-

sults in tempered-stable Lévy processes with finite moments [33, 11, 123, 153]. The

corresponding fluid (continuous) limit for such models yields the tempered fractional

diffusion equation, which complements the previously known models in fractional

calculus.

Fractional differential operators of form Dνt ≡ dν/dtν , where ν ∈ R, appear

in many systems in science and engineering such as electrochemical processes [70],

porous or fractured media [20], viscoelastic materials [117, 177], bioengineering ap-

plications [115]. For instance, it has been found that the transport dynamics in

complex and/or disordered systems is governed by non-exponential relaxation pat-

terns and anomalous diffusion [26, 127, 91]. For such non-Markovian processes, a

time-fractional diffusion equation, in which the time-derivative emerges as Dνt u(t),

governs the evolution for the Probability Density Function (PDF). Another interest-

ing example occurring in viscous fluid flows is the cumulative memory effect of the

wall-friction through the boundary layer, which gives rise to fractional derivatives in

equations of fluid motion [41, 84, 164].

A variety of numerical methods, originally developed for integer-order PDEs, are

currently extended by several authors to FPDEs (see e.g., [64, 68, 195, 76]). Tradi-

tionally, there has been a substantial amount of work in developing finite-difference

methods (FDM) for FPDEs. The notion of discretized fractional calculus was origi-

nally introduced by Lubich [113, 114] and was employed by Sanz-Serna [154] in de-

veloping a first-order FDM algorithm for partial integro-differential equations. Since

then, a significant amount of work has been devoted to improving the convergence
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rates of FDM schemes (see e.g., [104, 166, 111, 30]).

The main focus of this study is to construct a new mathematical platform for

developing global, efficient, and highly accurate numerical algorithms for solving

fractional PDEs. Although fractional partial differential equations (FPDEs) are the

right mathematical models for many physical processes, the biggest challenge is their

global nature and memory-dependent characteristics. That is one important reason

that over the past decades these global models have not been much employed in

science and engineering, and instead, simplifying Newtonian, Gaussian, and Brown-

ian assumptions have been adopted at the cost of weakening the fidelity of resulting

models. In fact, the inherent bottleneck of non-locality in fractional PDEs leads

to excessive computer-memory storage requirements and insufficient computational

accuracy. Utilization of local numerical methods, such as finite difference, can easily

take days on a standard desktop computer, even for problems with a single dimen-

sion. Moreover, this challenge becomes even more severe when fractional PDEs

are involved with multi-fractional order terms, nonlinear differential operators, or

variable- and distributed-order derivatives in time and space, for which there existed

no high-order numerical methods prior to our work. Given the aforementioned chal-

lenges in cases with low dimensionality, fractional PDEs in higher dimensions were

computationally intractable, making real-world applications nearly impossible.

We developed a novel mathematical platform by developing a new spectral theory

of fractional Sturm-Liouville eigen-problems to overcome these fundamental barri-

ers. Our approach fractionalizes the standard family of Jacobi polynomial to a new

class of fractional orthogonal functions, namely Jacobi Poly-fractonomials, which

enjoy many attractive properties. We then introduced these fractional eigenfunc-

tions as optimal basis/test functions in developing high-order Petrov-Galerkin spec-

tral/spectral element methods for fractional ODEs/PDEs.
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For fast treatment of nonlinear and multi-term fractional PDEs such as fractional

Burgers equation, we have developed a new spectral method, called the fractional

spectral collocation method, which introduces a new class of fractional Lagrange

interpolants. For simulation of multi-scale multi-dynamics systems, we also pro-

posed that by varying the differential order of a given governing equation as a func-

tion of space and/or time, we can capture a wide range of dynamics from diffusion

to sub-diffusion or from wave dynamics transitioning back to diffusion. For such

variable-order and distributed-order fractional PDEs, we have developed two fast

and spectrally accurate numerical algorithms.

While almost all existing methods for fractional PDEs are applicable only in

one- or at most two-dimensional problems, we developed a unified Petrov-Galerkin

spectral method that solves the whole family of elliptic, hyperbolic, and parabolic

fractional PDEs in high dimensions (up to ten dimensions) on just a laptop. We

also aim formulated an implicit-explicit (IMEX) splitting scheme in for simulation

of multi-scale and stiff problems. This algorithm provides an efficient platform in

computational biology and dynamics of cell propagation. Finally, we manage to

construct a novel family of fractional modal expansions for non-tensorial domains

in triangle and tetrahedral elements, which can lead to formulation of FPDEs in

complex geometries.



Chapter Two

Fractional Sturm-Liouville

Eigen-Problems
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In this chapter, we first consider a regular fractional Sturm-Liouville problem of two

kinds RFSLP-I and RFSLP-II of order ν ∈ (0, 2). The corresponding fractional

differential operators in these problems are both of Riemann-Liouville and Caputo

type, of the same fractional order µ = ν/2 ∈ (0, 1). We obtain the analytical eigen-

solutions to RFSLP-I &-II as non-polynomial functions, which we define as Jacobi

poly-fractonomials. These eigenfunctions are orthogonal with respect to the weight

function associated with RFSLP-I &-II. Subsequently, we extend the fractional op-

erators to a new family of singular fractional Sturm-Liouville problems of two kinds,

SFSLP-I and SFSLP-II. We show that the primary regular boundary-value problems

RFSLP-I&-II are indeed asymptotic cases for the singular counterparts SFSLP-I&-

II. Furthermore, we prove that the eigenvalues of the singular problems are real-

valued and the corresponding eigenfunctions are orthogonal. In addition, we obtain

the eigen-solutions to SFSLP-I &-II analytically, also as non-polynomial functions,

hence completing the whole family of the Jacobi poly-fractonomials. In the numer-

ical examples provided in this chapter, we employ the new poly-fractonomial bases

to demonstrate the exponential convergence of the approximation in agreement with

the theoretical results.

2.1 Background

The Sturm-Liouville theory has been the keystone for the development of spec-

tral methods and the theory of self-adjoint operators [3]. For many applications,

the Sturm-Liouville problems (SLPs) are studied as boundary value problems [192].

However, to date mostly integer order differential operators in SLPs have been used,

and such operators do not include any fractional differential operators.
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In most of the Fractional Sturm-Liouville formulations presented recently, the

ordinary derivatives in a traditional Sturm-Liouville problem are replaced with frac-

tional derivatives, and the resulting problems are solved using some numerical schemes

such as Adomian decomposition method [1], or fractional differential transform

method, [58], or alternatively using the method of Haar wavelet operational matrix,

[131]. However, in such numerical studies, round-off errors and the pseudo-spectra

introduced in approximating the infinite-dimensional boundary-value problem as a

finite-dimensional eigenvalue problem prohibit computing more than a handful of

eigenvalues and eigenfunctions with the desired precision. Furthermore, these pa-

pers do not examine the common properties of Fractional Sturm-Liouville Problems

(FSLPs) such as orthogonality of the eigenfunctions of the fractional operator in

addition to the reality or complexity of the eigensolutions.

Establishing the aforementioned fundamental properties for FSLPs is very im-

portant in establishing proper numerical methods, e.g. the eiegensolutions of the

RFSLP may be complex [72]. To this end, some results have been recently pro-

vided in [144, 9], where the fractional character of the problem has been considered

through defining a classical Sturm-Liouville operator, extended by the term that

includes a sum of the left- and right-sided fractional derivatives. More recently, a

regular Fractional Sturm-Liouville problem (RFSLP ) of two types has been defined

in [93], where it has been shown that the the eigenvalues of the problem are real,

and the eigenfunctions corresponding to distinct eigenvalues are orthogonal. How-

ever, the discreteness and simplicity of the eigenvalues have not been addressed. In

addition, the spectral properties of a regular FSLP for diffusion operator have been

studied in [15] demonstrating that the fractional diffusion operator is self-adjoint.

The recent progress in FSLPs is promising for developing new spectral methods for

fractional PDEs, however, the eigensolutions have not been obtained explicitly and
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no numerical approximation results have been published so far.

The main contribution of this chapter is to develop a spectral theory for the

regular and singular fractional Sturm-Liouville problems (RFSLP & SFSLP) and

demonstrate its utility by constructing explicitly proper bases for numerical approx-

imations of fractional functions. To this end, we first consider a regular problem

of two kinds, i.e., RFSLP-I &-II. Then, we obtain the analytical eigensolutions to

these problems explicitly for the first time. We show that the explicit eigenvalues

to RFSLP-I &-II are real, discrete and simple. In addition, we demonstrate that

the corresponding eigenfunctions are of non-polynomial form, called Jacobi Poly-

fractonomials. We also show that these eigenfunctions are orthogonal and dense

in L2
w[−1, 1], forming a complete basis in the Hilbert space. We subsequently ex-

tend the regular problem to a singular fractional Sturm-Liouville problem again of

two kinds SFSLP-I&-II, and prove that the eigenvalues of these singular problems

are real and the eigenfunctions corresponding to distinct eigenvalues are orthogo-

nal; these too are computed analytically. We show that the eigensolutions to such

singular problems share many fundamental properties with their regular counter-

parts, with the explicit eigenfunctions of SFSLP-I&-II completing the family of the

Jacobi poly-fractonomials. Finally, we complete the spectral theory for the regular

and singular FSLPs by analyzing the approximation properties of the eigenfunctions

of RFSLPs and SFSLPs, which are employed as basis functions in approximation

theory. Our numerical tests verify the theoretical exponential convergence in ap-

proximating non-polynomial functions in L2
w[−1, 1]. We compare with the standard

polynomial basis functions (such as Legendre polynomials) demonstrating the fast

exponential convergence of the poly-fractonomial bases.
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2.2 Definitions

Before defining the boundary-value problem, we start with some preliminary defini-

tions of fractional calculus [142]. The left-sided and right-sided Riemann-Liouville

integrals of order µ, when 0 < µ < 1, are defined, respectively, as

(RLxLIµxf)(x) =
1

Γ(µ)

∫ x

xL

f(s)ds

(x− s)1−µ , x > xL, (2.1)

and

(RLxIµxRf)(x) =
1

Γ(µ)

∫ xR

x

f(s)ds

(s− x)1−µ , x < xR, (2.2)

where Γ represents the Euler gamma function. The corresponding inverse operators,

i.e., the left-sided and right-sided fractional derivatives of order µ, are then defined

based on (2.1) and (2.2), as

(RLxLDµxf)(x) =
d

dx
(RLxLI1−µ

x f)(x) =
1

Γ(1− µ)

d

dx

∫ x

xL

f(s)ds

(x− s)µ , x > xL, (2.3)

and

(RLxDµxRf)(x) =
−d
dx

(RLxI1−µ
xR

f)(x) =
1

Γ(1− µ)
(
−d
dx

)

∫ xR

x

f(s)ds

(s− x)µ
, x < xR. (2.4)

Furthermore, the corresponding left- and right-sided Caputo derivatives of order

µ ∈ (0, 1) are obtained as

( C
xL
Dµxf)(x) = (RLxLI1−µ

x

df

dx
)(x) =

1

Γ(1− µ)

∫ x

xL

f ′(s)ds

(x− s)µ , x > xL, (2.5)

and

(CxDµxRf)(x) = (RLxI1−µ
xR

−df
dx

)(x) =
1

Γ(1− µ)

∫ x

xL

−f ′(s)ds
(x− s)µ , x < xR. (2.6)
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The two definitions of the left- and right-sided fractional derivatives of both Riemann-

Liouville and Caputo type are linked by the following relationship, which can be

derived by a direct calculation

(RLxLDµxf)(x) =
f(xL)

Γ(1− µ)(x+ xL)µ
+ ( C

xL
Dµxf)(x), (2.7)

and

(RLxDµxRf)(x) =
f(xR)

Γ(1− µ)(xR − x)µ
+ (CxDµxRf)(x). (2.8)

Moreover, the fractional integration-by-parts for the aforementioned fractional deriva-

tives is obtained as

∫ xR

xL

f(x) RLxDµxRg(x)dx =

∫ xR

xL

g(x) C
xL
Dµxf(x)dx− f(x) RLxIµxRg(x)|xRx=xL

, (2.9)

and

∫ xR

xL

f(x) RLxLDµxg(x)dx =

∫ xR

xL

g(x) CxDµxRf(x)dx+ f(x) RLxLIµx g(x)|xRx=xL
. (2.10)

Finally, we recall a useful property of the Riemann-Liouville fractional derivatives.

Assume that 0 < p < 1 and 0 < q < 1 and f(xL) = 0 x > xL, then

RL
xL
Dp+qx g(x) =

(
RL
xL
Dpx
) (

RL
xL
Dqx
)
g(x) =

(
RL
xL
Dqx
) (

RL
xL
Dpx
)
g(x). (2.11)
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2.3 Part I: Regular Fractional Sturm-Liouville Prob-

lems of Kind I & II

We consider a regular fractional Sturm-Liouville problem (RFSLP) of order ν ∈

(0, 2), [93], where the differential part contains both left- and right-sided fractional

derivatives, each of order µ = ν/2 ∈ (0, 1) as

RLDµ
[
pi(x) CDµΦ

(i)
λ (x)

]
+ qi(x)Φ

(i)
λ (x) + λwi(x)Φ

(i)
λ (x) = 0, x ∈ [xL, xR], (2.12)

where i ∈ {1, 2}, with i = 1 denoting the RFSLP of first kind, where RLDµ ≡ RL
xDµxR

(i.e., right-sided Riemann-Liouville fractional derivative of order µ) and CDµ ≡ C
xL
Dµx

(i.e., left-sided Caputo fractional derivative of order µ), and i = 2 corresponding to

the RFSLP of second kind in which RLDµ ≡ RL
xL
Dµx and CDµ ≡ C

xDµxR (i.e., respec-

tively, left-sided Riemann-Liouville and right-sided Caputo fractional derivative of

order µ). In such setting, µ ∈ (0, 1), pi(x) 6= 0, wi(x) is a non-negative weight func-

tion, and qi(x) is a potential function. Also, pi, qi and wi are real-valued continuous

functions in the interval [xL, xR].

The boundary-value problem (2.12) is subject to the boundary conditions

a1Φ
(i)
λ (xL) + a2

RLI1−µ
[
pi(x) CDµΦ

(i)
λ (x)

]
|x=xL = 0, (2.13)

b1Φ
(i)
λ (xR) + b2

RLI1−µ
[
pi(x) CDµΦ

(i)
λ (x)

]
|x=xR = 0, (2.14)

where a2
1 + a2

2 6= 0, b2
1 + b2

2 6= 0. In this notation, RLI1−µ ≡ RL
xI1−µ

xR
(i.e., right-

sided Riemann-Liouville fractional integration of order 1−µ) when i = 1 for RFSLP

of first kind, while, RLI1−µ ≡ RL
xL
I1−µ
x (i.e., left-sided Riemann-Liouville fractional

integration of order 1− µ) when i = 2 for RFSLP of second kind.
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The problem of finding the eigenvalues λ such that the boundary-value problems

(2.12)-(2.14) have non-trivial solutions yields the eigenfunction of the regular frac-

tional Sturm-Liouville eigenvalue problem. The following theorem characterizes the

eigensolutions we obtain:

Theorem 2.3.1. [93] The eigenvalues of (2.12) are real, and the eigenfunctions,

corresponding to distinct eigenvalues in each problem, are orthogonal with respect to

the weight functions wi(x).

2.3.1 Regular Boundary-Value Problem Definition

In this chapter, we shall solve two particular forms of RFSLP (2.12)-(2.14) denoted

by RFSLP-I when i = 1 and RFSLP-II when i = 2 of order ν = 2µ ∈ (0, 2), where

the potential functions qi(x) = 0, in both problems. To this end, the following

non-local differential operator is defined

Lµi := RLDµ
[
K CDµ(·)

]
, (2.15)

where K is constant, and by the notation we introduced, Lµ1 := RL
xDµxR [K C

xL
Dµx(·)] in

RFSLP-I (i.e., first we take the left-sided µ-th order Caputo derivative of the func-

tion multiplied by a constant, and then we take the right-sided Riemann-Liouville

derivative of order µ), and for the case of RFSLP-II we reverse the order of the

right-sided and left-sided derivative for the inner and outer fractional derivatives in

the operator, i.e., Lµ2 := RL
xL
Dµx [K C

xDµxR(·)], where µ ∈ (0, 1). In fact, we have set

pi(x) = K, a continuous non-zero constant function ∀x ∈ [−1, 1]. We referred to

K as stiffness constant, which yields the regularity character to the boundary-value
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problem. That being defined, we consider the RFSLP (-I & -II) as

Lµi Φ
(i)
λ (x) + λ(1− x)−µ(1 + x)−µΦ

(i)
λ (x) = 0, i ∈ {1, 2}, x ∈ [−1, 1]. (2.16)

We shall solve (2.16) subject to a homogeneous Dirichlet and a homogeneous frac-

tional integro-differential boundary condition to the problems RFSLP-I and RFSLP-

II, respectively, as

Φ
(1)
λ (−1) = 0, (2.17)

RL
xI1−µ

1

[
K C
−1DµxΦ

(1)
λ (x)

]
|x=+1 = 0,

and,

Φ
(2)
λ (+1) = 0, (2.18)

RL
−1I1−µ

x

[
K C

xDµ1 Φ
(2)
λ (x)

]
|x=−1 = 0.

The boundary conditions (2.17) and (2.18) are natural in non-local calculus and

fractional differential equations, and they are motivated by the fractional integration-

by-parts (2.9) and (2.10). In fact, the fundamental properties of eigensolutions in the

theory of classical Sturm-Liouville problems are connected with the integration-by-

parts formula and the choice of the boundary conditions. For instance, the continuity

or discreteness of the eigen-spectrum in boundary-value problems is highly dependent

on the type of boundary conditions enforced. In the setting chosen here, we shall

show that the eigen-spectra of RFSLP-I and RFSLP-II are simple and fully discrete.

Remark 2.3.2. Having defined the zero-Dirichlet boundary conditions in (2.17) and

(2.18), and due to the relationship between Caputo and Riemann-Liouville fractional

derivatives shown in (2.7) and (2.8), above fractional differential operators Lµ1 and Lµ2
respectively are identical to Lµ1 := RL

xDµxR [K RL
xL
Dµx(·)] and Lµ2 := RL

xL
Dµx [K RL

xDµxR(·)]
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alternatively. In general, this setting and dealing only with Riemann-Liouville frac-

tional derivatives would define the eigenvalue problem in a bigger functions space

compared to the case where the middle fractional derivatives are defined of Caputo

sense. However, we keep the notation as before just to make the use of the fractional

integration-by-parts easier to understand in this setting.

2.3.2 Analytical Eigensolutions to RFSLP-I & -II

Here, we obtain the analytical solution Φ
(i)
λ (x) to RFSLP-I & II, (2.16), subject

to the homogeneous Dirichlet and integro-differential boundary conditions (2.17)

and (2.18). Before that, we recall the following lemmas for the standard Jacobi

polynomials Pα,β
n :

Lemma 2.3.3. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1 + x)β+µ Pα−µ,β+µ
n (x)

Pα−µ,β+µ
n (−1)

=
Γ(β + µ+ 1)

Γ(β + 1)Γ(µ)Pα,β
n (−1)

∫ x

−1

(1 + s)β Pα,β
n (s)

(x− s)1−µ ds (2.19)

By the left-sided Riemann-Liouville integral (2.1) and evaluating the special end-

values Pα−µ,β+µ
n (−1) and Pα,β

n (−1), we can re-write (2.19) as

RL
−1Iµx

{
(1 + x)βPα,β

n (x)
}

=
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + x)β+µ Pα−µ,β+µ

n (x). (2.20)

Lemma 2.3.3 can be reduced to the case when α = +µ and β = −µ as

RL
−1Iµx

{
(1 + x)−µP µ,−µ

n (x)
}

=
Γ(n− µ+ 1)

Γ(n+ 1)
Pn(x), (2.21)

where Pn(x) = P 0,0
n (x) represents the Legendre polynomial of degree n. On the other
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hand, we can set α = β = 0 in (2.20) and take the fractional derivative RL
−1Dµx on

both sides of (2.20) to obtain

RL
−1Dµx

{
(1 + x)µP−µ,µn

}
=

Γ(n+ µ+ 1)

Γ(n+ 1)
Pn(x). (2.22)

Lemma 2.3.4. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1− x)α+µ Pα+µ,β−µ
n (x)

Pα+µ,β−µ
n (+1)

=
Γ(α + µ+ 1)

Γ(α + 1)Γ(µ)Pα,β
n (+1)

∫ 1

x

(1− s)α Pα,β
n (s)

(s− x)1−µ ds (2.23)

By the right-sided Riemann-Liouville integral (2.2) and evaluating the special

end-values Pα−µ,β+µ
n (+1) and Pα,β

n (+1), we can re-write (2.23) as

RL
xIµ1
{

(1− x)αPα,β
n (x)

}
=

Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

n (x) (2.24)

Similarly, Lemma 2.3.4 for the case α = −µ and β = +µ leads to

RL
xIµ1
{

(1− x)−µP−µ,+µn (x)
}

=
Γ(n− µ+ 1)

Γ(n+ 1)
Pn(x). (2.25)

On the other hand, one can set α = β = 0 in (2.24) and take the fractional derivative

RL
xDµ1 on both sides of (2.24) to obtain

f RL
xDµ1

{
(1− x)µP µ,−µ

n

}
=

Γ(n+ µ+ 1)

Γ(n+ 1)
Pn(x). (2.26)

Relations (2.21), (2.22), (2.25) and (2.26) are the key to proving the following theo-

rem.

Theorem 2.3.5. The exact eigenfunctions to (2.16), when i = 1, i.e., RFSLP-I,
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subject to (2.17) are given as

Φ(1)
n (x) = (1 + x)µ P−µ,µn−1 (x), ∀n ≥ 1, (2.27)

and the corresponding distinct eigenvalues are

λ(1)
n = −K Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1. (2.28)

Moreover, the exact eigenfunctions to (2.16), when i = 2, i.e., RFSLP-II subject to

(2.18), are given as

Φ(2)
n (x) = (1− x)µ P µ,−µ

n−1 (x), ∀n ≥ 1 (2.29)

where the corresponding distinct eigenvalues are given as

λ(2)
n = λ(1)

n = −K Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1. (2.30)

Proof. We split the proof into three parts.

(Part a): First, we prove (2.27) and (2.28). From (2.27), it is clear that Φ
(1)
n (−1) =

0. To check the other boundary condition, since Φ
(1)
n (−1) = 0, by property (2.7), we

could replace C
−1Dµx by RL

−1Dµx , hence,

{
RL
xI1−µ

+1

[
K C
−1DµxΦ(1)

n (x)
] }

x=+1
={

RL
xI1−µ

+1

[
K RL
−1DµxΦ(1)

n (x)
] }

x=+1
={

RL
xI1−µ

+1

[
K RL
−1Dµx

(
(1 + x)µ P−µ, µn−1 (x)

)] }
x=+1

=
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(and by carrying out the fractional RL derivative in the bracket using (2.22))

=
{
RL
xI1−µ

+1

[
K Γ(n+ µ)

Γ(n)
Pn−1(x)

]}
x=+1

=

K Γ(n+ µ)

Γ(n)

{
RL
xI1−µ

+1 [Pfn−1(x)]
}
x=+1

.

By working out the fractional integration using (2.24) (when α = β = 0), we obtain

K
{

(1− x)µP µ,−µ
n−1

}
x=+1

= 0.

Now, we need to show that (2.27) indeed satisfies (2.16), when i = 1, with the

eigenvalues (2.28). First, we take the fractional integration of order µ on both sides

of (2.16) taking i = 1,

K C
−1DµxΦ(1)

n (x) = −λ RLxIµ+1

{
(1− x)−µ(1 + x)−µΦ(1)

n (x)
}
.

Substituting (2.27) and replacing the Caputo derivative by the Riemann-Liouville

one, thanks to (2.7), we obtain

K RL
−1Dµx

[
(1 + x)µ P−µ, µn−1 (x)

]
= −λ RLxIµ+1

{
(1− x)−µ P−µ, µn−1 (x)

}
.

Finally, the fractional derivative on the left-hand side and the fractional integration

on the right-hand side are worked out using (2.22) and (2.25), respectively, as

K Γ(n+ µ)

Γ(n)
Pn−1(x) = −λΓ(n− µ)

Γ(n)
Pn−1(x).
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Since, Pα+1,−β−1
n−1 (x) is non-zero almost everywhere in [−1, 1], we can cancel this term

out from both sides and get

λ ≡ λ(1)
n = −K Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1,

which shows that the eigenvalues of RFSLP-I are real-valued and discrete. In fact,

this result agrees with Theorems 3.1. Moreover, the orthogonality of the eigenfunc-

tions (2.27) with respect to w1(x) = (1− x)−µ(1 + x)−µ is shown as

∫ 1

−1

w1(x)Φ
(1)
k (x)Φ

(1)
j (x)dx =

∫ 1

−1

w1(x) [(1 + x)µ]2 P−µ, µk−1 (x) P−µ, µj−1 (x)dx =∫ 1

−1

(1− x)−µ(1 + x)µ P−µ,µk−1 (x) P−µ,µj−1 (x)dx

= C−µ,µk δkj

where, C−µ,µk denotes the orthogonality constant of the family of Jacobi polynomials

with parameters −µ,µ.

(Part b): The proof of the eigen-solution to RFSLP-II, (2.29) and (2.30), follows

the same steps as in Part a. It is clear that Φ
(2)
n (1) = 0. To check the other boundary

condition in (2.18), since Φ
(2)
n (1) = 0, by (2.8), we can replace C

xDµ1 by RL
xDµ1 ; hence,

by substituting in (2.29), and working out the middle fractional derivative using

(2.26),

{
RL
xI1−µ

+1

[
K C

xDµ1 Φ(1)
n (x)

] }
x=−1

=

K Γ(n)

Γ(n+ µ)

{
RL
−1I1−µ

x [Pn−1(x)]
}
x=−1

=

and by working out the fractional integration using (2.24) (when α = β = 0), we
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obtain

K
{

(1 + x)µP−µ,+µn−1

}
x=−1

= 0.

To check if (2.29) satisfies (2.16), when i = 2, we can substitute (2.29) into (2.16) and

carry out the fractional integration of order µ on both sides using (2.20). Then, by

working out the fractional derivative on the left-hand side using (2.25) we verify that

(2.29) satisfies the boundary-value problem, provided that (2.30) are the real-values

distinct eigenvalues of RFSLP-II.

Finally, the orthogonality of the eigenfunctions (2.29) with respect to w2(x) =

(1− x)−µ(1 + x)−µ is shown as

∫ 1

−1

w2(x)Φ
(2)
k (x)Φ

(2)
j (x)dx =

∫ 1

−1

(1− x)µ(1 + x)−µ P µ,−µ
k−1 (x) P µ,−µ

j−1 (x)dx

= Cµ,−µ
k δkj

where, Cµ,−µ
k represents the orthogonality constant of the family of Jacobi polyno-

mials with parameters µ,−µ.

(Part c): It is left to prove that the set {Φ(i)
n (x) : n = 1, 2, · · · } forms a ba-

sis for the infinite-dimensional Hilbert space L2
w[−1, 1], and λ

(i)
n , the corresponding

eigenvalue for each n, is simple. Let f(x) ∈ L2
w[−1, 1] and then clearly g(x) =
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(1± x)µf(x) ∈ L2
w[−1, 1], as well when µ ∈ (0, 1). Hence

‖
N∑
n=1

anΦ(i)
n (x)− f(x)‖L2

w[−1,1] =

‖
N∑
n=1

an(1± x)µP∓µ,±µn−1 (x)− f(x)‖L2
w[−1,1] =

‖(1± x)µ

(
N∑
n=1

anP
∓µ,±µ
n−1 (x)− (1± x)−µf(x)

)
‖L2

w[−1,1] =

‖(1± x)µ

(
N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)

)
‖L2

w[−1,1] ≤ (by Cauchy-Schwartz)

‖(1± x)µ‖L2
w[−1,1]‖

N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)‖L2

w[−1,1] ≤

c‖
N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)‖L2

w[−1,1],

where the upper signs are corresponding to RFSLP-I, i = 1, and the lower signs are

corresponding to the case i = 2, i.e., RFSLP-II. Hence,

(2.31)

lim
N→∞

‖
N∑
n=1

anΦ(i)
n (x)− f(x)‖L2

w[−1,1] ≤ lim
N→∞

c‖
N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)‖L2

w[−1,1] = 0,

by Weierstrass theorem. Therefore,
∑N

n=1 anΦ
(i)
n (x)

L2
w−→ f(x), implying that {Φ(i)

n (x) :

n = 1, 2, · · · } is dense in the Hilbert space and it forms a basis for L2
w[−1, 1].

To show the simplicity of the eigenvalues, assume that corresponding to the

eigenvalue λ
(i)
j , there exits another eigenfunction Φ

(i)∗
j (x) ∈ L2

w[−1, 1] in addition

to Φ
(i)
j (x), which is by Theorem 2.3.1 orthogonal to the rest of the eigenfunctions

Φ
(i)
n (x), n 6= j. By the density of the eigenfunctions set, i.e., (2.31), we can represent
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Figure 2.1: Magnitude of the eigenvalues of RFSLP-I and RFSLP-II, |λ(1)n | = |λ(2)n |, versus n,
corresponding to µ = 0.35, left: sublinear growth, µ = 0.5, middle: linear growth, and µ = 0.99,
right: superlinear-subquadratic growth. The blue line denotes the linear growth.

Φ
(i)∗
j (x) as

Φ
(i)∗
j (x) =

∞∑
n=1

anΦ(i)
n (x). (2.32)

Now, by multiplying both sides by Φ
(i)
k (x), k = 1, 2, · · · and k 6= j, and integrating

with respect to the weight function w(x) we obtain

∫ 1

−1

w(x)Φ
(i)∗
j (x)Φ

(i)
k (x)dx =

∞∑
n=1

an

∫ 1

−1

w(x)Φ(i)
n (x)Φ

(i)
k (x)dx (2.33)

= akCk 6= 0,

which contradicts to Theorem 2.3.1. Therefore, the eigenvalues λ
(i)
n are simple, and

this completes the proof.

The growth of the magnitude of the eigenvalues of RFSLP-I &-II, |λin|, i ∈

{1, 2}, is plotted in Fig. 2.1, corresponding to three values of µ = 0.35, µ = 0.5,

and µ = 0.99. We observe that there are two growth modes, depending on either

µ ∈ (0, 1/2), where a sublinear growth in |λ1
n| = |λ2

n| is observed, or, µ ∈ (1/2, 1),

where a superlinear-subquadratic growth mode is noticed. The case µ = 1/2 leads

to an exactly linear growth mode.



24

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1

λ
1

(1)
=−0.64353, (µ =0.35)

 

 

Jacobi Poly−fractonomial
Jacobi P

1

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1

λ
1

(1)
=−0.5, (µ =0.5)

 

 

Jacobi Poly−fractonomial
Jacobi P

1

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1

λ
1

(1)
=−0.010015, (µ =0.99)

 

 

Jacobi Poly−fractonomial
Jacobi P

1

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

2

λ
2

(1)
=−1.3366, (µ =0.35)

 

 

Jacobi Poly−fractonomial
Jacobi P

2

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

2
λ

2

(1)
=−1.5, (µ =0.5)

 

 

Jacobi Poly−fractonomial
Jacobi P

2

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

2

λ
2

(1)
=−1.993, (µ =0.99)

 

 

Jacobi Poly−fractonomial
Jacobi P

2

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

5

λ
5

(1)
=−2.8679, (µ =0.35)

 

 

Jacobi Poly−fractonomial
Jacobi P

5

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

5

λ
5

(1)
=−4.5, (µ =0.5)

 

 

Jacobi Poly−fractonomial
Jacobi P

5

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

5

λ
5

(1)
=−19.4161, (µ =0.99)

 

 

Jacobi Poly−fractonomial
Jacobi P

5

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1
0

λ
10

(1)
=−4.8359, (µ =0.35)

 

 

Jacobi Poly−fractonomial
Jacobi P

10

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1
0

λ
10

(1)
=−9.5, (µ =0.5)

 

 

Jacobi Poly−fractonomial
Jacobi P

10

−µ,µ
 (x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Φ
(1
)

1
0

λ
10

(1)
=−86.0462, (µ =0.99)

 

 

Jacobi Poly−fractonomial
Jacobi P

10

−µ,µ
 (x)

Figure 2.2: Eigenfunctions of RFSLP-I, Φ
(1)
n , versus x, for n = 1 (first row), n = 2 (second row),

n = 5 (third row), and n = 10 (last row), corresponding to the fractional order µ = ν/2 = 0.35
(left column), µ = ν/2 = 0.5 (middle column), and µ = ν/2 = 0.99 (right column).
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Figure 2.3: Eigenfunctions of RFSLP-II, Φ
(2)
n , versus x, for n = 1 (first row), n = 2 (second row),

n = 5 (third row), and n = 10 (last row), corresponding to the fractional order µ = ν/2 = 0.35
(left column), µ = ν/2 = 0.5 (middle column), and µ = ν/2 = 0.99 (right column).
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In order to visually get more sense of how the eigensolutions look like, in Fig. 2.2

we plot the eigenfunctions of RFSLP-I, Φ
(1)
n (x) of different orders and corresponding

to different values of µ used in Fig. 2.1. In each plot we compare the eigensolutions

with the corresponding standard Jacobi polynomials P−µ,µn (x). In a similar fashion,

we plot the eigenfunctions of RFSLP-II, Φ
(2)
n (x), of different orders compared to

P+µ,−µ
n (x) in Fig. 2.3.

So far, the eigenfunctions have been defined in the interval [−1, 1]. The follow-

ing lemma provides a useful shifted definition of the Φ
(i)
n , which is not only more

convenient to work with but also helps exploit some interesting properties.

Lemma 2.3.6. The shifted eigensolutions to RFSLP-I&-II, denoted by Φ̃
(i)
n (t), i ∈

{1, 2}, are given by

Φ̃(i)
n (t) = 2µ

n−1∑
j=0

(−1)n+j−1

n− 1 + j

j


n− 1 + (−1)i+1µ

n− 1− j

 tj+µ, (2.34)

where t ∈ [0, 1] in the mapped domain, in case of RFSLP-I, and t ∈ [−1, 0] in

RFSLP-II.

Proof. We first obtain the shifted RFSLP-I by performing an affine mapping from

interval [−1, 1] to [0, 1]. To do so, we recall the power expansion of the Jacobi

polynomial Pα,β
n (x) as

Pα,β
n (x) =

n∑
j=0

n+ α + β + j

j


n+ α

n− j

(x− 1

2

)j
, x ∈ [−1, 1] (2.35)

and from the properties of the Jacobi polynomials we have

Pα,β
n (−x) = (−1)nP β,α

n (x). (2.36)
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We obtain the shifted eigensolution Φ̃
(1)
n (t) utilizing (2.35) and (2.36) in (2.27) and

performing the change of variable x = 2t− 1 as

Φ̃(1)
n (t) = 2µ

n−1∑
j=0

(−1)n+j−1

n− 1 + j

j


n− 1 + µ

n− 1− j

 tj+µ. (2.37)

In order to obtain the shifted Φ̃
(2)
n (t), we follow the same steps, except that this time

we do the change of variable x = −2t+ 1, which maps [−1, 1] to [−1, 0].

Definition 2.3.7. A fractonomial is defined as a function f : C→ C of non-integer

power, denoted as tk+µ, where k ∈ Z+ and µ ∈ (0, 1), in which the power can be

represented as a sum of an integer and non-integer number. Moreover, denoted by

Fn+µ
e is the fractal expansion set, which is defined as the set of all fractonomials of

order less than or equal n+ µ as

Fn+µ
e = span{tk+µ : µ ∈ (0, 1) and k = 0, 1, · · · , n}. (2.38)

Remark 2.3.8. All fractonomials are zero-valued at t = 0. Moreover, asymptotically,

when µ→ 0, a fractonomial of order n+ µ approaches the monomial tn.

Definition 2.3.9. A Poly-fractonomial of order n + µ < ∞, n ∈ {0, 1, 2, · · · , N <

∞}, and µ ∈ (0, 1), is defined as a linear combination of the elements in the fractal

expansion set Fn+µ
e , as

Fn+µ(t) = a0 t
µ + a1 t

1+µ + · · ·+ an t
n+µ

where aj ∈ C, j ∈ {0, 1, · · · , n} are constants. Moreover, denoted by Fn+µ is the

space of all poly-fractonomials up to order n + µ. By Remark 2.3.8, all elements

in Fn+µ asymptotically approach the corresponding standard polynomial of order n

with coefficients aj.
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Remark 2.3.10. It is observed that Fn+µ ⊂ L2
w since µ ∈ (0, 1), and hence, all poly-

fractonomials in Fn+µ can be represented as an infinite sum in terms of the shifted

eigenfunctions of RFSLP-I&-II. It is true by the density of the eigenfunction in L2
w,

shown in (Part c) of the proof in Theorem 2.3.5.

Lemma 2.3.11. Any fractional Caputo derivative of order µ ∈ (0, 1) of all polyno-

mials up to degree N lies in the space of Poly-fractonomials Fn+µ̃, where n = N − 1,

and µ̃ = 1− µ ∈ (0, 1).

Proof. Let f(t) =
∑N

j=0 ajt
j be an arbitrary polynomial of order N , i.e., aN 6= 0.

From [142] and for µ ∈ (0, 1), we have

C
0Dµt tk =


0, k < µ,

Γ(k+1)
Γ(k+1−µ)

tk−µ, 0 < µ ≤ k.

(2.39)

Hence, by (2.39),

C
0Dµt f(t) =

N∑
j=0

aj
C
0Dµt tj =

N∑
j=1

aj
Γ(j + 1)

Γ(j + 1− µ)
tj−µ =

N∑
j=1

bjt
j−µ, (2.40)

where bj = Γ(j+1)
Γ(j+1−µ)

aj. Taking n = N − 1 and µ̃ = 1− µ ∈ (0, 1), and the fact that

bN = Γ(j+1)
Γ(j+1−µ)

aN 6= 0 completes the proof.

Theorem 2.3.12. The shifted eigensolutions to (2.16), Φ̃
(i)
n (t), n ∈ N and n < ∞,

form a complete hierarchical basis for the finite-dimensional space of poly-fractonomials

Fn−1+µ, where µ ∈ (0, 1).

Proof. From (2.34), it is clear that

dimFn−1+µ = dim{Φ̃(i)
k , k ∈ {1, 2, · · · , n}}. (2.41)
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Moreover, we can re-write (2.34) as

T ~t = ~Φ(i), (2.42)

where,

~t =



tµ

t1+µ

...

tn−1+µ


, and ~Φ(1) =



Φ
(i)
1 (t)

Φ
(i)
2 (t)

...

Φ
(i)
n (t)


,

and finally, T = {Tjk}nj,k=1 is an n× n matrix obtained as

T = {Tjk}nj,k=1 = (−1)k+j−1

k − 1 + j

j


k − 1 + (−1)i+1µ

k − 1− j

 ,

which is a lower-triangular matrix. Thanks to the orthogonality of the Φ
(i)
n , the

eigenfunctions are linearly independent, therefore, the matrix T is invertible. Let

T = T−1, which is also lower-triangular. Hence,

~t = T ~Φ(i). (2.43)

In other words, each element in the poly-fractonomial space Fn−1+µ, say tm+µ, 0 ≤

m ≤ n− 1, can be uniquely represented through the following expansion

tm+µ =
n∑
j=1

cj Φ
(i)
j (t) =

n∑
j=1

{Tmj}Φ
(i)
j (t) =

m∑
j=1

{Tmj}Φ
(i)
j (t), (2.44)

where the last equality holds since T is a lower-triangular matrix. As seen in (2.38),

the fractal expansion set Fn+µ
e ⊂ Fn+1+µ

e , which indicates that the shifted eigen-

solutions Φ̃
(i)
n form a hierarchical expansion basis set.
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2.3.3 Properties of the Eigensolution to RFSLP-I & -II

Next, we list a number of properties of the solutions to RFSLP-I & II (2.16):

• Non-polynomial nature:

From Φ
(i)
n (x) shown in (2.27) when i = 1, and in (2.29) corresponding to i = 2,

it is understood that the eigenfunctions exhibit a non-polynomial behaviour,

thanks to the multiplier (1 ± x)µ of fractional power. Hence, to distinguish

them from the standard Jacobi polynomials, we refer to Φ
(i)
n (x) as Jacobi Poly-

fractonomial of order n+ µ.

• Asymptotic eigenvalues λ
(i)
n :

The growth in the magnitude of eigenvalues in RFSLP with n is dependent

on the fractional derivative order µ, as shown in (2.30). Since µ ∈ (0, 1),

there are two modes of growth in the magnitude of λ
(i)
n , the sublinear mode

corresponding to 0 < µ < 1/2, and superlinear-subquadratic mode which cor-

responds to 1/2 < µ < 1. Particularly, when µ = 1/2, the eigenvalues grow

linearly with n. Hence, the asymptotic values are summarized as

|λ(i)
n | =


Kn2, µ→ 1,

Kn µ→ 1/2,

K µ→ 0.

(2.45)

• Recurrence relations:
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Thanks to the hierarchical property of the eigenfunctions Φ
(i)
n , we obtain the

following recurrence relations:

Φ
(i)
1 (x) = (1± x)µ,

Φ
(i)
2 (x) = (1± x)µ(x∓ µ),

... (2.46)

anΦ
(i)
n+1(x) = bnxΦ(i)

n (x)− cnΦ
(i)
n−1(x)

an = 4n2(n− 1)

bn = 2n(2n− 1)(2n− 2)

cn = 4n(n− 1∓ µ)(n− 1± µ),

where the upper signs correspond to i = 1, solution to RFSLP-I, and the lower

signs correspond to RFSLP-II when i = 2.

• Orthogonality:

∫ 1

−1

(1− x)−µ(1 + x)−µΦ
(i)
k (x)Φ(i)

m (x)dx =∫ 1

−1

(1− x)αi(1 + x)βiPαi,βi
k−1 (x)Pαi,βi

m−1 (x)dx = J αi,βi
k δkj (2.47)

J αi,βi
k =

2

2k − 1

Γ(k + αi)Γ(k + βi)

(k − 1)! Γ(k)
, (2.48)

where (α1, β1) = (−µ, µ) and (α2, β2) = (µ,−µ).
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• Fractional derivatives:

RL
−1DµxΦ(1)

n = C
−1DµxΦ(1)

n = (2.49)

RL
xDµ1 Φ(2)

n = C
xDµ1 Φ(2)

n =
Γ(n+ µ)

Γ(n)
Pn−1(x),

where Pn−1(x) denotes that standard Legendre polynomial of order n− 1.

• Orthogonality of the fractional derivatives:

∫ 1

−1

DµΦ
(i)
k DµΦ

(i)
j dx =

(
Γ(k + µ)

Γ(k)

)2
2

2k − 1
δkj, (2.50)

where Dµ can be either RL
−1Dµx or C

−1Dµx , when i = 1, and can be either RL
xDµ1 or

C
xDµ1 when i = 2.

• First derivatives:

dΦ
(1)
n (x)

dx
= µ(1 + x)µ−1P−µ,µn−1 (x) +

n

2
(1 + x)µP 1−µ,1+µ

n−2 (x), (2.51)

dΦ
(2)
n (x)

dx
= −µ(1− x)µ−1P µ,−µ

n−1 (x) +
n

2
(1− x)µP 1+µ,1−µ

n−2 (x). (2.52)

• Special values:

Φ(1)
n (−1) = 0, (2.53)

Φ(1)
n (+1) = 2µ

n− 1− µ

n− 1

 (2.54)
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Φ(2)
n (+1) = 0, (2.55)

Φ(2)
n (−1) = (−1)n−1Φ(1)

n (+1). (2.56)

2.4 Part II: Singular Fractional Sturm-Liouville

Problems of Kind I & II

In the second part of this chapter, we begin with our definition of the singular

fractional Sturm-Liouville of first kind I (SFSLP-I) and second kind II (SFSLP-II)

of order ν = 2µ ∈ (0, 2), with parameters −1 < α < 2 − µ, and −1 < β < µ − 1 in

SFSLP-I (i = 1), and −1 < α < µ− 1, and −1 < β < 2− µ in SFSLP-II (i = 2), for

x ∈ [−1, 1] as

(2.57)

RLDµ
{

(1− x)α+1(1 + x)β+1 CDµP(i)(x)
}

+ Λ(i)(1− x)α+1−µ(1 + x)β+1−µ P(i)(x)

= 0.

where the fractional order µ ∈ (0, 1) and i ∈ {1, 2}, where i = 1 denotes the SFSLP-I

in which RLDµ ≡ RL
xDµ+1 and CDµ ≡ C

−1Dµx ; also i = 2 corresponds to the RFSLP-II

where RLDµ ≡ RL
−1Dµx and CDµ ≡ C

xDµ+1. The singular boundary-value problem is

subject to the following boundary conditions

P(i)( (−1)i ) = 0, (2.58){
RLI1−µ [p(x) CDµP(i)(x)

] }
x=(−1)i+1

= 0, (2.59)
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where RLI1−µ ≡ RL
xI1−µ

+1 when i = 1 in SFSLP-I, and RLI1−µ ≡ RL
−1I1−µ

x in case of

i = 2 in SFSLP-II; p(x) = (1 − x)α+1(1 + x)β+1, used in the fractional differential

operator in (2.57), vanishes at the boundary ends x = ±1. We also note that the

weight function w(x) = (1−x)α+1−µ(1+x)β+1−µ in (2.57) is a non-negative function.

Theorem 2.4.1. The eigenvalues of SFSLP-I &-II (2.57)-(2.59) are real-valued,

moreover, the eigenfunctions corresponding to distinct eigenvalues of SFSLP-I &-II

(2.57)-(2.59) are orthogonal with respect to the weight function

w(x) = (1− x)α+1−µ(1 + x)β+1−µ

Proof. (Part a): Let Lα,β;µ
i be the fractional differential operator of order 2µ as

Lα,β;µ
i := RLDµ

{
(1− x)α+1(1 + x)β+1 CDµ(·)

}
, (2.60)

and assume that Λ(i) is the eigenvalue of (2.57)-(2.59) corresponding the the eigen-

function η(i)(x), where i ∈ {1, 2}. Then the following set of equations are valid for

η(i)(x)

(2.61)

Lα,β;µ
i η(i)(x) + Λ(i)w(x)η(i)(x) = 0.

subject to the boundary conditions

η(i)( (−1)i ) = 0,{
RLI1−µ [p(x) CDµη(i)(x)

] }
x=(−1)(i+1)

= 0,
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and its complex conjugate η̄(i)(x)

(2.62)

Lα,β;µ
I η̄(i)(x) + Λ̄(i)w(x)η̄(i)(x) = 0,

corresponding to the following boundary conditions

η̄(i)( (−1)i ) = 0,{
RLI1−µ [p(x) CDµη̄(i)(x)

] }
x=(−1)i+1

= 0,

Now, we multiply (2.61) by η̄(i)(x), and (2.62) by η(i)(x) and subtract them as

(Λ(i) − Λ̄(i))w(x)η(i)(x)η̄(i)(x) = η(i)(x)Lα,β;µ
i η̄(i)(x)− η̄(i)(x)Lα,β;µ

i η(i)(x). (2.63)

Integrating over the interval [−1, 1] and utilizing the fractional integration-by-parts

(2.9) and (2.10), we obtain

(Λ(i) − Λ̄(i))

∫ +1

−1

w(x)|η(i)(x)|2dx = (2.64)

−η( (−1)i+1 )
{
RLI1−µ [p(x) CDµη(i)(x)

] }
x=(−1)i+1

+η̄(i)( (−1)i+1 )
{
RLI1−µ [p(x) CDµη̄(i)(x)

] }
x=(−1)i+1

+η( (−1)i )− η̄( (−1)i ),

where we re-iterate that RLI1−µ ≡ RL
xI1−µ

+1 and CDµ ≡ C
−1Dµx when i = 1 in SFSLP-I,

also RLI1−µ ≡ RL
−1I1−µ

x and CDµ ≡ C
xDµ+1in case of i = 2, i.e., SFSLP-II. Now, by
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applying the boundary conditions for η(i)(x) and η̄(i)(x) we obtain

(Λ(i) − Λ̄(i))

∫ +1

−1

w(x)|η(i)(x)|2dx = 0 (2.65)

Therefore, Λ(i) = Λ̄(i) because η(i)(x) is a non-trivial solution of the problem, and

w(x) is non-negative in interval [−1, 1].

(Part b): Now, we prove the second statement on the orthogonality of the eigen-

functions with respect to the weight function w(x). Assume that η
(i)
1 (x) and η

(i)
2 (x)

are two eigenfunctions corresponding to two distinct eigenvalues Λ
(i)
1 and Λ

(i)
2 , re-

spectively. Then they both satisfy (2.57)-(2.59) as

(2.66)

Lα,β;µ
i η

(i)
1 (x) + Λ

(i)
1 w(x)η

(i)
1 (x) = 0.

subject to

η
(i)
1 ( (−1)i ) = 0,{

RLI1−µ
[
p(x) CDµη(i)

1 (x)
]}

x=(−1)i+1
= 0,

and

(2.67)

Lα,β;µ
i η

(i)
2 (x) + Λ

(i)
2 w(x)η

(i)
2 (x) = 0,
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corresponding to the following boundary conditions

η2( (−1)i ) = 0,{
RLI1−µ

[
p(x) CDµη(i)

2 (x)
]}

x=(−1)(i+1)
= 0.

It can be shown that

(Λ
(i)
1 − Λ

(i)
2 )w(x)η

(i)
1 (x)η

(i)
2 (x) = η

(i)
1 (x)Lα,β;µ

i η
(i)
2 (x)− η(i)

2 (x)Lα,β;µ
i η

(i)
1 (x). (2.68)

Integrating over the interval [−1, 1] yields

(Λ
(i)
1 − Λ

(i)
2 )

∫ +1

−1

w(x)η(i)(x)η
(i)
2 (x)dx = (2.69)

−η1(+1)
{
RLI1−µ

[
p(x) CDµη(i)

1 (x)
]}

x=+1

+η
(i)
2 (+1)

{
RLI1−µ

[
p(x) CDµη(i)

2 (x)
]}

x=+1

+η
(i)
1 (−1)− η(i)

2 (−1),

and using fractional integration-by-parts (2.9) and (2.10), also since Λ
(i)
1 − Λ

(i)
2 6= 0,

we obtain

∫ +1

−1

w(x)η
(i)
1 (x)η

(i)
2 (x)dx = 0, (2.70)

which completes the proof.

Theorem 2.4.2. The exact eigenfunctions of SFSLP-I (2.57)-(2.59), when i = 1,

are given as

P(1)
n (x) =

(1)Pα,β,µn (x) = (1 + x)−β+µ−1 Pα−µ+1,−β+µ−1
n−1 (x), (2.71)
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and the corresponding distinct eigenvalues are

Λ(1)
n = (1)Λn

α,β,µ = −Γ(n− β + µ− 1)Γ(n+ α + 1)

Γ(n− β − 1)Γ(n+ α− µ+ 1)
, (2.72)

and furthermore, the exact eigenfunctions to SFSLP-II (2.57)-(2.59), in case of i =

2, are given as

P(2)
n (x) = (2)Pα,β,µn (x) = (1− x)−α+µ−1 P−α+µ−1,β−µ+1

n−1 (x), (2.73)

and the corresponding distinct eigenvalues are

Λ(2)
n = (2)Λα,β,µ

n = − Γ(n− α + 2µ− 1)Γ(n+ β + 1)

Γ(n− α + µ− 1)Γ(n+ β − µ+ 1)
. (2.74)

Proof. The proof follows similar steps as shown in Theorem 2.3.5. Hence, we only

prove (2.71) and (2.72) in detail.

From (2.71), it is clear that (1)Pα,β,µn (−1) = 0. So, we need to make sure that

the other boundary condition is satisfied. Since (1)Pα,β,µn (−1) = 0, the property (2.7)

helps in replacing C
−1Dµx by RL

−1Dµx . Consequently,

{
RL
xI1−µ

+1

[
p(x) C

−1Dµx (1)Pα,β,µn−1 (x)
]}

x=+1
={

RL
xI1−µ

+1

[
p(x) RL−1Dµx (1)Pα,β,µn−1 (x)

]}
x=+1

={
RL
xI1−µ

+1

[
p(x) RL−1Dµx

(
(1 + x)−β+µ−1 Pα−µ+1,−β+µ−1

n−1 (x)
)]}

x=+1
=
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and by carrying out the fractional RL derivative using Lemma 2.3.3

=
{
RL
xI1−µ

+1

[
p(x)

Γ(n− 1− β + µ)

Γ(n− 1− β)
(1 + x)−1−βP 1+α,−1−β

n−1

]}
x=+1

=

Γ(n− 1− β + µ)

Γ(n− 1− β)

{
RL
xI1−µ

+1

[
(1− x)1+αP 1+α,−1−β

n−1

]}
x=+1

and by working out the fractional integration using Lemma 2.3.4 we obtain

Γ(n− 1− β + µ)

Γ(n− 1− β)

Γ(n+ α + 1)

Γ(n+ α− µ+ 1)

{
(1− x)2+α−µP 1+α,−1−β

n−1

}
x=+1

= 0.

The next step is to show that (2.71) satisfies (2.57) with eigenvalues (2.72). First,

we take a fractional integration of order µ on both sides of (2.57) and substitute

(2.71). Then, again by replacing the Caputo derivative by the Riemann-Liouville

one, thanks to (2.7), we obtain

(1− x)α+1(1 + x)β+1 RL
−1Dµx

[
(1 + x)−β+µ−1 Pα−µ+1,−β+µ−1

n−1 (x)
]

=

−Λ(1) RL
xIµ+1

{
(1− x)α+1−µ Pα−µ+1,−β+µ−1

n−1 (x)
}
.

Finally, the fractional derivative on the left-hand side and the fractional integration

on the right-hand side is worked out using (2.22) and (2.24) as

Γ(n− 1− β + µ)

Γ(n− 1− β)
(1− x)α+1 Pα+1,−β−1

n−1 (x) =

−Λ(1) Γ(n+ α + µ+ 1)

Γ(n+ α + 1)
(1− x)α+1 Pα+1,−β−1

n−1 (x).

By a similar argument on the (1− x)α+1 Pα+1,−β−1
n−1 (x) being non-zero almost every-
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where, we can cancel this term out on both sides and obtain

Λ(1) ≡ (1)Λα,β,µ
n = −Γ(n− β + µ− 1)Γ(n+ α + 1)

Γ(n− β − 1)Γ(n+ α− µ+ 1)
.

Now, we need to check Theorem 2.4.1, to see if (2.72) verifies that the eigenvalues

are indeed real-valued and distinct, and the orthogonality of the eigenfunctions with

respect to w(x) = (1− x)1+α−µ(1 + x)1+β−µ is valid:

∫ 1

−1

w(x) (1)Pα,β,µk (x) (1)Pα,β,µj (x)dx =∫ 1

−1

w(x)
[
(1 + x)−β+µ−1

]2
Pα−µ+1,−β+µ−1
k−1 (x) Pα−µ+1,−β+µ−1

j−1 (x)dx =∫ 1

−1

(1− x)1+α−µ(1 + x)−β+µ−1 Pα−µ+1,−β+µ−1
k−1 (x) Pα−µ+1,−β+µ−1

j−1 (x)dx

=

∫ 1

−1

(1− x)α
∗
(1 + x)β

∗
Pα∗,β∗

k−1 (x) Pα∗,β∗

j−1 (x)dx = Cα∗,β∗(k − 1)δkj,

where α∗ = α−µ+1, β∗ = −β+µ−1, and denoted by Cα∗,β∗(k) is the orthogonality

constant of the family of Jacobi polynomials.

The simplicity of the eigenvalues can be also shown in a similar fashion as Part

c in the proof of Theorem 2.3.5, and this completes the proof.

Lemma 2.4.3. The shifted eigenfunctions to SFSLP-I&-II, denoted by
(i)P̃α,β,µn (t),

are given as

(i)P̃α,β,µn (t) = 2µ̃
(i)

n−1∑
j=0

(−1)n+j−1

n− 1 + j

j


n+ (−1)i+1µ̃(1) − 1

n− 1− j

 tj+µ̃
(i)

,

(2.75)

where in case of the SFLSP-I (i=1), t ∈ [0, 1], µ̃(1) = −β + µ− 1 and 0 < µ̃(1) < µ,

and for SFSLP-II (i = 2), t ∈ [−1, 0], µ̃(2) = −α + µ− 1 also 0 < µ̃(2) < µ.
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Figure 2.4: Magnitude of the eigenvalues of SFSLP-I, |Λ(1)
n |, versus n, corresponding to α = 0

and β = −0.7, corresponding to different fractional order µ = 0.35, left: sublinear growth, µ = 0.5,
middle: linear growth, and µ = 0.99, right: superlinear-subquadratic growth. Here we compare the
growth of the eigenvalues to the optimal case when α→ 2− µ and β → −1.

Proof. The proof follows the one in Lemma 2.3.6.

Theorem 2.4.4. The shifted eigensolutions to (2.57),
(i)P̃α,β,µn (t), form a complete

hierarchical basis for the finite-dimensional space of poly-fractonomials Fn−1+µ̃(i),

where µ̃(1) = −β+µ−1 and µ̃(2) = −α+µ−1, where 0 < µ̃(1) < µ, also 0 < µ̃(2) < µ.

Proof. The proof follows the one in Theorem 2.3.12.

The growth of the magnitude in the eigenvalues of SFSLP-I, |Λ(1)
n |, exhibits a

similar behaviour as one observed in RFSLP-I-&-II. However, there are another two

degrees of freedom in the choice of parameters α and β, which affect the magnitude

of the eigenvalues. It turns out that in case of SFSLP-I (i = 1), the optimal highest

magnitude is achieved when α → 2 − µ and β → −1, ∀µ ∈ (0, 1). The growth of

the |Λ(1)
n | corresponding to three values of µ = 0.35, µ = 0.5, and µ = 0.99 is shown

in Fig. 2.4. Again, we observe about the two growth modes of |Λ(1)
n |, depending on

either µ ∈ (0, 1/2), where a sublinear growth in |Λ1
n| is observed, or, µ ∈ (1/2, 1),

where a superlinear-subquadratic growth mode is valid; the case µ = 1/2 leads to an

exactly linear growth mode. Corresponding to the aforementioned fractional orders

µ, in Fig. 2.5, we plot the eigenfunctions of SFSLP-I, P(1)
n (x), of different orders

and corresponding to different values of µ used in Fig. 2.4. In a similar fashion,
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Figure 2.5: Eigenfunctions of SFSLP-I, P(1)
n , versus x, for n = 1 (first row), n = 2 (second row),

n = 5 (third row), and n = 10 (last row), corresponding to the fractional order µ = ν/2 = 0.35
(left column), µ = ν/2 = 0.5 (middle column), and µ = ν/2 = 0.99 (right column). Here, we take
the same values α = 0 and β = −0.7, as shown in Fig. 2.4

.



43

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

n

|Λ
(
2
)

n
|

µ =0.35

 

 

Optimal growth (α → −1, β → 2 − µ)

Eigenvalues

Linear growth

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

n

|Λ
(
2
)

n
|

µ =0.5

 

 

Optimal growth (α → −1, β → 2 − µ)

Eigenvalues

Linear growth

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

n

|Λ
(
2
)

n
|

µ =0.99

 

 

Optimal growth (α → −1, β → 2 − µ)

Eigenvalues

Linear growth

Figure 2.6: Magnitude of the eigenvalues of SFSLP-II, |Λ(2)
n |, versus n, corresponding to α = −0.7

and β = 0, corresponding to different fractional order µ = 0.35, left: sublinear growth, µ = 0.5,
middle: linear growth, and µ = 0.99, right: superlinear-subquadratic growth. Here we compare the
growth of the eigenvalues to the optimal case when α→ −1 and β → 2− µ.

we compare the eigensolutions with the corresponding standard Jacobi polynomials

Pα−µ+1,−β+µ−1
n (x) in each plot.

In Fig. 2.6, the growth of the magnitude in Λ
(2)
n , corresponding to three values of

µ = 0.35, µ = 0.5, and µ = 0.99 is plotted. In SFSLP-II (i = 2), the optimal highest

magnitude in the eigenvalues is achieved when α→ −1 and β → 2−µ. Moreover, in

Fig. 2.7, we plot the eigenfunctions of SFSLP-II, P(2)
n (x), of different fractional orders

and corresponding to different µ used in Fig. 2.6. This time, we compare the eigen-

solutions with the corresponding standard Jacobi polynomials P−α+µ−1,β−µ+1
n (x) in

each plot.

2.4.1 Properties of the Eigen-solutions to SFSLP-I&-II

We list a number of properties of the eigensolutions to SFSLP-I &-II as follows.

• Non-polynomial nature:

From (2.71) and (2.73), the eigenfunctions exhibit a non-polynomial (fractal)

behaviour, thanks to the fractonomial multipliers (1 + x)−β+µ−1 in SFSLP-
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Figure 2.7: Eigenfunctions of SFSLP-II, P(2)
n , versus x, for n = 1 (first row), n = 2 (second row),

n = 5 (third row), and n = 10 (last row), corresponding to the fractional order µ = ν/2 = 0.35
(left column), µ = ν/2 = 0.5 (middle column), and µ = ν/2 = 0.99 (right column). Here, we take
the same values α = −0.7 and β = 0, as shown in Fig. 2.6

.
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I and (1 − x)−α+µ−1 in SFSLP-II. Indeed, these poly-fractonomials are the

generalization of those introduced in RFSLP (2.27) and (2.29). We realize that

when α→ −1 and β → −1 simultaneously, the eigen-solutions to the singular

problems SFSLP-I&-II, only asymptotically, approach to that of the regular

counterparts. However, special attention should be taken due to the fact that

when α→ −1 and β → −1, the governing equations (2.57) then become non-

singular and equivalent to the regular problems RFSLP-I&-II (2.16) at the

first place.

Here, we refer to (i)Pα,β,µn (x) as the generalization of the whole family of the

Jacobi Poly-Fractonomial corresponding to the triple α,β,µ, where −1 < α <

2 − µ, and −1 < β < µ − 1 in SFSLP-I (i = 1), and −1 < α < µ − 1, and

−1 < β < 2− µ in SFSLP-II (i = 2).

• Asymptotic eigenvalues Λ
(i)
n :

The growth in the magnitude of eigenvalues in SFSLP with n is dependent

on three parameters: the fractional derivative order µ, α and β. From (2.72)

and (2.74), it is easy to show that α and β only affect the magnitude and not

the behaviour (i.e., order) of the growth. As shown in (2.30), since µ ∈ (0, 1),

there are two modes of growth in the magnitude of Λ
(i)
n referred to as sublinear

mode corresponding to 0 < µ < 1/2, and superlinear-subquadratic mode which

corresponds to 1/2 < µ < 1. Particularly, when µ = 1/2, the eigenvalues

grow linearly with n. The optimal highest magnitude of Λ
(1)
n achieved when

α→ 2−µ and β → −1 in SFSLP-I, and in case of the SFSLP-II when α→ −1

and β → 2−µ the optimal eigenvalues are obtained. The asymptotic cases are
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summarized as

|Λ(i)
n | =


n2, µ→ 1,

n µ→ 1/2,

1 µ→ 0.

(2.76)

• Recurrence relations:

A recurrence relations is obtained for the Jacobi poly-fractonomials (i)Pα,β,µn (x)

as

(1)Pα,β,µ1 (x) = (1 + x)−β+µ−1,

(1)Pα,β,µ2 (x) =
1

2
(1 + x)−β+µ−1 [α + β − 2µ+ 2 + (α− β + 2)x] ,

... (2.77)

an
(1)Pα,β,µn+1 (x) = (bn + cnx) (1)Pα,β,µn (x)− dn (1)Pα,β,µn−1 (x)

an = 2n(n+ α− β)(2n+ α− β − 2)

bn = (2n− α + β − 1)(α− β)(α + β − 2µ+ 2)

cn = (2n− α + β)(2n− α + β − 1)(2n− α + β − 2)

dn = 2(n− α + µ− 2)(n+ β − µ)(2n− α + β)
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and

(2)Pα,β,µ1 (x) = (1− x)−α+µ−1,

(2)Pα,β,µ2 (x) =
1

2
(1− x)−α+µ−1 [−α− β + 2µ− 2 + (−α + β + 2)x] ,

... (2.78)

a∗n
(2)Pα,β,µn+1 (x) = (b∗n + c∗nx) (2)Pα,β,µn (x)− d∗n (2)Pα,β,µn−1 (x)

a∗n = 2n(n− α + β)(2n− α + β − 2)

b∗n = (2n− α + β − 1)(α− β)(α + β − 2µ+ 2)

c∗n = (2n+ α + β)(2n+ α + β − 1)(2n+ α + β − 2)

d∗n = 2(n+ α− µ)(n− β + µ− 2)(2n+ α− β)

• Orthogonality:

∫ 1

−1

(1− x)α+1−µ(1 + x)β+1−µ (i)Pα,β,µk (x) (i)Pα,β,µj (x)dx = (i)Cα,βk δkj, (2.79)

where,

(1)Cα,βk =
2α−β+1

2k + α− β − 1

Γ(k + α− µ+ 1)Γ(k − β + µ− 1)

(k − 1)! Γ(k + α− β)

and

(2)Cα,βk =
2−α+β+1

2k − α + β − 1

Γ(k − α + µ− 1)Γ(k + β − µ+ 1)

(k − 1)! Γ(k − α + β)
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• Fractional derivatives:

(2.80)

RL
−1D−β+µ+1

x

(
(1)Pα,β,µn

)
= C
−1D−β+µ+1

x

(
(1)Pα,β,µn

)
=

Γ(n+ µ)

Γ(n)
Pα−β,0
n−1 (x)

and

(2.81)

RL
xD−α+µ−1

1

(
(2)Pα,β,µn

)
= C

xD−α+µ−1
1

(
(2)Pα,β,µn

)
=

Γ(n+ µ)

Γ(n)
P 0,β−α
n−1 (x)

where Pα−β,0
n−1 (x) and P 0,β−α

n−1 (x) denote the standard Jacobi polynomials.

• First derivatives:

d

dx

(
(1)Pα,β,µn (x)

)
= (−β + µ− 1)(1 + x)−β+µ−2Pα−µ+1,−β+µ−1

n−1 (x) +

1

2
(n+ α− β)(1 + x)−β+µ−1Pα−µ+2,−β+µ

n−2 (x)

and

d

dx

(
(2)Pα,β,µn (x)

)
= (+α− µ+ 1)(1− x)−α+µ−2P−α+µ−1,β−µ+1

n−1 (x) +

1

2
(n− α + β)(1− x)−α+µ−1P−α+µ,β−µ+2

n−2 (x)

• Special values:

(1)Pα,β,µn (−1) = 0, (2.82)

(1)Pα,β,µn (+1) = 2−β+µ−1

n+ α− µ

n− 1
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and

(2)Pα,β,µn (+1) = 0, (2.83)

(2)Pα,β,µn (−1) = 2−α+µ−1

n+ β − µ

n− 1



2.5 Numerical Approximation

As discussed in Sec. 2.4.1, taking α = β = −1 in SFLP-I&-II essentially eliminates

the singularity in the definition of SFSLP-I&-II (2.57). Accordingly, we are not

allowed to take such values for α and β, unless asymptotically, in the SFSLP-I&-II.

However, the Jacobi poly-fractonomials (i)Pα,β,µn (x), i ∈ {1, 2}, regardless of where

they are coming from, are the generalization of the poly-fractonomials Φ
(i)
n (x) which

are known as the eigenfunctions of FSLP-I&-II. Therefore, we can represent the

whole family of the Jacobi poly-fractonomials (i)Pα,β,µn (x) as

(i)Pα,β,µn (x) =


Eigenfunctions of RFSLPs in (2.16), α = β = −1,

Eigenfunctions of SFSLPs in (2.57), Otherwise,

(2.84)

where i ∈ {1, 2}.

By Theorems 2.3.12 and 2.4.4, we can employ such basis functions for numerical

approximation. In such setting, we can study the approximation properties of the

family of Jacobi poly-fractonomials (i)Pα,β,µn (x) in a unified fashion. To this end, we
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represent a function f(x) ∈ L2
w[−1, 1] as

f(x) ≈ fN(x) =
N∑
n=1

f̂n
(i)Pα,β,µn (x), x ∈ [−1, 1] (2.85)

where f(x) satisfied the same boundary conditions as (i)Pα,β,µn (x) in (2.85). Now,

the main question is how fast the expansion coefficients f̂n decay. By multiplying

(2.85) by Lα,β;µ
i ( (i)Pα,β,µk (x)), k = 1, 2, · · · , N , and integrating in the interval [−1, 1],

we obtain

∫ 1

−1

f(x)Lα,β;µ
i

(
(i)Pα,β,µk (x)

)
dx =∫ 1

−1

(
N∑
n=1

f̂n
(i)Pα,β,µn (x)

)
Lα,β;µ
i

(
(i)Pα,β,µk (x)

)
dx,

where, Lα,β;µ
i ( (i)Pα,β,µk (x)) on the right-hand side can be substituted by the right-

hand side of (2.57), i.e., −Λ
(i)
n w(x) (i)Pα,β,µk (x) as

∫ 1

−1

f(x)Lα,β;µ
i

(
(i)Pα,β,µn (x)

)
dx =

N∑
n=1

−f̂n Λ(i)
n

∫ 1

−1

(1− x)α+1−µ(1 + x)β+1−µ (i)Pα,β,µn (x) (i)Pα,β,µk (x),

and thanks to the orthogonality property (2.79) we get

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

f(x)Lα,β;µ
i

(
(i)Pα,β,µk (x)

)
dx,
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or equivalently by (2.60),

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

f(x) RLDµ
{

(1− x)α+1(1 + x)β+1 CDµ
(

(i)Pα,β,µk (x)
)}

dx.

(2.86)

We recall that i = 1 corresponds to RLDµ ≡ RL
xDµ+1 and CDµ ≡ C

−1Dµx , also when

i = 2 we have RLDµ ≡ RL
−1Dµx and CDµ ≡ C

xDµ+1. Now, by carrying out the fractional

integration-by-parts (2.9) and (2.10), we get

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(1−x)α+1(1+x)β+1
(
CDµ f(x)

) (
CDµ (i)Pα,β,µk (x)

)
dx, (2.87)

which is equivalent to

(2.88)

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(1− x)α+1(1 + x)β+1
(
CDµ (i)Pα,β,µk (x)

) (
CDµ f(x)

)
dx

− (i)Pα,β,µk (x) RLxIµxRf(x)|+1
x=−1.

We realize that the last term in (2.88) is identically zero. Again, by the fractional

integration-by-parts (2.9) and (2.10), we obtain

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(i)Pα,β,µk (x) RLDµ
{

(1− x)α+1(1 + x)β+1 CDµ f(x)
}
dx.

or equivalently

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(i)Pα,β,µk (x)Lα,β;µ
i [ f(x)] dx,

if denoted by f(1)(x) ≡ Lα,β;µ
i [ f(x)] ∈ L2

w[−1, 1]. By carrying out the fractional

integration-by-parts another (m−1) times, and setting f(m)(x) ≡ Lα,β;µ
i

[
f(m−1)(x)

]
∈
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L2
w[−1, 1], we obtain

|f̂k| ≈
C

|Λ(i)
k |m
‖f(m)(x)‖L2

w
, k = 1, 2, · · · , N. (2.89)

Consequently, if the function f(x) ∈ C∞[−1, 1], we recover the spectral decay of the

expansion coefficients f̂k since m can be chosen arbitrarily large.

Remark 2.5.1. Although when 0 < µ < 1/2 the magnitude of the eigenvalues grows

sublinearly, such decay behavior does not affect fundamentally the exponential char-

acter of the decay in the coefficients coefficients if f(x) possesses the required regu-

larity.

2.5.1 Numerical Tests

In the following examples, we test the convergence rate in approximating some poly-

fractonomials in addition to some other type of functions involving fractional charac-

ter. By Theorems 2.3.12 and 2.4.4, we can exactly represent any poly-fractonomial

FN+µ of order N + µ in terms of the first N regular Jacobi fractal basis functions

(2.16), or alternatively, using the first N singular Jacobi fractal basis functions (2.75).

However, this is not the case when other types of basis functions, such as the standard

(shifted) Legendre polynomials P̃n(x), are employed.

We first approximate the simplest fractal function f(t) =
√
t using our regular

and singular Jacobi poly-fractonomials, where we see that only one term is needed to

exactly represent the fractonomial, i.e., f(t) = f1(t). To make a comparison, we also

plot the the L2-norm error in terms of N , the number of expansion terms in (2.85) in

Fig. 2.8 (left), when the standard Legendre polynomials are employed as the basis

functions. Moreover, we represent the poly-fractonomial f(t) = t1/3 + t4+1/3 + t7+1/3
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Figure 2.8: L2-norm error ‖f(t) − fN (t)‖L2 versus n, the number of expansion terms in (2.85)
when Legendre polynomials are used as the basis functions. Here, f(t) is a poly-fractonomial;

left: f(t) =
√
t, where only one term, i.e.,

(i)Pα,β,µ1 is needed to exactly capture
√
t, and right:

f(t) = t1/3 + t4+1/3 + t7+1/3; here α = β = 0.

Figure 2.9: L2-norm error ‖f(t)− fN (t)‖L2 versus N , the number of expansion terms in (2.85),
where f(t) is not a poly-fractonomial; left: f(t) = t1/3 sin(2t), and right: f(t) = sin(3

√
t); here

α = β = 0.

Figure 2.10: L2-norm error ‖f(t)− fN (t)‖L2 versus N , the number of expansion terms in (2.85),
where f(t) is a polynomial; left: f(t) = t6 + t11 + t15, and right: f(t) = t5 exp t/4− 1; here
α = β = 0.
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by our regular and singular Jacobi poly-fractonomials to compare the efficiency of

such expansion functions to other standard polynomial bases. The fast (super)

spectral convergence of the our fractal basis functions shown in Fig. 2.8 (right),

compared to that of the Legendre expansion, highlights the efficiency of Jacobi poly-

fractonomial basis functions in approximating non-polynomial functions. Next, we

approximate another two functions which are not poly-fractonomials. In Fig. 2.9,

we show the L2-norm error in (2.85), where the convergence to f(t) = t1/3 sin(2t) is

shown on the left and the error in the approximation of f(t) = sin(3
√
t) is plotted on

the right. Once again, we observe spectral (exponential) convergence of (2.85) when

the regular and the singular eigenfunctions are employed as the basis functions, com-

pared to the case when the standard Legendre polynomials are employed. Finally, we

also test how well smooth functions are approximated using a non-polynomial basis

in Fig. 2.10. As expected, we see that the Legendre polynomial basis is outper-

forming the poly-fractonomial basis but only slightly and we still observe expoential

convergence of the latter. Here we employed µ = 1/2 for the both RFSLP and

SFSLP bases but other choices are also possible to optimize the convergence rate.



Chapter Three

Tempered Fractional

Sturm-Liouville Eigen-Problems
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Continuum-time random walk is a general model for particle kinetics, which allows

for incorporating waiting times and/or non-Gaussian jump distributions with di-

vergent second moments to account for Lévy flights. Exponentially tempering the

probability distribution of the waiting times and the anomalously large displacements

results in tempered-stable Lévy processes with finite moments, where the fluid (con-

tinuous) limit leads to the tempered fractional diffusion equation. The development

of fast and accurate numerical schemes for such non-local problems requires a new

spectral theory and suitable choice of basis functions. In this chapter, we introduce

two classes of regular and singular tempered fractional Sturm-Liouville problems of

two kinds (TFSLP-I and TFSLP-II) of order ν ∈ (0, 2). In the regular case, the

corresponding tempered differential operators are associated with tempering func-

tions pI(x) = exp(2τ) and pII(x) = exp(−2τ), τ ≥ 0, respectively in the regular

TFSLP-I and TFSLP-II, which do not vanish in [−1, 1]. In contrast, the correspond-

ing differential operators in the singular setting are associated with different forms

of pI(x) = exp(2τ)(1− x)1+α(1 + x)1+β and pII(x) = exp(−2τ)(1− x)1+α(1 + x)1+β,

vanishing at x = ±1 in the singular TFSLP-I and TFSLP-II, respectively. The afore-

mentioned tempered fractional differential operators are both of tempered Riemann-

Liouville and tempered Caputo type of fractional order µ = ν/2 ∈ (0, 1). We prove

the well-posedness of the boundary-value problems and that the eigenvalues of the

regular tempered problems are real-valued and the corresponding eigenfunctions are

orthogonal. Next, we obtain the explicit eigensolutions to the TFSLP-I & -II as non-

polynomial functions, which we define as tempered Jacobi poly-fractonomials. These

eigenfunctions are orthogonal with respect to the weight function associated with the

TFSLP-I & -II. Finally, we introduce these eigenfunctions as new basis (and test)

functions for spectrally-accurate approximation of functions and tempered-fractional

differential operators. To this end, we further develop a Petrov-Galerkin spectral

method for solving tempered fractional ODEs (TFODEs), followed by the corre-
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sponding stability and convergence analysis, which validates the achieved spectral

convergence in our simulations.

3.1 Background

In order to develop efficient numerical schemes for tempered non-local operators, it

is important to first formulate a proper spectral theory for tempered fractional eigen-

problems. In the standard calculus, the Sturm-Liouville problem (SLP) has been a

fruitful resource for the development of spectral methods, spectral/hp element meth-

ods, and the theory of self-adjoint operators [3, 192]. However, mostly integer order

differential operators in SLPs have been used, and such operators do not include

any fractional differential operators. Over the last decade, it has been demonstrated

that many systems in science and engineering can be modelled more accurately by

employing fractional-order rather than integer-order derivatives [32, 177, 47, 115].

In most Fractional Sturm-Liouville formulations, the ordinary derivatives in a tradi-

tional Sturm-Liouville problem are replaced with fractional derivatives, and the re-

sulting problems are approximated using a variety of numerical schemes [1, 58, 131].

However, approximating such an infinite-dimensional non-local operators in a finite-

dimensional space can be challenging. It turns out that the linear systems resulting

from these numerical methods quickly become ill-conditioned, which may suffer from

round-off errors and the pseudo-spectra. That would prohibit computing the eigen-

values and eigenfunctions with the desired precision.

Establishing the basic properties of Fractional Sturm-Liouville Problems (FSLPs)

such as orthogonality of the eigenfunctions, the nature of eigenvalues, etc, is the first

step. Qi and Chen in [144], also Atanackovic and Stankovic in [9], considered a
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classical Sturm-Liouville operator including a sum of the left- and right-sided frac-

tional derivatives. Bas and Metin [15], Klimek and Agrawal [93], Zayernouri and

Karniadakis [187], also Rivero et.al. [149], defined different classes of fractional

SturmLiouville operators and investigated the properties of the corresponding eigen-

functions and the eigenvalues. In addition, in [92], the exact eigen-solutions are

obtained in terms of the standard Legendre polynomials. Recently, Zayernouri and

Karniadakis in [187] have formulated regular and singular FSLPs of kind-I and -II,

and obtained explicit eigensolutions, in the form of Jacobi poly-fractonomials given

by

(1)Pα,β,µn (x) = (1 + x)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (x), x ∈ [−1, 1], (3.1)

with µ ∈ (0, 1), −1 ≤ α < 2 − µ, and −1 ≤ β < µ − 1, which represent the

eigenfunctions of the singular problem of first kind, and

(2)Pα,β,µn (x) = (1− x)−α+µ−1P−α+µ−1 , β−µ+1
n−1 (x), x ∈ [−1, 1], (3.2)

where −1 < α < µ − 1 and −1 < β < 2 − µ, and µ ∈ (0, 1), are eigenfunctions of

the singular problem of second kind. In addition, they showed that these eigenfunc-

tions have similar properties to those with non-fractional setting such as orthogonal-

ity, recurrence relations, fractional derivatives and integration formula, etc. Jacobi

poly-fractonomials have been successfully employed as basis and test functions in

developing spectrally-accurate Petrov-Galerkin spectral and discontinuous spectral

element methods in [189, 188] and fractional spectral collocation methods in [190]

for a variety of FODEs and FPDEs including multi-term FPDEs and the non-linear

space-fractional Burgers’ equation.

In this chapter, we consider FSLPs corresponding to tempered fractional boundary-

value problems and formulate both regular and singular Tempered Fractional Sturm-
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Liouville Problems (TFSLPs) of two kinds. We prove the well-posedness of the

boundary-value problems, that the eigenvalues of the tempered problems are real-

valued, the corresponding eigenfunctions are orthogonal, and obtain the correspond-

ing explicit eigenfunctions as tempered Jacobi poly-fractonomials. We employ these

eigenfunctions as basis (and test) functions in a Petrov-Galerkin spectral method for

approximating tempered fractional ODEs (TFODEs).

3.2 Definitions

We start with some preliminary definitions of fractional and tempered fractional cal-

culus following [142, 33, 123]. The left-sided and the right-sided tempered Riemann-

Liouville fractional integrals of order µ ∈ (0, 1) are defined as

(RLxLI
µ,τ
x )f(x) =

(
e−τx RL

xL
Iµx eτx

)
f(x) =

1

Γ(µ)

∫ x

xL

e−τ(x−s)f(s)ds

(x− s)1−µ , x > xL, (3.3)

and

(RLxIµ,τxR )f(x) =
(
eτx RL

xIµxR e−τx
)
f(x) =

1

Γ(µ)

∫ xR

x

e−τ(s−x)f(s)ds

(s− x)1−µ , x < xR,

(3.4)

respectively, where Γ represents the Euler gamma function. When τ = 0, the

tempered fractional integrations (3.3) and (3.4) reduce to the standard Riemann-

Liouville fractional integrations (RLxLIµx )f(x) and (RLxIµxR)f(x), respectively.

The corresponding tempered Riemann-Liouville fractional derivative of order µ
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with tempering parameter τ ≥ 0 are given by

(RLxLD
µ,τ
x )f(x) =

(
e−τx RL

xL
Dµx eτx

)
f(x) =

e−τx

Γ(1− µ)

d

dx

∫ x

xL

eτs f(s)ds

(x− s)µ , x > xL,

(3.5)

and

(RLxDµ,τ
xR

)f(x) =
(
eτx RL

xDµxR e−τx
)
f(x) =

eτx

Γ(1− µ)

d

dx

∫ xR

x

e−τs f(s)ds

(s− x)µ
, x < xR.

(3.6)

An alternative approach in defining the tempered fractional derivatives is based on

the left- and right-sided tempered Caputo derivatives of order µ ∈ (0, 1), defined

respectively, as

( C
xL
Dµ,τ
x )f(x) =

(
e−τx C

xL
Dµx eτx

)
f(x) =

e−τx

Γ(1− µ)

∫ x

xL

[eτs f(s)]′ds

(x− s)µ , x > xL, (3.7)

and

(CxDµ,τ
xR

)f(x) =
(
eτx C

xDµxR e−τx
)
f(x) =

eτx

Γ(1− µ)

∫ xR

x

[e−τs f(s)]′ds

(s− x)µ
, x < xR.

(3.8)

Similarly, if τ = 0, the tempered fractional derivatives (3.5) and (3.6) reduce to the

standard Riemann-Liouville fractional integrations (RLxLDµx)f(x) and (RLxDµxR)f(x), in

addition, (3.7) and (3.8) reduce to the Caputo fractional integrations ( C
xL
Dµx)f(x) and

(CxDµxR)f(x), respectively. The corresponding relationships between the tempered

Riemann-Liouville and tempered Caputo fractional derivatives when µ ∈ (0, 1) are

given by

(TRLxLD
µ,τ
x )f(x) =

f(xL)

Γ(1− µ)(x− xL)µ
+ (TCxLD

µ,τ
x )f(x), (3.9)

and

(TRLxDµ
xR

)f(x) =
f(xR)

Γ(1− µ)(xR − x)µ
+ (TCxDµ,τ

xR
)f(x). (3.10)
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These definitions coincide with each other when boundary-values vanish. Moreover,

let Ω = [xL, xR], the corresponding fractional integrations by parts for the aforemen-

tioned fractional derivatives are obtained as

(
f(x), RLxDµxRg(x)

)
Ω

=
(
g(x), C

xL
Dµxf(x)

)
Ω
− f(x) RLxIµxRg(x)|xRx=xL

, (3.11)

and

(
f(x), RLxLDµxg(x)

)
Ω

=
(
g(x), CxDµxRf(x)

)
Ω

+ f(x) RLxLIµx g(x)|xRx=xL
, (3.12)

where (·, ·)Ω represents the standard L2 inner product. We note that (3.11) and

(3.12) are also valid when the fractional derivatives and integrals are replaced with

their tempered counterparts.

By Hs(R), s ≥ 0, we denote the Fractional Sobolev space on R, defined as

Hs(R) = {v ∈ L2(R)| (1 + |ω|2)
s
2F(v)(ω) ∈ L2(R)}, (3.13)

which is endowed with the norm

‖ · ‖s,R = ‖(1 + |ω|2)
s
2F(·)(ω)‖L2(R), (3.14)

where F(v) represents the Fourier transform of v. Subsequently, we denote by

Hs([−1, 1]), s ≥ 0 the Fractional Sobolev space on the finite closed interval [−1, 1],

defined as

Hs([−1, 1]) = {v ∈ L2(R)| ∃ṽ ∈ Hs(R) s.t. ṽ|[−1,1] = v}, (3.15)
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with the norm

‖ · ‖s,[−1,1] = inf
ṽ∈Hs(R),ṽ|[−1,1]=v

‖ · ‖s,R. (3.16)

We note that the definition of Hs([−1, 1]) and the corresponding norm relies on

the Fourier transformation of the function. Other useful norms associated with

Hs([−1, 1]) have been also introduced in [108],

‖ · ‖l,s,[−1,1] =
(
‖ · ‖2

L2([−1,1]) + ‖ RLxLDµx(·)‖2
L2([−1,1])

) 1
2
, (3.17)

and

‖ · ‖r,s,[−1,1] =
(
‖ · ‖2

L2([−1,1]) + ‖ RLxDµxR(·)‖2
L2([−1,1])

) 1
2
, (3.18)

such that ‖ · ‖l,s,[−1,1], ‖ · ‖r,s,[−1,1], and ‖ · ‖s,[−1,1] are shown to be equivalent. The

following lemmas provide alternative ways of carrying out fractional integration-by-

parts, equivalent to (3.12) and (3.12) in the following.

Lemma 3.2.1. [108]: For all 0 < ξ ≤ 1, if u ∈ H1([a, b]) such that u(a) = 0, and

w ∈ Hξ/2([a, b]), then

(aD ξ
s u,w)Ω = ( aD ξ/2

s u , sD ξ/2
b w )Ω, (3.19)

where (·, ·)Ω represents the standard inner product in Ω = [a, b].

Lemma 3.2.2. [108]: For all 0 < ξ ≤ 1, if u ∈ H1([a, b]) such that u(b) = 0 and

w ∈ Hξ/2([a, b]), then

(sD ξ
b u,w)Ω = ( sD ξ/2

b u , aD ξ/2
s w )Ω. (3.20)

Remark 3.2.3. It is easy to check that Lemma 3.2.1 and 3.2.2 also hold when the stan-

dard Riemann-Liouville fractional derivatives are replaced with their corresponding

tempered derivatives.
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3.3 Well-posedness

Let Ω = [−1, 1], µ ∈ (0, 1), and

LI(·) := RL
xDµ1

[
pI(x) C

−1Dµx (·)
]
, (3.21)

in which pI(x) is non-vanishing and continuous in Ω. We define the following bilinear

form

aI(u, v) = (LIu, v)Ω. (3.22)

for some v(x). Assuming u(−1) = 0, we have LI = RL
xDµ1 [ pI(x) RL

−1Dµx (·) ] by virtue

of the property (3.9). By plugging it into (3.22) and carrying out the fractional

integration by parts (3.11), we obtain

aI(u, v) = (LIu, v)Ω (3.23)

=
(
RL
xDµ1 [ pI(x) RL

−1Dµx u(x) ] , v
)

Ω

=
(
pI(x) RL

−1Dµx u , RL−1Dµx v
)

Ω
− v(x) RLxIµ1 (RL−1Dµxu)|1x=−1

=
(
pI(x) RL

−1Dµx u , RL−1Dµx v
)

Ω
,

if we further assume that v(−1) = RL
xIµ1 (RL−1Dµxu)|x=1 = 0. Now, let

UI = {u ∈ C(Ω)
∣∣∣ ‖ RL−1Dµx u‖L2(Ω),pI(x) <∞, and u(−1) = RL

xIµ1 (RL−1Dµxu)|x=1 = 0},

(3.24)

and

VI = {v ∈ C(Ω)
∣∣∣ ‖ RL−1Dµx v‖L2(Ω),pI(x) <∞, and v(−1) = 0}. (3.25)

We observe that VI ⊃ UI . Therefore, for convenience and in order to adopt a Galerkin

(rather than Petrov-Galerkin) method, we choose UI = UI ∩ VI to be the space of
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trial and test functions u and v, respectively. Hence, taking LIu = λwI(x)u with

respect to the positive weight function wI(x), the regular eigenvalue problem of first

kind reads as: find u ∈ UI such that

aI(u, v) := (LIu, v)Ω = (λu, v)Ω,wI(x), ∀v ∈ UI , (3.26)

or equivalently,

(
RL
−1Dµx u , RL−1Dµx v

)
Ω,pI(x)

− λ(u, v)Ω,wI(x) = 0, ∀v ∈ UI . (3.27)

Following similar steps, we define the following fractional differential operator

LII(·) := RL
−1Dµx

[
pII(x) C

xDµ1 (·)
]
, (3.28)

in which the non-vanishing pII(x) is continuous in Ω. The corresponding bilinear

form aII(u, v) is then defined as

aII(u, v) = (LIIu, v)Ω. (3.29)

Now, assuming u(1) = 0, it is easy to verify that LII = RL
−1Dµx [ pII(x) RL

xDµ1 (·) ]

by virtue of the property (3.10). By plugging it into (3.29) and carrying out the

fractional integration-by-parts (3.12), we obtain

aII(u, v) =
(
pII(x) RL

xDµ1 u , RLxDµ1 v
)

Ω
− v(x) RL−1Iµx (RLxDµ1u)|1x=−1 (3.30)

=
(
pII(x) RL

xDµ1 u , RLxDµ1 v
)

Ω
,
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when v(1) = RL
−1Iµx (RLxDµ1u)|x=−1 = 0. Now, let

UII = {u ∈ C(Ω)
∣∣∣ ‖ RLxDµ1 u‖L2(Ω),pII(x) <∞, and u(1) = RL

−1Iµx (RLxDµ1u)|x=−1 = 0},

(3.31)

and

VII = {v ∈ C(Ω)
∣∣∣ ‖ RLxDµ1 v‖L2(Ω),pII(x) <∞, and v(1) = 0}. (3.32)

Here, we also observe that VII ⊃ UII . Therefore, we choose UII = UII ∩VII to be the

trial and test function spaces. Subsequently, by LIIu = λwII(x)u with respect to

the positive weight function wII(x), the second regular fractional eigenvalue problem

reads as: find u ∈ UII such that

(
RL
xDµ1 u , RLxDµ1 v

)
Ω,p(x)

− λ(u, v)Ω,wII(x) = 0, ∀v ∈ UII . (3.33)

Remark 3.3.1. The construction of the aforementioned eigenvalue problems of first

and second kind can be similarly done by replacing all left- and right-righted frac-

tional derivatives/integrals to their corresponding tempered counterparts.

Theorem 3.3.2. Let pI(x) = pII(x) = 1. Then, the regular eigenvalue problem

of first kind, LIu(x) = λwI(x)u(x), subject to the boundary conditions u(−1) =

RL
xIµ1 (RL−1Dµxu)|x=1 = 0 and the second regular eigenvalue problem, LIIu(x) = λwII(x)u(x),

subject to u(1) = RL
−1Iµx (RLxDµ1u)|x=−1 = 0 are well-posed.

Proof. We first observe that UI is a Hilbert space, moreover, aI(u, v) and aII(u, v)

are linear and continuous. To this end, we need the following conclusion by Lemma

2.4 in [108], which states that there are positive constants C1 and C2 such that for
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any w ∈ Hµ([a, b]),

(3.34)

C1

∫ b

a

RL
aDµxw(x) RLxDµbw(x)dx ≤ ‖ RLDµw(x)‖2 ≤ C2

∫ b

a

RL
aDµxw(x) RLxDµbw(x)dx.

in which RLDµ can is either RLaDµx or RLxDµb . Hence, aI(u, v) ≥ CI‖u‖UI and aII(u, v) ≥

CII‖u‖UII , so the bilinear forms are coercive and by Lax-Milgram lemma these prob-

lems are wellposed.

3.4 Regular TFSLPs of Kind I & II

After this preparation and setting the underlying spaces, we now introduce the fol-

lowing regular TFSLP of order ν = 2µ ∈ (0, 2),

TRLDµ,τ
[
pi(x) TCDµ,τ F

(i)
λ (x)

]
+ λwi(x)F

(i)
λ (x) = 0, x ∈ [xL, xR], (3.35)

where i = 1, 2, with i = 1 denoting the regular TFSLP of first kind, in which

TRLDµ,τ ≡ TRL
xDµ,τ

xR
and TCDµ,τ ≡ TC

xL
Dµ,τ
x . Moreover, i = 2 corresponds to the

regular TFSLP of second kind where TRLDµ,τ ≡ TRL
xL
Dµ,τ
x and TCDµ,τ ≡ TC

xDµ,τ
xR

. In

such setting, µ ∈ (0, 1), τ ≥ 0 , pi(x) 6= 0, and wi(x) is a non-negative weight

function. In addition, we assume that pi and wi are real-valued continuous functions

in the interval [xL, xR]. The tempered fractional boundary-value problem (3.35) is

subject to the following boundary conditions

a1F
(i)
λ (xL) + a2

TRLI1−µ, τ
[
pi(x) TCDµ,τF

(i)
λ (x)

]
|x=xL = 0, (3.36)

b1F
(i)
λ (xR) + b2

TRLI1−µ, τ
[
pi(x) TCDµ,τF

(i)
λ (x)

]
|x=xR = 0, (3.37)
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where a2
1 + a2

2 6= 0, b2
1 + b2

2 6= 0. Here, TRLI1−µ, τ ≡ TRL
xI1−µ, τ
xR

when i = 1 for the

regular TFSLP of first kind, while, TRLI1−µ, τ ≡ TRL
xL
I1−µ, τ
x when i = 2 for the regular

TFSLP of second kind.

Theorem 3.4.1. The eigenvalues of the regular TFSLP of kind-I and -II (3.35)

subject to the non-local boundary conditions (3.36) and (3.37) are real, and the

eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to

the weight functions wi(x).

Proof. We first consider the first regular problem when i = 1:

TRL
xDµ,τ

xR

[
p1(x) TC

xL
Dµ,τ
x F

(1)
λ (x)

]
+ λw1(x)F

(1)
λ (x) = 0.

Now, by the definition of the tempered derivatives TRL
xDµ,τ

xR
and TC

xL
Dµ,τ
x , we can re-

write the first problem as

eτx RLxDµxRe−τx
[
pi(x) e−τx C

xL
Dµxeτx F (1)

λ (x)
]

+ λw1(x)F
(1)
λ (x) = 0,

where we multiply both sided by e−τx to obtain

RL
xDµxR

[
e−2τxp1(x) C

xL
Dµx
(
eτx F

(1)
λ (x)

) ]
+ λ e−2τxw1(x)

(
eτxF

(1)
λ (x)

)
= 0.

By taking P1(x) ≡ e−2τxp1(x) and W1(x) ≡ e−2τxw1(x), and Φ
(1)
λ (x) ≡ eτx F

(1)
λ (x),

we transform the tempered boundary-value problem of first kind to

RL
xDµxR

[
P1(x) C

xL
DµxΦ

(1)
λ (x)

]
+ λW1(x)Φ

(1)
λ (x) = 0. (3.38)

Clearly, P1(x) 6= 0 and W1(x) are continuous functions in [xL, xR]. Moreover, we

obtain the boundary conditions corresponding to this change of variables (functions)
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from (3.36) and (3.37) by employing the definitions of the tempered fractional inte-

gration as

a1Φ
(1)
λ (xL) + a2

RL
xI1−µ

xR

[
P1(x) C

xL
DµxΦ

(1)
λ (x)

]
|x=xL = 0, (3.39)

b1Φ
(1)
λ (x) + b2

RL
xI1−µ

xR

[
P1(x) C

xL
DµxΦ

(1)
λ (x)

]
|x=xR = 0. (3.40)

Following [93], the transformed eigen-problem has real-valued eigenvalues eigenfunc-

tions. Moreover, the corresponding eigenfunctions to distinct eigenvalues are orthog-

onal with respect to W1(x). Clearly, the transformed problem (3.38) subject to (3.39)

and (3.40) shares the same eigenvalues with the original problem (3.35) subject to

(3.36) and (3.37), when i = 1. Therefore, the eigenvalues of the regular TFSLP of

first kind are real-valued. Moreover, let ξ
(1)
1 and ξ

(1)
2 be eigenfunctions corresponding

to two distinct eigenvalues λ1 and λ2. Then, by the orthogonality of the transformed

problem, we have ∫ xR

xL

ξ
(1)
1 (x) ξ

(1)
2 (x)W1(x)dx = 0,

that can be re-written by the inverse transformation of the eigenfunctions as

∫ xR

xL

(
eτxΞ

(1)
1 (x)

)(
eτxΞ

(1)
2 (x)

)
e−2τxw1(x)dx = 0,

or ∫ xR

xL

Ξ
(1)
1 (x) Ξ

(1)
2 (x) w1(x)dx = 0,

where Ξ
(1)
1 (x) and Ξ

(1)
2 (x) are the corresponding real-valued eigenfunctions associated

with the distinct eigenvalues λ1 and λ2.

When i = 2, we follow similar steps by taking P2(x) ≡ e2τxp2(x) and W2(x) ≡

e2τxw2(x), and Φ
(2)
λ (x) ≡ e−τx F

(2)
λ (x) and through the transformation of the tem-

pered boundary-value problem of second kind, we complete the proof.
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3.4.1 Regular Tempered Eigen-Problems

We specifically solve two regular TFSLPs, denoted by regular TFSLP-I and -II of

order ν = 2µ ∈ (0, 2), by choosing particular forms pi(x) and wi(x). To this end, the

following tempered non-local differential operator is defined

Lµ,τi := RLDµ,τ
[
e(−1)i+12τ CDµ,τ (·)

]
, i = 1, 2, (3.41)

where Lµ1 := RL
xDµ,τ

xR
[e2τ C

xL
Dµ,τ
x (·)] in the regular TFSLP-I, and for the case of the

regular TFSLP-II, we reverse the order of the right-sided and left-sided tempered

derivative for the inner and outer fractional derivatives in the operator, i.e., Lµ2 :=

RL
xL
Dµ,τ
x [e−2τ C

xDµ,τ
xR

(·)], where µ ∈ (0, 1). We note that the term e(−1)i+12τ 6= 0, ∀x ∈

[xL, xR], yields the regularity character to the tempered boundary-value problem.

That being defined, we consider the regular TFSLP (-I & -II) as

Lµ,τi F
(i)
λ (x) + λ e(−1)i+12τ (1− x)−µ(1 + x)−µ F

(i)
λ (x) = 0, i = 1, 2, x ∈ [−1, 1].

(3.42)

We shall solve (3.42) subject to a homogeneous Dirichlet and a homogeneous frac-

tional integro-differential boundary condition

F
(1)
λ (−1) = 0, (3.43)

TRL
xI

1−µ,τ
1

[
e2τ TC

−1Dµ,τ
x F

(1)
λ (x)

]
|x=+1 = 0,
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and

F
(2)
λ (+1) = 0, (3.44)

TRL
−1I1−µ,τ

x

[
e−2τ TC

xD
µ,τ
1 F

(2)
λ (x)

]
|x=−1 = 0,

which are enforced on the regular TFSLP-I and TFSLP-II, respectively.

3.4.2 Explicit Eigensolutions to the regular TFSLP-I & -II

Next, we obtain the analytical solution F
(i)
λ (x) to the regular TFSLP-I & II, (3.42),

subject to the homogeneous Dirichlet and integro-differential boundary conditions

(3.43) and (3.44).

Theorem 3.4.2. The exact eigenfunctions to (3.42), when i = 1, i.e., the regular

TFSLP-I, subject to (3.43) are given by

F (1)
n (x) = e−τx(1 + x)µ P−µ,µn−1 (x), ∀n ≥ 1, (3.45)

and the corresponding distinct eigenvalues are

λ(1)
n = −Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1. (3.46)

Moreover, the exact eigenfunctions to (3.42), when i = 2, i.e., the regular TFSLP-II

subject to (3.44), are given as

F (2)
n (x) = eτx(1− x)µ P µ,−µ

n−1 (x), ∀n ≥ 1 (3.47)



71

with the corresponding distinct eigenvalues, given by

λ(2)
n = λ(1)

n = −Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1. (3.48)

Proof. First, we prove (3.45) and (3.46). Clearly, F
(1)
n (−1) = 0. Therefore, by (3.9),

we substitute TC
−1Dµ,τ

x by TRL
−1Dµ,τx , hence,

{
TRL

xI
1−µ, τ
+1

[
e2τx TC

−1Dµ,τ
x F (1)

n (x)
] }

x=+1
={

TRL
xI

1−µ, τ
+1

[
e2τx TRL

−1Dµ,τ
x F (1)

n (x)
] }

x=+1
={

TRL
xI

1−µ, τ
+1

[
e2τx TRL

−1Dµ,τ
x

(
e−τx (1 + x)µ P−µ, µn−1 (x)

)] }
x=+1

={
eτx RLxI1−µ

+1 e−τx
[
e2τxe−τx RL

−1Dµxeτx
(
e−τx (1 + x)µ P−µ, µn−1 (x)

)] }
x=+1

={
eτx RLxI1−µ

+1

[
RL
−1Dµx

(
(1 + x)µ P−µ, µn−1 (x)

)] }
x=+1

(3.49)

Following [5, 187] and for µ > 0, α > −1, β > −1, ∀x ∈ [−1, 1] we have:

RL
−1Iµx

{
(1 + x)βPα,β

n (x)
}

=
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + x)β+µ Pα−µ,β+µ

n (x), (3.50)

and

RL
xIµ1
{

(1− x)αPα,β
n (x)

}
=

Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

n (x). (3.51)

The relation (3.50) can be reduced to the case when α = +µ and β = −µ as

RL
−1Iµx

{
(1 + x)−µP µ,−µ

n (x)
}

=
Γ(n− µ+ 1)

Γ(n+ 1)
Pn(x), (3.52)

where Pn(x) = P 0,0
n (x) represents the Legendre polynomial of degree n. On the other

hand, we can set α = β = 0 in (3.50) and take the fractional derivative RL
−1Dµx on
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both sides of (3.50) to obtain

RL
−1Dµx

{
(1 + x)µP−µ,µn

}
=

Γ(n+ µ+ 1)

Γ(n+ 1)
Pn(x). (3.53)

Now, by carrying out the fractional Riemann-Liouville derivative in the bracket

of (3.49) using (3.53), we obtain

{
eτx RLxI1−µ

+1

[
Γ(n+ µ)

Γ(n)
Pn−1(x)

]}
x=+1

=

eτx
Γ(n+ µ)

Γ(n)

{
RL
xI1−µ

+1 [Pn−1(x)]
}
x=+1

.

By working out the fractional integration using (3.51) (when α = β = 0), we obtain

{
eτx(1− x)µP µ,−µ

n−1 (x)
}
x=+1

= 0, (3.54)

hence, F
(1)
n (x) satisfies the boundary conditions.

Next, we show that (3.45) indeed satisfies (3.42), when i = 1, with the eigenvalues

(3.46). First, we multiply both sides of (3.42) by e−τx and then take the fractional

integration of order µ on both sides when i = 1 to obtain

e−τx e2τx TC
−1Dµ,τ

x F (1)
n (x) = −λ RLxIµ+1

{
e−τx e2τx(1− x)−µ(1 + x)−µF (1)

n (x)
}
.

Substituting (3.45) and replacing the Caputo derivative by the Riemann-Liouville
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one, we obtain

RL
−1Dµx

[
(1 + x)µ P−µ, µn−1 (x)

]
= −λ RLxIµ+1

{
(1− x)−µ P−µ, µn−1 (x)

}
.

Finally, the fractional derivative on the left-hand side and the fractional integration

on the right-hand side are worked out using (3.52) and (3.53), respectively, as

Γ(n+ µ)

Γ(n)
Pn−1(x) = −λΓ(n− µ)

Γ(n)
Pn−1(x),

and therefore

λ ≡ λ(1)
n = −Γ(n+ µ)

Γ(n− µ)
, ∀n ≥ 1.

The orthogonality of the eigenfunctions (3.45) with respect to w1(x) = e2τx (1 −

x)−µ(1 + x)−µ is checked as

∫ 1

−1

w1(x)F
(1)
k (x)F

(1)
j (x)dx =

∫ 1

−1

w1(x)e−2τx [(1 + x)µ]2 P−µ, µk−1 (x) P−µ, µj−1 (x)dx

=

∫ 1

−1

(1− x)−µ(1 + x)µ P−µ,µk−1 (x) P−µ,µj−1 (x)dx

= C−µ,µk δkj,

where C−µ,µk denotes the orthogonality constant corresponding to Jacobi polynomials

with parameters −µ,µ. Similar steps can be taken for the second tempered eigen-

problem when i = 2.

The eigenfunctions of the regular TFSLP-I & -II are non-polynomial functions
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due to their particular structure i.e., the multiplier e∓τx (1 ± x)µ. These eigen-

functions in fact generalize the existing Jacobi poly-fractonomial functions (1 ±

x)µP∓µ,±µn−1 (x), introduced in [187] as the exact eigenfunctions of the regular fractional

(non-tempered) Sturm-Liouville problems (RFSLP-I & -II). We note that when the

tempering parameter τ = 0, they reduce to the Jacobi poly-fractonomials. Here, to

distinguish the tempered eigenfunctions from them, we refer to F
(i)
n (x) as Tempered

Jacobi poly-fractonomial. Clearly, when τ = 0 and µ→ 1 or 0, the tempered Jacobi

poly-fractonomials (3.45) and (3.47) coincide with the well-known Jacobi polyno-

mials, which are the eigenfunctions of the standard (integer-order) Sturm-Liouville

problem.

Remark 3.4.3. The regular TFSLP-I & -II share the same eigenvalues with RFSLP-I

& -II in [187]. We note that the growth in the magnitude of eigenvalues with respect

to n is dependent on the fractional derivative order µ. The asymptotic values are

obtained as

|λ(i)
n | =


n2, µ→ 1,

n, µ→ 1/2,

1, µ→ 0.

(3.55)

Hence, there are two modes of growth in the magnitude of λ
(i)
n , the sublinear mode

corresponding to 0 < µ < 1/2, and superlinear subquadratic mode corresponding to

1/2 < µ < 1. In particular, when µ = 1/2, the eigenvalues grow linearly with n.
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3.4.3 Properties of the Eigenfunctions of the regular TFSLP-

I & -II

Next, we list a number of important properties of the solutions to the regular TFSLP-

I & II, in (3.42):

• Recurrence relations:

F
(i)
1 (x) = e∓τx(1± x)µ,

F
(i)
2 (x) = e∓τx(1± x)µ(x∓ µ),

... (3.56)

anF
(i)
n+1(x) = bnxF

(i)
n (x)− cnF (i)

n−1(x)

an = 4n2(n− 1)

bn = 2n(2n− 1)(2n− 2)

cn = 4n(n− 1∓ µ)(n− 1± µ),

where the upper signs correspond to i = 1, solution to the regular TFSLP-I,

and the lower signs correspond to the regular TFSLP-II when i = 2.

• Orthogonality:

∫ 1

−1

e±2τx(1− x)−µ(1 + x)−µ F
(i)
k (x)F (i)

m (x)dx = J αi,βi
k δkj,

J αi,βi
k =

2

2k − 1

Γ(k + αi)Γ(k + βi)

(k − 1)! Γ(k)
, (3.57)

where (α1, β1) = (−µ, µ) and (α2, β2) = (µ,−µ).
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• Fractional derivatives:

TRL
−1Dµ,τ

x F (1)
n (x) = TC

−1Dµ,τ
x F (1)

n (x) = e−τx
Γ(n+ µ)

Γ(n)
Pn−1(x), (3.58)

TRL
xD

µ,τ
1 F (2)

n (x) = TC
xD

µ,τ
1 F (2)

n (x) = eτx
Γ(n+ µ)

Γ(n)
Pn−1(x), (3.59)

where Pn−1(x) denotes the standard Legendre polynomial of order n− 1.

• Special values:

F (1)
n (−1) = 0, F (1)

n (+1) = e−τ 2µ

n− 1− µ

n− 1

 (3.60)

F (2)
n (+1) = 0, F (2)

n (−1) = eτ (−1)n−1F (1)
n (+1). (3.61)

3.5 Singular Tempered Fractional Problems

In the regular setting pi(x) did not vanish in [−1, 1], and here, we aim to generalize

it to singular eigen-problems, in which pi(x) = e(−1)i+12τ (1 − x)α+1(1 + x)β+1 that

vanishes at the boundary points. We present the definition of the singular TFSLPs-

I and singular TFSLPs-II of order ν = 2µ ∈ (0, 2), associated this time with the

additional parameters −1 < α < 2−µ, and −1 < β < µ−1 in the singular TFSLP-I

(i = 1), and −1 < α < µ− 1, and −1 < β < 2− µ in the singular TFSLP-II (i = 2),
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for x ∈ [−1, 1] as

(3.62)

RLDµ, τ
{
e(−1)i+12τ (1− x)α+1(1 + x)β+1 CDµ, τ P(i)(x)

}
+Λ(i)e(−1)i+12τ (1− x)α+1−µ(1 + x)β+1−µ P(i)(x) = 0.

where τ ≥ 0, µ ∈ (0, 1) and i = 1, 2. Similar to the regular setting, i = 1 denotes

the singular TFSLP-I in which RLDµ, τ ≡ TRL
xD

µ, τ
+1 and TCDµ, τ ≡ TC

−1Dµ τ
x , also, i = 2

corresponds to the singular TFSLP-II where TRLDµ, τ ≡ TRL
−1Dµ, τ

x and TCDµ, τ ≡
TC
xD

µ, τ
+1 . The singular problem (3.62) is subject to

P(i)( (−1)i ) = 0, (3.63){
TRLI1−µ, τ [pi(x) TCDµ,τP(i)(x)

] }
x=(−1)i+1

= 0, (3.64)

in which we follow the same definitions as in the regular problems i.e., TRLI1−µ, τ ≡
TRL

xI
1−µ, τ
+1 when i = 1 in the singular TFSLP-I, and TRLI1−µ, τ ≡ TRL

−1I1−µ, τ
x in case

of i = 2 in the singular TFSLP-II; pi(x) = e(−1)i+12τ (1 − x)α+1(1 + x)β+1 and

wi(x) = e(−1)i+12τ (1−x)α+1−µ(1+x)β+1−µ in (3.62), which is a non-negative function.

Theorem 3.5.1. The eigenvalues of the singular TFSLP-I & -II (3.62)-(3.64) are

real-valued, and the eigenfunctions corresponding to distinct eigenvalues of (3.62)-

(3.64) are orthogonal with respect to the weight function

wi(x) = e(−1)i+12τ (1− x)α+1−µ(1 + x)β+1−µ.

Moreover, the exact eigenfunctions of the singular TFSLP-I (3.62)-(3.64), when i =

1, are given as

P(1)
n (x) =

(1)Pα,β,µn (x) = e−τx(1 + x)−β+µ−1 Pα−µ+1,−β+µ−1
n−1 (x), (3.65)
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and the corresponding distinct eigenvalues are

Λ(1)
n = (1)Λn

α,β,µ = −Γ(n− β + µ− 1)Γ(n+ α + 1)

Γ(n− β − 1)Γ(n+ α− µ+ 1)
. (3.66)

In addition, the exact eigenfunctions to the singular TFSLP-II (3.62)-(3.64), in case

of i = 2, are given as

P(2)
n (x) = (2)Pα,β,µn (x) = eτx(1− x)−α+µ−1 P−α+µ−1,β−µ+1

n−1 (x), (3.67)

and the corresponding distinct eigenvalues are

Λ(2)
n = (2)Λα,β,µ

n = − Γ(n− α + 2µ− 1)Γ(n+ β + 1)

Γ(n− α + µ− 1)Γ(n+ β − µ+ 1)
. (3.68)

Proof. By the definition of the tempered fractional derivatives and integrations, it

is easy to check that (3.62) can be transformed into the singular fractional Sturm-

Liouville in [187] through W
(2)
i = e(−1)i2τxwi(x), P

(2)
i = e(−1)i2τxpi(x), and P(i)(x) =

e(−1)i+12τxP(i)(x). Then, readily, the proof is complete following Theorem 4.1 and

Theorem 4.2 in [187].

Remark 3.5.2. In the earlier work [187], the standard singular Sturm-Liouville prob-

lem was generalized to the fractional (non-tempered) Sturm-Liouville problems (SFSLP-

I & -II) and the singular Jacobi poly-fractonomials of first and second kind given

in (3.1) and (3.2), which were explicitly obtained as the eigenfunctions. Here, the

tempered Jacobi poly-fractonomials involves another parameter i.e., τ ≥ 0, which

further generalizes the existing singular fractional eigenfunctions, and they in fact

complete the whole family of tempered Jacobi poly-fractonomials. Moreover, we

note that the singular TFSLP-I & -II also share the same eigenvalues, hence the

same asymptotic values, with SFSLP-I & -II as in [187].
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3.5.1 Properties of the Eigen-solutions to the singular TFSLP-

I&-II

We list a number of properties of the eigensolutions to the singular TFSLP-I &-II as

follows.

• Recurrence relations:

A recurrence relations is obtained for the tempered Jacobi poly-fractonomials

(i)Pα,β,µn (x) of first kind, when i = 1:

(1)Pα,β,µ1 (x) = e−τx(1 + x)−β+µ−1,

(1)Pα,β,µ2 (x) =
1

2
e−τx(1 + x)−β+µ−1 [α + β − 2µ+ 2 + (α− β + 2)x] ,

...

an
(1)Pα,β,µn+1 (x) = (bn + cnx) (1)Pα,β,µn (x)− dn (1)Pα,β,µn−1 (x)

an = 2n(n+ α− β)(2n+ α− β − 2)

bn = (2n− α + β − 1)(α− β)(α + β − 2µ+ 2)

cn = (2n− α + β)(2n− α + β − 1)(2n− α + β − 2)

dn = 2(n− α + µ− 2)(n+ β − µ)(2n− α + β)
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and second kind when i = 2:

(2)Pα,β,µ1 (x) = eτx(1− x)−α+µ−1,

(2)Pα,β,µ2 (x) =
1

2
eτx(1− x)−α+µ−1 [−α− β + 2µ− 2 + (−α + β + 2)x] ,

...

a∗n
(2)Pα,β,µn+1 (x) = (b∗n + c∗nx) (2)Pα,β,µn (x)− d∗n (2)Pα,β,µn−1 (x)

a∗n = 2n(n− α + β)(2n− α + β − 2)

b∗n = (2n− α + β − 1)(α− β)(α + β − 2µ+ 2)

c∗n = (2n+ α + β)(2n+ α + β − 1)(2n+ α + β − 2)

d∗n = 2(n+ α− µ)(n− β + µ− 2)(2n+ α− β)

• Orthogonality:

(3.69)∫ 1

−1

e±2τx(1− x)α+1−µ(1 + x)β+1−µ (i)Pα,β,µk (x) (i)Pα,β,µj (x)dx = (i)Cα,βk δkj,

(1)Cα,βk =
2α−β+1

2k + α− β − 1

Γ(k + α− µ+ 1)Γ(k − β + µ− 1)

(k − 1)! Γ(k + α− β)

(2)Cα,βk =
2−α+β+1

2k − α + β − 1

Γ(k − α + µ− 1)Γ(k + β − µ+ 1)

(k − 1)! Γ(k − α + β)

• Fractional derivatives:

RL
−1D−β+µ+1,τ

x

(
(1)Pα,β,µn

)
= C
−1D−β+µ+1,τ

x

(
(1)Pα,β,µn

)
= eτx

Γ(n+ µ)

Γ(n)
Pα−β,0
n−1 (x)

RL
xD−α+µ−1,τ

1

(
(2)Pα,β,µn

)
= C

xD−α+µ−1,τ
1

(
(2)Pα,β,µn

)
= e−τx

Γ(n+ µ)

Γ(n)
P 0,β−α
n−1 (x)

where Pα−β,0
n−1 (x) and P 0,β−α

n−1 (x) denote the standard Jacobi polynomials.
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• Special values:

(1)Pα,β,µn (−1) = 0, (1)Pα,β,µn (+1) = 2−β+µ−1

n+ α− µ

n− 1

 e−τ

(2)Pα,β,µn (+1) = 0, (2)Pα,β,µn (−1) = 2−α+µ−1

n+ β − µ

n− 1

 e−τ

3.6 Approximability of the Tempered Eigenfunc-

tions

We introduce the tempered eigenfunctions (regular and singular) as new basis func-

tions in L2
wi

[−1, 1]. Then, we discuss how fast the expansion coefficients of the

approximation would decay with N .

Theorem 3.6.1. The set of regular eigenfunctions {F (i)
n (x) : n = 1, 2, · · · } and

the singular eigenfunctions {(i)Pα,β,µn (x) : n = 1, 2, · · · } each forms a basis for the

infinite-dimensional Hilbert space L2
wi

[−1, 1], and the corresponding eigenvalues λ
(i)
n

and Λ
(i)
n are simple.

Proof. It suffices to prove the regular part with the singular part following similar

steps. Let f(x) ∈ L2
wi

[−1, 1] and then clearly g(x) = e±τx(1± x)−µf(x) ∈ L2
wi

[−1, 1]

as well when µ ∈ (0, 1). Considering the upper signs to correspond to the regular

TFSLP-I, i = 1, and the lower signs to correspond to the case i = 2, i.e., the regular
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TFSLP-II, we have

‖
N∑
n=1

anF
(i)
n (x)− f(x)‖L2

wi
[−1,1] =

‖e∓τx(1± x)µ

(
N∑
n=1

anP
∓µ,±µ
n−1 (x)− e±τx(1± x)−µf(x)

)
‖L2

wi
[−1,1] =

‖e∓τx(1± x)µ‖L2
wi

[−1,1]‖
N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)‖L2

wi
[−1,1] ≤

c‖
N∑
n=1

anP
∓µ,±µ
n−1 (x)− g(x)‖L2

wi
[−1,1].

Therefore by Weierstrass theorem, the set of tempered eigenfunctions {F (i)
n (x) : n =

1, 2, · · · } is dense in the Hilbert space and it forms a basis for L2
wi

[−1, 1].

To show the simplicity of the eigenvalues, assume that corresponding to the

eigenvalue λ
(i)
j , there exits another eigenfunction F

(i)∗
j (x) ∈ L2

wi
[−1, 1] in addition

to F
(i)
j (x), which is by Theorem 3.4.1 is orthogonal to the rest of the eigenfunctions

F
(i)
n (x), n 6= j. By the density of the eigenfunctions set, i.e., (3.70), we can represent

F
(i)∗
j (x) as

F
(i)∗
j (x) =

∞∑
n=1

anF
(i)
n (x). (3.70)

Now, by multiplying both sides by F
(i)
k (x), k = 1, 2, · · · and k 6= j, and integrating

with respect to the weight function wi(x) we obtain

∫ 1

−1

wi(x)F
(i)∗
j (x)F

(i)
k (x)dx =

∞∑
n=1

an

∫ 1

−1

wi(x)F (i)
n (x)F

(i)
k (x)dx = akCk 6= 0, (3.71)

which contradicts Theorem 3.4.1, and this completes the proof.
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3.6.1 Spectral Approximation using Singular Tempered Ba-

sis (i)Pα,β,µn (x), µ ∈ (0, 1)

Next, we study the approximation properties of the family of Jacobi poly-fractonomials

(i)Pα,β,µn (x) by representing f(x) ∈ L2
w[−1, 1] as

f(x) ≈
N∑
n=1

f̂n
(i)Pα,β,µn (x), x ∈ [−1, 1]. (3.72)

Here, we need to understand how fast the expansion coefficients f̂n decay by N . To

this end, we multiply (3.72) by Lα,β;µ
i ( (i)Pα,β,µk (x)), k = 1, 2, · · · , N , and carry out

the integration over [−1, 1] to obtain:

∫ 1

−1

f(x)Lα,β;µ
i

(
(i)Pα,β,µk (x)

)
dx =∫ 1

−1

(
N∑
n=1

f̂n
(i)Pα,β,µn (x)

)
Lα,β;µ
i

(
(i)Pα,β,µk (x)

)
dx,

where Lα,β;µ
i ( (i)Pα,β,µk (x)) on the right-hand side can be substituted by the right-hand

side of (3.62), i.e., −Λ
(i)
n w(x) (i)Pα,β,µk (x) as

∫ 1

−1

f(x)Lα,β;µ
i

(
(i)Pα,β,µn (x)

)
dx =

N∑
n=1

−f̂n Λ(i)
n

∫ 1

−1

(1− x)α+1−µ(1 + x)β+1−µ (i)Pα,β,µn (x) (i)Pα,β,µk (x),

and by the orthogonality property (3.69) we get

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

f(x) RLDµ
{

(1− x)α+1(1 + x)β+1 CDµ
(

(i)Pα,β,µk (x)
)}

dx.

(3.73)
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Now, by carrying out the fractional integration-by-parts using Lemmas 3.2.1 and

3.2.2, we obtain

(3.74)

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(1− x)α+1(1 + x)β+1
(
CDµ (i)Pα,β,µk (x)

) (
CDµ f(x)

)
dx.

Again, by Lemmas 3.2.1 and 3.2.1, we obtain

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(i)Pα,β,µk (x) RLDµ
{

(1− x)α+1(1 + x)β+1 CDµ f(x)
}
dx.

or equivalently

f̂k =
−1

(i)Cα,βk Λ
(i)
k

∫ 1

−1

(i)Pα,β,µk (x)Lα,β;µ
i [ f(x)] dx,

if denoted by f(1)(x) ≡ Lα,β;µ
i [ f(x)] ∈ L2

w[−1, 1]. By carrying out the fractional

integration-by-parts another (m−1) times, and setting f(m)(x) ≡ Lα,β;µ
i

[
f(m−1)(x)

]
∈

L2
w[−1, 1], we obtain

|f̂k| ≈
Csing.

|Λ(i)
k |m
‖f(m)(x)‖L2

w
, k = 1, 2, · · · , N. (3.75)

Consequently, when m→∞ and f(m)(x) ∈ L2
w[−1, 1], we recover the spectral decay

of the expansion coefficients f̂k.
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Figure 3.1: L2- error, ‖f − fN‖L2 in approximating f(x) = e−x(1 + x)1/2 versus N , the number
of terms in the expansion (3.76) when, instead, the Legendre polynomials are used as the basis
functions.

3.6.2 Numerical Approximation

Here, we test the performance of the tempered Jacobi poly-fractonomials as basis

functions in approximating some tempered functions, involved with some fractional

character, also in developing a Petrov-Galerkin method for tempered fractional ODEs

(TFODEs), followed with the wellposedness and convergence analyses.

Function Approximation

Following Theorem 3.6.1, we employ tempered eigenfunctions as a complete basis,

next we examine their efficiency in approximating f(x) ∈ L2
w1

[−1, 1]. We note that

both regular and singular tempered bases share the same structure. Hence, taking

α, β → −1, we represent f(x) in x ∈ [−1, 1] as

f(x) ≈
N∑
n=1

f̂n
(i)P−1,−1,µ

n (x) =
N∑
n=1

f̂ne
−τx(1 + x)µP−µ,µn−1 (x), (3.76)
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In order to obtain the unknown coefficients f̂n, we multiply both sides of (3.76) by

w1(x)F
(1)
m (x) and integrate over [−1, 1], where by the orthogonality property of the

eigenfunctions (see Theorem 3.4.1), we obtain

f̂m =
1

Jm

(
f(x), F (1)

m (x)
)
L2
w1

([−1,1])
(3.77)

where Jm is given by (3.57).

In Fig. 3.1, we plot the log-log L2- error of approximating f(x) = e−x(1 + x)1/2,

the simplest tempered fractonomial, versus N , the number of terms in the expansion

(3.76) when, instead, the Legendre polynomials are used as the basis functions.

While only one term is needed to accurately capture f(x) employing the tempered

poly-fractonomials, this plot exhibits the deficiency of using standard polynomials

to approximate functions whose (higher) derivatives happen to be singular on the

boundaries. Moreover, in Fig. 3.2, we compare the performance of tempered and

Legendre bases in approximating f(x) = sin
(
πe−x(1 + x)1/2

)
(left), and f(x) =

(1+x)2/3 exp(−x) sin(πx) (right), where the tempered poly-fractonomials outperform

the Legendre polynomials by orders of magnitude.

Petrov-Galerkin Method For Tempered Fractional Differential Equations

We now test the efficiency of the tempered poly-fractonomials in solving some tem-

pered fractional differential equations (FDEs). To this end, we develop a Petrov-

Galerkin spectral method for the following problem:

TRL
−1D2µ,τ

x u(x) = f(x), x ∈ (−1, 1], (3.78)

u(−1) = 0,
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Figure 3.2: L2- error, ‖f − fN‖L2 in approximating f(x) = sin
(
πe−x(1 + x)1/2

)
(left), and

f(x) = (1 + x)2/3 exp(−x) sin(πx) (right) versus N , the number of terms in the expansion (3.76)
when both the tempered poly-fractonomial bases and Legendre bases are utilized.

where τ ≥ and 2µ ∈ (0, 1). We choose UN ⊂ UI to be the space of basis (trial)

functions, defined in terms of the following eigenfunction of first kind as

UN = {F (1)
n (x), ∀n ≥ 1}, (3.79)

whose elements i.e., any linear combinations of F
(1)
n (x) = e−τx(1 + x)µ P−µ,µn−1 (x),

satisfy the left-boundary condition. Here, we note that when α, β → −1, the singular

bases approach the regular ones. For simplicity and to avoid dealing with extra

parameters α and β, we set them to −1. Moreover, we consider VN ⊂ UII as the

space of test functions to be constructed as

VN = {F (2)
n (x), ∀n ≥ 1}, (3.80)

where we recall F
(2)
n (x) = eτx(1 + x)µ P µ,−µ

n−1 (x). Noting Remark 3.2.3, it is straight-

forward to check that ∀u ∈ UN and w ∈ VN , we have the following bilinear form

a(u,w) =
(
TRL
−1D 2µ

x,τu,w
)

Ω
=
(

TRL
−1Dµ,τ

x u , TRLxD
µ,τ
1 w

)
Ω
. (3.81)
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Hence, we consider the corresponding weak form of (3.78), which reads as: find

uN ∈ UN such that

a(uN , w) :=
(

TRL
−1Dµ,τ

x uN ,
TRL

xD
µ,τ
1 w

)
Ω

=
(
f, w

)
Ω
, ∀w ∈ VN , (3.82)

which becomes equivalent to the strong form (3.78) when uN ≈ u possesses sufficient

smoothness. Next, we seek the approximate solution uN of the form

uN(x) =
N∑
n=1

bnF
(1)
n (x), (3.83)

where bn are the unknown expansion coefficients. By plugging (3.83) into ((3.82)),

which enforces the residual RN(x) = TRL
−1D2µ

x uN(x)− f(t) to be L2-orthogonal to all

elements in VN , we obtain

N∑
n=1

bn

(
TRL
−1Dµ

xF
(1)
n (x) , TRLxD

µ
1F

(2)
k (x)

)
Ω

=
(
f(x) , F

(2)
k (x) ,

)
Ω
, k = 1, 2, · · · , N,

which yields a diagonal stiffness matrix on the left-hand side, due to (3.58) and

(3.59), whose diagonal entries are given by γk =
(

Γ(k+µ)
Γ(k)

)2
2

2k−1
. Consequently, we

obtain the expansion coefficients as

bk =
1

γk

(
f , F

(2)
k (x)

)
Ω
. (3.84)

In Fig. 3.3, we study the convergence of the proposed Petrov-Galerkin scheme.

We plot the log-log L2-error versus N , the number of expansion terms in (3.83),

corresponding to the limit fractional orders 2µ = 1/10 and 2µ = 9/10, considering

two different exact solutions: (i) u(x) = e−x(1+x)5 (left), and (ii) u(x) = e1+x+x2(1+
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Figure 3.3: Petrov-Galerkin scheme for TFODE (3.78): L2-error versus N , the number of
expansion terms in (3.83), corresponding to the limit fractional orders 2µ = 1/10 and 2µ = 9/10.

Here, the exact solutions are u(x) = e−x(1 + x)5 (left) and u(x) = e1+x+x
2

(1 + x)2 (right).

x)2 (right). These plots show the spectral mode of convergence in the Petrov-Galerkin

spectral method. In what follows, we further provide the stability and convergence

analysis of the method.

3.6.3 Stability and Convergence Analysis

We carry out the discrete stability analysis given the pair of UN ⊂ UI and VN ⊂ VI .

Case I) 0 < µ < 1/2: we represent uN as

uN(x) =
N∑
n=1

ûnF
(1)
n (x), (3.85)

and choose vN to be the following linear combination of elements in VN as

vN(x) =
N∑
k=1

ûnF
(2)
n (x). (3.86)
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Hence, we obtain

a(uN , vN) =
(
−1Dµ,τ

x uN , xD
µ,τ
1 vN

)
Ω

(3.87)

=
N∑
n=1

ûn

N∑
k=1

ûk

∫ 1

−1
−1Dµ,τ

x F (1)
n (x) xD

µ
1F

(2)
n (x) dx

=
N∑
n=1

ûn
Γ(n+ µ)

Γ(n)

N∑
k=1

ûk
Γ(k + µ)

Γ(k)

∫ 1

−1

Pn−1(x)Pk−1(x) dx

=
N∑
n=1

û2
n

(Γ(n+ µ)

Γ(n)

)2 2

2n− 1
.

Moreover, we have

‖vN‖2
V = ‖ xDµ,τ

1 vN‖2
L2([−1,1]) =

∫ 1

−1

( N∑
k=1

ûk xD
µ,τ
1 F

(2)
k (x)

)2

dx (3.88)

=

∫ 1

−1

( N∑
k=1

ûke
τxΓ(k + µ)

Γ(k)
Pn−1(x)

)2

dx,

by which we observe that

‖vN‖2
V ≥ C2

1

∫ 1

−1

( N∑
k=1

ûk
Γ(k + µ)

Γ(k)
Pn−1(x)

)2

dx = C2
1a(uN , vN) (3.89)

‖vN‖2
V ≤ C2

2

∫ 1

−1

( N∑
k=1

ûk
Γ(k + µ)

Γ(k)
Pn−1(x)

)2

dx = C2
2a(uN , vN)

where C1 = min−1≤x≤1(|eτx|) and C2 = max−1≤x≤1(|eτx|). We can obtain similar

results for ‖uN‖2
U as

c2
1a(uN , vN) ≤ ‖uN‖2

U ≤ c2
2a(uN , vN), (3.90)

where c1 = min−1≤x≤1(|e−τx|) and c2 = max−1≤x≤1(|e−τx|). Hence, there exists

a positive constant C such that ‖vN‖V ≤ C‖uN‖U , by which and using the right
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inequality of (3.90) we obtain

sup
vN∈VN

a(uN , vN)

‖vN‖V
≥

1
c22
‖uN‖2

U

C‖uN‖U
=

1

C c2
2

‖uN‖U , ∀uN ∈ UN , (3.91)

that is stability is guaranteed for β = 1
C c22

. Therefore, Céa’s lemma holds:

‖u− uN‖U ≤ (1 +
M

β
)‖u− ũN‖U , ∀ũN ∈ UN , (3.92)

in which the continuity constant M = 1. Next, in order to obtain the corresponding

(projection) error estimates, we expand the exact solution u, when 2µ ∈ (0, 1), in

terms of the following infinite series of tempered Jacobi polyfractonomials

u(x) =
∞∑
n=1

ûne
−τx(1 + x)µP−µ,µn−1 (x). (3.93)

Here, we would like to bound ‖u − uN‖U in terms of higher-order derivatives. We

first note that

−1Dr+µ,τ
x u(x) = e−τx[−1Dr+µx e−τxu(x)] = e−τx[

dr

dxr −1Dµx e−τxu(x)]

=
∞∑
n=1

ûn
Γ(n+ µ)

Γ(n)
e−τx

dr

dxr
[Pn−1(x)],

where

dr

dxr
[Pn−1(x)] =


(n−1+r)!
2r(n−1)!

P r,r
n−1−r(x), r ≤ n,

0, r > n.

Therefore,

−1Dr+µx u(x) =
∞∑
n=r

ûn
Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!
e−τxP r,r

n−1−r(x).
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Hence,

‖(1− x)r/2(1 + x)r/2 −1Dr+µ
x u(x)‖ =∫ 1

−1

(1− x)r(1 + x)r
( ∞∑
n=r

ûn
Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!
e−τxP r,r

n−1−r(x)
)2

=

∞∑
n=r

(
ûn

Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!

)2
∫ 1

−1

e−2τx(1− x)r(1 + x)r(P r,r
n−1−r(x))2dx ≥

C

∞∑
n=r

(
ûn

Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!

)2
∫ 1

−1

(1− x)r(1 + x)r(P r,r
n−1−r(x))2dx

C

∞∑
n=r

[
ûn

Γ(n+ µ)

Γ(n)

]2 2

2n+ 1

(n− 1 + r)!

(n− 1− r)! .

where C could be any positive constant greater that the minimum of e−τx in [−1, 1].

Noting that (n−1+r)!
(n−1−r)! is minimized when n = N + 1, we have

‖u− uN‖2
U ≤

∞∑
n=N+1

[
ûn

Γ(n+ µ)

Γ(n)

]2

≤
∞∑

n=N+1

[
ûn

Γ(n+ µ)

Γ(n)

]2 (n− 1 + r)!

(n− 1− r)!
(N − r)!
(N + r)!

≤ 1

C

(N − r)!
(N + r)!

‖ −1Dr+µ
x u(x)‖2

L2([−1,1])

≤ cN−2r‖ −1Dr+µ
x u(x)‖2

L2([−1,1]) (3.94)

where r ≥ 1 and 2µ ∈ (0, 1).



Chapter Four

Petrov-Galerkin Spectral Method

and Discontinuous Galerkin

Method for Fractional ODEs
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Current discretizations of fractional differential equations lead to numerical solu-

tions of low order of accuracy. Here in this chapter, we present different methods

for fractional ODEs that lead to exponentially fast decay of the error. First, we de-

velop a Petrov-Galerkin (PG) spectral method for Fractional Initial Value Problems

(FIVPs) of the form 0Dνt u(t) = f(t) and Fractional Final Value Problems (FFVPs)

tDνTu(t) = g(t), where ν ∈ (0, 1), subject to Dirichlet initial/final conditions. These

schemes are developed based on a new spectral theory for fractional Sturm-Liouville

problems (FSLPs), which has been recently developed in [187]. Specifically, we obtain

solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis

functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP

of first kind (FSLP-I). Correspondingly, we employ another space of test functions

as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-

II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-

Galerkin type for the aforementioned FIVPs and FFVPs, where the basis functions

do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a

discontinuous spectral element method (DSEM) for efficient longer time-integration

and adaptive refinement. In these discontinuous schemes, we employ the asymp-

totic eigensolutions to FSLP-I&-II, which are of Jacobi polynomial forms, as basis

and test functions. Our numerical tests confirm the exponential/algebraic conver-

gence, respectively, in p- and h-refinements, for various test-cases with integer and

fractional-order solutions.

4.1 Background

Over the last two decades, the notion of fractional derivative has been extended to

many ordinary fractional differential equations (FODEs) such as fractional Cauchy
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equation, fractional Gauss equations [51, 90] and fractional Sturm-Liouville equa-

tion [93], in addition to a variety of fractional partial differential equations (FPDEs)

such as fractional Fokker-Planck equation [14], fractional Burgers’ equation [163],

and fractional advection-diffusion equation [67]. In these problems, the correspond-

ing differential operators can be defined based on different but closely related ways.

The extension of existing numerical methods for integer-order differential equations

( [64, 106, 68, 195, 77] and references therein) to their corresponding fractional dif-

ferential equations (FDEs) is not trivial. While the approximation of these models

is computationally demanding due to their long-range history-dependence, the de-

velopment of numerical schemes in this area does not have a long history, and has

undergone a fast evolution. Depending on how (temporal Dνt or spatial Dνx) frac-

tional derivatives are discretized and according to their order of accuracy, different

classes of numerical methods have been developed in the literature.

4.1.1 Finite Difference Methods (FDM)

To our knowledge, Lubich [113, 114] is the pioneer of the idea of discretized frac-

tional calculus within the spirit of finite difference method (FDM). Later, Sanz-Serna

[154] adopted the idea of Lubich and presented a temporal semi-discrete algorithm

for partial integro-differential equations, which was first order accurate. Sugimoto

[163] also employed a FDM for approximating the fractional derivative emerging in

Burgers’ equation. Later on, the paper of Metzler et. al. [127] opened a new hori-

zon toward FPDEs by introducing a fractional dynamics approach to time-fractional

diffusion. Subsequently, Gorenflo et. al. [63] adopted a finite-difference scheme

by which they could generate discrete models of random walk in such anomalous

diffusion. Diethelm et al. proposed a predictor-corrector scheme in addition to a
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fractional Adams method [51, 53]. After that, Langlands and Henry [104] considered

the fractional diffusion equation, and analyzed the L1 scheme for the time-fractional

derivative. Sun and Wu [166] also constructed a difference scheme with L∞ approx-

imation of time-fractional derivative. In order to develop and analyze higher order

FDM schemes Lin and Xu [111] analyzed a FDM for the discretization of the time-

fractional diffusion equation with order (2− α). Kumar and Agrawal [99] proposed

a block-by-block method for a class of fractional initial value problems which later

Huang et al. [69] proved that it enjoys a rate of convergence of at least 3. Recently,

Cao and Xu [30] rigorously developed the scheme to (3 + α)-th order, α ∈ (0, 1). To

the best of knowledge, this is the highest-order and the most recent FDM scheme

for discretization of fractional derivatives.

Although implementation of such FDM approaches is relatively easy, their biggest

issue is that the accuracy is limited. Moreover, these approaches suffer from heavy

cost of computing the long-ranged memory in discretization of the fractional deriva-

tives at each point. In fact, FDM is inherently a local approach whereas fractional

derivatives are essentially global (nonlocal) differential operators. This property

would suggest that global schemes such as Spectral Methods (SMs) are more ap-

propriate tools for discretizing fractional differential equations.

4.1.2 Spectral Methods (SMs)

Unlike the attention put on developing FDM schemes, very little effort has been put

on developing rigorous high-order spectral methods. A Fourier SM was utilized by

Sugimoto [163] in a fractional Burgers’ equation, linearized by Taylor expansion, and

a spline-based collocation method was employed by Blank [25] for numerical treat-

ment of a class of FODEs. This approach was later employed by Rawashdeh [147] for
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solving fractional integro-differential equations. In these works, the expected high

convergence rate was not observed and no error/stability analysis was carried out.

Lin and Xu [111] developed a hybrid scheme for time-fractional diffusion problem,

treating the time-fractional derivative using FDM and discretizing the integer-order

spatial derivative by a Legendre SM. In such mixed approaches, the error associated

with the low-order temporal accuracy can easily dominate the global error, for in-

stance when the time-dependent portion of the exact solution is discontinuous, or if

is a monomial of form tn, where n is sufficiently large, or is a smooth function e.g.,

sin(nπt). The idea of collocation was later adopted by Khader [86], where he pro-

posed a Chebyshev collocation method for the discretization of the space-fractional

diffusion equation. More recently, Khader and Hendy [87] developed a Legendre

pseudospectral method for fractional-order delay differential equations.

The collocation and pseudospectral schemes for fractional equations are rela-

tively easy to implement but their performance has not been tested thoroughly. For

instance, when the exact solution is of polynomial form it is claimed that a fast

convergence is observed. However, for other test-cases no such exponential-like con-

vergence is achieved. The first fundamental work on spectral methods for FPDEs

was done by Li and Xu [108, 109] who developed a time-space SM for time-fractional

diffusion equation. To the best of our knowledge, they were the first who achieved

exponential convergence in their numerical tests in agreement with their error anal-

ysis. However, in this scheme, the corresponding stiffness and mass matrices are

dense and gradually become ill-conditioned when the fractional order α tends to

small values. Moreover, this approach is not effective e.g., when the forcing term

exhibits discontinuity in the time-domain. This, in turn, motivates the use of domain

decomposition and Finite Element Methods (FEM) and Spectral Element Methods

(SEM) in the context of fractional calculus.
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4.1.3 Spectral/hp Element Methods

A theoretical framework for the least-square finite-element approximation of a frac-

tional order differential equation was developed by Fix [60], where optimal error es-

timates are proven for piecewise linear trial elements. The main hurdle to overcome

in FEM is the non-local nature of the fractional operator which leads to large dense

matrices; even construction of such matrices presents difficulties [151]. There are,

however, a number of recent works already employed in this area using FEM to obtain

more efficient schemes. McLean and Mustapha [122] developed a piecewise-constant

discontinuous Galerkin method for the time discretization of a sub-diffusion equa-

tion. Hanert [66] also considered the use of a Chebyshev spectral element method

for the numerical solution of the fractional-order transport. Recently, the idea of the

least-square FEM [60] was extended to the spectral element method by Carella [31].

Despite the spectral expansion, these schemes are not properly formulated and fail

to achieve exponential convergence.

In this chapter, we develop exponentially accurate numerical schemes of Petrov-

Galerkin type for the FODEs of form 0Dνt u(t) = f(t) and tDνTu(t) = f(t), introduced,

respectively, as Fractional Initial Value Problem (FIVP) and Fractional Final Value

Problem (FFVP) subject to Dirichlet initial conditions. To this end, we first develop

a Petrov-Galerkin (PG) spectral method whose corresponding stiffness matrix is di-

agonal. Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-

Galerkin type with exact quadrature rules for the aforementioned FIVPs and FFVPs.

This scheme is also extended to a discontinuous spectral element method (DSEM)

for efficient longer time-integrations and adaptive refinement. These schemes are

developed based on a new spectral theory for fractional Sturm-Liouville problems

(FSLPs), which has been recently developed in [187]. In order to test the perfor-
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mance of our schemes, p-refinement and h-refinement tests are performed for a range

of test cases, where the exact solution is a monomial tn, n ∈ N, fractonomial tn+µ,

µ ∈ (0, 1), (see [187]), smooth functions of form tp sin(nπt), p ∈ N, fractional func-

tions tn1+µ1 sin(nπtn2+µ2), n1, n2 ∈ N and µ1, µ2 ∈ (0, 1), or any combinations of

these functions. We also include a case with strong discontinuity in the forcing term

f(t), demonstrating that the use of DSEM yields exponential convergence in that

case too.

4.2 Notation and Definitions

We first introduce the simplest fractional ordinary differential equation (FODE),

which forms a building block for the construction of other fractional differential

operators. Here, we define the Fractional Initial Value Problem (FIVP) of order

ν ∈ (0, 1) as

0Dνt u(t) = f(t), t ∈ (0, T ], (4.1)

u(0) = u0,

where 0Dνt denotes the left-sided Reimann-Liouville fractional derivative of order

ν ∈ (0, 1) following [142], defined as

0Dνt u(t) =
1

Γ(1− ν)

d

dt

∫ t

0

u(s)ds

(t− s)ν , t > 0, (4.2)

where Γ represents the Euler gamma function.

Next, we define the corresponding Fractional Final Value Problem (FFVP) of
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order ν ∈ (0, 1), for which the final value of the unknown solution is given as

tDνTu(t) = g(t), t ∈ [0, T ), (4.3)

u(T ) = uT ,

where tDνT represents the right-sided Reimann-Liouville fractional derivative of order

ν ∈ (0, 1), defined as

tDνTu(t) =
1

Γ(1− ν)

(−d
dt

)∫ T

t

u(s)ds

(s− t)ν , t < T. (4.4)

We also define the fractional differential operators in (4.1) and (4.3) to be the Caputo

fractional derivatives C
0Dνt and C

tDνT , respectively. In fact, these fractional operators

can be defined by (11.2) and (4.4), in which the order of the integration and first

derivative is reversed. However, the two definitions are linked by the following rela-

tionships

0Dνt u(t) =
u(0)

Γ(1− ν)tν
+ C

0Dνt u(t), (4.5)

and

tDνTu(t) =
u(tT )

Γ(1− ν)(T − t)ν + C
tDνTu(t). (4.6)

Hence, when u0 = 0 and uT = 0 in (4.1) and (4.3), these problems become identical

to the corresponding problems with the Caputo derivatives by virtue of (4.5) and

(4.6).

4.3 Petrov-Galerkin (PG) Spectral Method

First, we develop a spectral method for the FIVP (4.1), subject to homogeneous

Dirichlet initial conditions. Then, we generalize the scheme for non-zero Dirichlet
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initial conditions.

4.3.1 Basis Functions

Our spectral scheme is based upon a new spectral theory for fractional Sturm-

Liouville eigen-problems (FSLP), developed in [187]. Accordingly, we seek the solu-

tion to the FIVPs in terms of the new fractional (non-polynomial) basis functions,

called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first

kind, explicitly obtained as

(1)Pα,β,µn (x) = (1 + x)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (x), x ∈ [−1, 1], (4.7)

where Pα−µ+1,−β+µ−1
n−1 (x) are the standard Jacobi polynomials in which µ ∈ (0, 1),

−1 ≤ α < 2 − µ, and −1 ≤ β < µ − 1. Particularly, (1)Pα,β,µn (x) represent the

eigenfunctions of the singular FSLP of first kind (SFSLP-I) when α 6= −1 and

β 6= −1; otherwise (1)P µ
n (x) ≡ (1)P−1,−1,µ

n (x) denote the eigenfunctions of the regular

FSLP of first kind (RFSLP-I). Moreover, it has been shown in [187] that both sets

of regular {(1)P µ
n (x)}Nn=1 and singular bases {(1)Pα,β,µn (x)}Nn=1 (for some N ∈ N)

have identical approximating properties when α = β. Hence, in this work and for

simplicity, we employ the fractional eigenfunctions for α = β = −1:

(1)P µ
n (x) = (1 + x)µP−µ,µn−1 (x), x ∈ [−1, 1], (4.8)

as our basis functions. Now, let u0 = 0 and t ∈ [0, T ]. Then,

(1)P̃ µ
n (t) =

( 2

T

)µ
tµP−µ,µn−1 (x(t) ) (4.9)
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represent the shifted basis functions of fractional order (n− 1 + µ) that is obtained

through the affine mapping x = 2t/T − 1, transforming the standard interval [−1, 1]

to [0, T ]. From the properties of the eigensolutions in [187], the left-sided Riemann-

Liouville fractional derivative of (6.10) is given as

0D µ
t

(
(1)P̃ µ

n (x(t) )
)

=
( 2

T

)µ
−1D µ

x

(
(1)P µ

n (x)
)

(4.10)

=
( 2

T

)µ Γ(n+ µ)

Γ(n)
Pn−1(x(t) ),

stating that the µ th order fractional derivative of such fractional (non-polynomial)

basis functions of order (n − 1 + µ) is a standard Legendre polynomials of integer

order (n−1). Moreover, since u(0) = u0 = 0, the aforementioned Riemann-Liouville

fractional derivative is identical to the one of Caputo type by virtue of (4.5).

4.3.2 Test Functions

In order to obtain the variational form in the Petrov-Galerkin spectral method, we

test (4.1) against a different set of test functions, which are in fact the eigenfunctions

of the FSLP of second kind, explicitly obtained in [187] as

(2)Pα,β,µk (x) = (1− x)−α+µ−1P−α+µ−1,β−µ+1
k−1 (x), x ∈ [−1, 1], (4.11)

which belong to another family of the Jacobi polyfractonomials, where this time

−1 ≤ α < 1− µ, and −1 ≤ β < 2µ− 1. By the same argument made in Sec. 4.3.1,

we employ the following fractional test functions

(2)P µ
k (x) = (1− x)µP µ,−µ

k−1 (x), x ∈ [−1, 1], (4.12)
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in our weak formulation. By carrying out the same affine mapping x = 2t/T − 1, we

can obtain the shifted test functions

(2)P̃ µ
k (x(t) ) = (

2

T
)µ (T − t)µP µ,−µ

k−1 (x(t) ), (4.13)

corresponding to the interval [0, T ]. Now, following [187], the right-sided Riemann-

Liouville fractional derivative of (6.18) is obtained as

tD µ
T

(
(2)P̃ µ

k (t)
)

=
( 2

T

)µ
xD µ

+1

(
(2)P µ

k (x)
)

(4.14)

=
( 2

T

)µ Γ(k + µ)

Γ(k)
Pk−1(x(t) )

= 0D µ
t

(
(1)P̃ µ

k (t)
)
,

where the last equality holds by (C.37). The relations in (C.38) also hold for the

Caputo fractional derivatives thanks to (4.6).

Having defined the basis and test functions, next we will present the Petrov-

Galerkin spectral method by recalling the following lemma.

Lemma 4.3.1. [108]: For all 0 < ξ < 1, if u ∈ H1([0, T ]) and w ∈ Hξ/2([0, T ]),

then

(0D ξ
t u,w)[0,T ] = ( 0D ξ/2

t u , tD ξ/2
T w )[0,T ], (4.15)

where (·, ·)[0,T ] denotes the standard inner product in the interval [0, T ].
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4.3.3 PG Spectral Method for the FIVP

In FIVP (4.1), we seek an approximate solution of the form

u(t) ≈ uN(t) =
N∑
n=1

an
(1)P̃ µ

n (t), (4.16)

where an are the unknown expansion coefficients to be determined. By plugging

(7.59) into (4.1), we obtain the residual RN(t) as

RN(t) = 0Dνt uN(t)− f(t)

to be L2-orthogonal to all elements in the set of test functions {(2)P̃ µ
k (x(t) ) : k =

1, 2, · · · , N} as

N∑
n=1

an

∫ T

0
0Dνt

(1)P̃ µ
n (t)

(2)P̃ µ
k (x(t) ) dt =

∫ T

0

f(t)
(2)P̃ µ

k (x(t) ) dt.

Now, we choose µ = ν/2, and by Lemma 6.3.4, we obtain

N∑
n=1

an

∫ T

0
0Dµt

(1)P̃ µ
n (t) tDµT

(2)P̃ µ
k (x(t) ) dt =

∫ T

0

f(t)
(2)P̃ µ

k (x(t) ) dt,

where by (C.37) and (C.38) we obtain

N∑
n=1

an

( 2

T

)2µ
(
n+ µ

n

)(
k + µ

k

)∫ T

0

Pn−1(x(t) )Pk−1(x(t) ) dt =

N∑
n=1

an

( 2

T

)2µ−1
(
n+ µ

n

)2
2

2n− 1
δnk =∫ T

0

f(t)
(2)P̃ µ

k (x(t) ) dt,
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Figure 4.1: PG spectral method for FIVP: log-linear L2-error of the numerical solution to

0Dνt u(t) = f(t), t ∈ [0, 1], versus N , the order-index in (7.59), corresponding to ν = 1/10 and
9/10: (top-left) the exact solution uext(t) = t10, (top-right) uext(t) = t6 sin(πt), (bottom-left)
uext(t) = t13/2 sin(πt4/3), and (bottom-right) uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3.

which yields a diagonal stiffness matrix on the left-hand side, whose diagonal entries

are given by γk = ( 2
T

)2µ−1
(
k+µ
k

)2 2
2k−1

. Consequently, we obtain the expansion

coefficients as

ak =
1

γk

∫ T

0

f(t)
(2)P̃ µ

k (x(t) ) dt. (4.17)

For the case of non-homogeneous initial conditions when u(0) = u0 6= 0, we

employ the method of lifting a known solution, where we decompose the solution

u(t) into two parts as

u(t) = uH(t) + uD, (4.18)
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in which uH(t) corresponds to the homogeneous solution and uD ≡ u0 is the non-

zero initial condition, given in (4.1). We substitute (5.50) into (4.1) and take the

fractional derivative on the known uD to the right hand-side to obtain

0Dνt uH(t) = h(t), t ∈ (0, T ], (4.19)

uH(0) = 0,

where h(t) = f(t) − uD
Γ(1−ν) tν

. We note that if we replace the fractional derivative

in (4.19) by a Caputo one, the same scheme can be used, where this time h(t) ≡

f(t), since the Caputo fractional derivative of the constant initial value u0(= uD) is

identically zero.

In Fig.4.1, we present numerical results obtained using the PG spectral method

to solve the fractional initial-value problem 0Dνt u(t) = f(t), t ∈ [0, 1], corresponding

to ν = 1/10 and 9/10. Here we consider four different exact solutions (i) mono-

mial uext(t) = t10, (ii) smooth function uext(t) = t6 sin(πt), (iii) fractional function

uext(t) = t13/2 sin(πt4/3), and finally (iv) combination of fractonomials (see [187]) and

a smooth function uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3. In all aforementioned cases

exponential convergence is observed.

4.3.4 PG Spectral Method for the FFVP

The numerical scheme for the FFVP (4.3) is similar to the one we developed in Sec.

4.3.3, except that we interchange the space of basis and test functions in the new

scheme. In fact, we choose {(2)P̃ µ
j (t) : j = 1, 2, · · · , N} to be set of basis functions,

and we consider {(1)P̃ µ
k (t) : k = 1, 2, · · · , N} as the set of test functions in deriving
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Figure 4.2: PG spectral method for FFVP: log-linear L2-error of the approximate solution to

tDνTu(t) = f(t), t ∈ [0, 1], versus N , the order-index in (4.20), corresponding to ν = 1/10 and
9/10: (top-left) the exact solution uext(t) = (T − t)10, (top-right) the exact solution uext(t) =
(T − t)6 sin(π(T − t)), (bottom-left) the exact solution uext(t) = (T − t)13/2 sin(π(T − t)4/3), and
(bottom-right) the exact solution uext(t) = (T − t)6 exp[(T − t)2] + (T − t)8+5/7 + (T − t)10+1/3.
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the variational form. Here, we seek the approximate solution to (4.3) of form

u(t) ≈ uN(t) =
N∑
j=1

bj
(2)P̃ µ

j (t), (4.20)

where bj are the unknown expansion coefficients. By plugging (4.20) into (4.3) and

requiring the corresponding residual function RN(t) to be L2-orthogonal to each

element in the set of the test functions, we obtain the unknown coefficients as

bk =
1

γk

∫ T

0

f(t)
(1)P̃ µ

k (x(t) ) dt. (4.21)

When u(T ) = uT 6= 0, we employ again the method of lifting a known solution. We

then decompose u(t) as shown in (5.50) and substitute it into (4.3) to obtain the

following equivalent finite-value problem

tDνTuH(t) = w(t), t ∈ [0, T ), (4.22)

uH(T ) = 0,

where w(t) = f(t)− uT
Γ(1−ν) (T−t)ν . In Fig. 4.2, we present numerical results obtained

by the PG spectral method to solve the fractional final-value problem tDνTu(t) =

f(t), t ∈ [0, 1], corresponding to ν = 1/10 and 9/10. We consider four different

exact solutions (i) monomial uext(t) = (T − t)10, (ii) smooth function uext(t) =

(T − t)6 sin(π(T − t)), (iii) fractional function uext(t) = (T − t)13/2 sin(π(T − t)4/3),

and finally (iv) combination of fractonomials and a smooth function uext(t) = (T −

t)6 exp((T − t)2) + (T − t)8+5/7 + (T − t)10+1/3. In all of these test cases again we

obtain exponential convergence.
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4.4 Discontinuous Methods

In spectral methods developed for FIVP (4.1) and FFVP (4.3), the basis functions

naturally satisfy the homogeneous initial conditions; however for the case of non-

homogeneous initial conditions, we needed to decompose the solution and slightly

modify the problem. Next, we present a new discontinuous spectral element method

to be efficiently employed in long-time integration and possible adaptive refinement.

To this end, the following lemmas are useful:

Lemma 4.4.1. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1 + x)β+µ Pα−µ,β+µ
n (x)

Pα−µ,β+µ
n (−1)

=
Γ(β + µ+ 1)

Γ(β + 1)Γ(µ)Pα,β
n (−1)

∫ x

−1

(1 + s)β Pα,β
n (s)

(x− s)1−µ ds. (4.23)

By the definition of the left-sided Riemann-Liouville integral and evaluating the

special end-values Pα−µ,β+µ
n (−1) and Pα,β

n (−1), we can re-write (10.16) as

RL
−1Iµx

{
(1 + x)βPα,β

n (x)
}

=
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + x)β+µ Pα−µ,β+µ

n (x). (4.24)

Now, by taking the fractional derivative RL
−1Dµx on both sides of (5.15) when β = −µ

we obtain

RL
−1Dµx

{
Pα−µ,0
n (x)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1 + x)−µPα ,−µ

n (x). (4.25)

Lemma 4.4.2. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1− x)α+µ Pα+µ,β−µ
n (x)

Pα+µ,β−µ
n (+1)

=
Γ(α + µ+ 1)

Γ(α + 1)Γ(µ)Pα,β
n (+1)

∫ 1

x

(1− s)α Pα,β
n (s)

(s− x)1−µ ds. (4.26)

By the definition of the right-sided Riemann-Liouville integral and evaluating the
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special end-values Pα−µ,β+µ
n (+1) and Pα,β

n (+1), we can re-write (10.17) as

RL
xIµ1
{

(1− x)αPα,β
n (x)

}
=

Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

n (x). (4.27)

In a similar fashion, by taking the fractional derivative RL
xDµ−1 on both sides of (6.21)

when α = −µ we obtain

RL
xDµ1

{
P 0,β−µ
n (x)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1− x)−µP−µ,βn (x). (4.28)

The relations (10.18) and (10.20) are useful in computing the corresponding stiffness

matrix in the discontinuous scheme presented in the following section.

In the following, we first develop a discontinuous spectral (single-element) scheme

for FIVPs (4.1) and FFVPs (4.3) and subsequently we extend it to a discontinuous

spectral element method in which we partition the computational domain into non-

overlapping elements.

4.4.1 Discontinuous Spectral Method (DSM; Single-Element)

We first introduce the spaces of basis and test functions to be employed in the

discontinuous scheme for the FIVPs (4.1). Let (−β + µ − 1) → 0 in (8.2), then

(1)Pα,β,µn (x)→ Pα−µ+1,0
n−1 (x), where α− µ+ 1 = η ∈ (0, 1), since −1 ≤ α < 2− µ and

−1 ≤ β < µ−1, recalling from [187]. Hence, in the mapped interval [0, T ], we define

the space of basis functions as

VN = span{P̃ η,0
j (x(t) ) : η ∈ (0, 1), and j = 0, 1, · · · , N}. (4.29)
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In a similar fashion, if we let (−α + µ − 1) → 0, then (2)Pα,β,µn (x) → P 0,β−µ+1
n−1 (x),

where β−µ+1 = χ ∈ (0, 1). In fact in this case −1 ≤ β < 2−µ and −1 ≤ α < µ−1.

Hence, we define the space of test functions as

VN = span{P̃ 0,χ
k (x(t) ) : χ ∈ (0, 1), and k = 0, 1, · · · , N}. (4.30)

We call P̃ η,0
j (x(t) ) and P̃ 0,χ

k (x(t) ) asymptotic eigenfunctions of FSLP-I & -II, which

are polynomials.

Remark 4.4.3. We shall show how this choice of basis and test polynomial func-

tions leads to efficient and exact calculation of the stiffness matrices arising in the

corresponding variational forms using standard Gauss-Legendre quadrature rules.

FIVP (Single-Element)

We follow a discontinuous spectral method (DSM) of Petrov-Galerkin kind and seek

an approximate solution to (4.1), where u(0) = uD 6= 0 generally, in the form

uN(t) =
N∑
n=0

cn P̃
η,0
j (x(t) ), (4.31)

which ∀ϑ(t) ∈ VN satisfies the following variational form obtained from (4.1) in the

time-interval I = [0, T ]

(4.32)(
0+D

ν/2
t uN(t) , tDν/2T ϑ(t)

)
I
− ϑ(T )T 1−ν

(1− ν)Γ(1− ν)
JuN(0)K =

(
f(t), ϑ(t)

)
I
,

where (·, ·)I denotes the standard inner-product in the interval I, and JuN(0)K =

uN(0+) − uN(0−) = uN(0+) − uD represents the jump discontinuity of the solution
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Figure 4.3: Discontinuous spectral method for FIVP: log-linear L2-error of the approximate
solution to 0Dνt u(t) = f(t), t ∈ [0, 1], versus N , the polynomial order in (5.62), corresponding
to ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = t10, (top-right) the exact solution
uext(t) = t6 sin(πt), (bottom-left) the exact solution uext(t) = t13/2 sin(πt4/3), and (bottom-right)
the exact solution uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3.

at the initial condition, and ϑ(T ) is the test-function evaluated at the end of the

time-interval. In A.1, we provide the derivation of the scheme (5.63).

We then choose η = χ = ν/2, and by substituting (5.62) into the scheme (5.63),
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and taking ϑ(t) = P̃ 0,χ
k (x(t) ) for k = 0, 1, · · · , N , we obtain

N∑
n=0

cn (4.33)

{∫ T

0
0+D

ν/2
t P̃ ν/2, 0

n (x(t) ) tDηT−P̃
0,ν/2
k (x(t) ) dt− P̃

0, ν/2
k (T )T 1−ν

(1− ν)Γ(1− ν)
P̃ ν/2, 0
n (0+)

}
=

∫ T

0

f(t) P̃
0,ν/2
k (x(t) ) dt− P̃

0, ν/2
k (T )T 1−ν

(1− ν)Γ(1− ν)
uD,

where by virtue of (10.18) and (10.20) and explicitly evaluating the end points

P̃
ν/2, 0
k (T−) ≡ 1 and P̃

ν/2, 0
n (0+) ≡ (−1)n, (5.64) yields the following linear system

S ~c = ~F (4.34)

where S denotes the corresponding N×N stiffness matrix whose entries are obtained

as

(4.35)

S[k, n] = Λkn

∫ T

0

t−ν/2 (T − t)−ν/2 P̃ ν,−ν/2
n (x(t) )P̃

−ν/2,ν
k (x(t) ) dt

+
(−1)n+1 T 1−ν

(1− ν)Γ(1− ν)
,

where Λkn is computed explicitly as

Λkn =
Γ(k + 1)

Γ(k − ν/2 + 1)

Γ(n+ 1)

Γ(n− ν/2 + 1)
. (4.36)

In (5.65), we also compute the load-vector ~F of size N as

F[k] =

∫ T

0

f(t) P̃
0,ν/2
k (x(t) ) dt− T 1−ν

(1− ν)Γ(1− ν)
uD (4.37)
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Remark 4.4.4. The stiffness matrix S is a full matrix whose entries satisfy S[k, n] =

(−1)k+nS[n, k]. Hence, we need to compute only half of the entries. Moreover, such

entries can be computed exactly using the following Gauss quadrature rule thanks

to the weight function t−ν/2 (T − t)−ν/2 arising from the choice of the basis and test

functions

∫ T

0

t−ν/2 (T − t)−ν/2 P̃ ν,−ν/2
n (x(t) )P̃

−ν/2,ν
k (x(t) ) dt ≈ (4.38)

N+1∑
j=1

P̃ ν,−ν/2
n ( tj )P̃

−ν/2,ν
k ( tj )ωj.

This is true since P̃
ν,−ν/2
n P̃

−ν/2,ν
k ∈ P2N for all n, k = 1, 2, · · · , N . Here, tk’s are the

Gauss-Lobatto-Jacobi (GLJ) quadrature points in the interval [0, T ] given by

tj =
T

2

(
ξ
−ν/2,−ν/2
j + 1

)
, j = 1, 2, · · · , N + 1, (4.39)

where ξ
−ν/2,−ν/2
j are the standard quadrature GLJ points in [−1, 1], and the corre-

sponding weights are obtained as

ωj = (
T

2
)1−νρ

−ν/2,−ν/2
j , j = 1, 2, · · · , N + 1, (4.40)

in which ρ
−ν/2,−ν/2
j represents the standard GLJ quadrature weights associated with

the Jacobi parameters −ν/2,−ν/2.

FFVPs (Single-Element)

We now modify the DSM scheme (5.63) for solving the FFVPs (4.3), simply by

switching the space of the basis and test functions employed in (5.63), where this
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Figure 4.4: Discontinuous spectral method for FFVP: log-linear L2-error of the approximate
solution to tDνTu(t) = f(t), t ∈ [0, 1], versus N , the polynomial order in (4.41), corresponding to
ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = (T − t)10, (top-right) the exact solution
uext(t) = (T−t)6 sin(π(T−t)), (bottom-left) the exact solution uext(t) = (T−t)13/2 sin(π(T−t)4/3),
and (bottom-right) the exact solution uext(t) = (T − t)6 exp[(T − t)2]+(T − t)8+5/7 +(T − t)10+1/3.
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time we employ (5.61) as our basis space and instead we use (5.60) as the set of

test functions. Then, we seek the approximate solution to (5.63) where we choose

u(T ) = uD 6= 0, in the form

uN(t) =
N∑
n=0

ĉn P̃
0,χ
j (x(t) ), (4.41)

which ∀ϑ(t) ∈ VN (set of test functions) satisfies the following variational form

(4.42)(
tDν/2T− uN(t) , 0+D

ν/2
t ϑ(t)

)
I

+
ϑ(0+)T 1−ν

(1− ν)Γ(1− ν)
JuN(T )K =

(
f(t), ϑ(t)

)
I
,

where JuN(T )K = uN(T+)−uN(T−) = uD−uN(T−) represents the jump discontinuity

of the solution at the initial condition, and finally ϑ(0+) is the test-function evaluated

at the beginning of the time-interval. In A.1, we provide the derivation of the scheme

(4.42).

In Figs. 4.3 and 4.4, we present numerical results obtained by the DSM scheme

to solve the fractional initial-value problem 0Dνt u(t) = f(t), t ∈ [0, 1], and finite-

value problem tDνTu(t) = f(t), t ∈ [0, 1], corresponding to ν = 1/10 and 9/10. For

the sake of comparison, we consider the same test cases utilized in Fig. 4.1 and 4.2.

Exponential convergence of both schemes in Figs. 4.3 and 4.4 is demonstrated.

4.4.2 Discontinuous Spectral Element Method (DSEM; Multi-

Element)

Now, we partition the time-interval [0, T ] into Nel non-overlapping time-elements,

Ie = [te− 1
2
, te+ 1

2
] such that ∪Nele=1Ie = [0, T ]. Next, we expand the solution in each
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element Ie in terms of some basis functions, which are discontinuous at the interfaces

of elements and test the problem against another set of test functions psace. Here,

we construct our basis and test functions based upon (5.60) and (5.61), employed in

the development of the DPG scheme, as

V N
h = {v : v

∣∣∣
Ie
∈ VN(Ie), e = 1, 2, · · · , Nel}, (4.43)

and

VNh = {v : v
∣∣∣
Ie
∈ VN(Ie), e = 1, 2, · · · , Nel}, (4.44)

In our discontinuous spectral element method, we seek an approximate solution to

(4.1) on eth time-element in the form

ueN(t) =
N∑
n=1

Cn P̃ η,0
j (xe(t) ), (4.45)

which ∀ϑe(t) ∈ VNh satisfies the following bilinear form originated from projecting

(4.1) onto ϑe(t) in the time-interval Ie = [te− 1
2
, te+ 1

2
] as

(4.46)(
t+
e−1/2
Dν/2t ueN(t) , tDν/2t−

e+1/2

ϑe(t)
)
Ie
−
ϑe(t−e+1/2)(∆t)1−ν

e

(1− ν)Γ(1− ν)
JueN(te−1/2)K =(

f(t), ϑ(t)
)
Ie
−He,

beginning form the first element, i.e., e = 1, and marching element-by-element along

the time-axis to the e = Nel. Here, (∆t)e emerges the time-length of the element

Ie. We note that the only difference between the scheme (5.79) and the discontinu-

ous spectral (single-element) method in (5.63) is the history-term He appearing on

the right-hand side of (5.79). We shall explain how this term represents an extra
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history-load included in (5.79). We first write He in the following convenient and

computationally efficient form as

He = ϑe(t)Fe(t)
∣∣∣t=t−e+1/2

t=t+
e−1/2

−
(
Fe(t) ,

d

dt
ϑe(t)

)
Ie
, (4.47)

where Fe(t) is the history function associated with element Ie

Fe(t) =
e−1∑
ε=1

N∑
δ=0

τδ(t− s)δ+1−νu
(δ)ε
N (s)

∣∣∣s=t−ε+1/2

s=t+
ε−1/2

(4.48)

in which τδ = −1/[Γ(1 − ν)
∏δ

m=0(m + 1 − ν)] is decaying with rate (δ − ν)!, δ =

0, 1, · · · , N , and u
(δ)ε
N represents the δ-th derivative of the solution in Iε to be only

evaluated at the boundaries of Iε. We recall that the approximate solution in each

element is obtained in terms of the basis functions which are Jacobi-polynomials

in (5.60) whose derivatives can be obtained recursively thanks to their hierarchical

structure. Hence, Fe(t) is a poly-fractonomial of degree N + µ, where µ = 1 − ν ∈

(0, 1), defined in [187]. Furthermore, we note that when we take Nel = 1 in the

DSEM scheme, the history-load term He = 0, then the scheme becomes identical to

the DSM scheme (5.63). In A.2, we provide the complete derivation of the scheme

(5.79).

Remark 4.4.5. In order to shed light on the interpretation of such history term in

(5.81) we obtain an alternative representation for the history term (see A.2) as

He = −
e−1∑
ε=1

{(
s0ε
Dνt uε∗N (t) , ϑe(t)

)
Ie

∣∣∣s0ε=t−ε+1/2

s0ε=t
+
ε−1/2

, (4.49)

where we have continuously extended the solution uεN from the corresponding element

Iε to the present element Ie, denoted by uε∗N , such that uε∗N

∣∣∣
Iε

= uεN . Such a represen-

tation implies that the history of the present element Ie respects the structure of the
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fractional ODE (4.1) on the left-hand side. Therefore, assuming any time-continuous

extension of the past solution in Iε to Ie, an extra load term emerges as a history

contribution to the present element.

In order to obtain the corresponding linear system, we choose η = χ = ν/2, and

by substituting (5.78) into the scheme (5.79), and taking ϑe(t) = P̃ 0,χ
k (xe(t) ) for

k = 0, 1, · · · , N and e = 1, 2, · · · , Nel, we obtain

N∑
n=0

C en
{∫

Ie
t+
e−1/2
Dν/2t P̃ ν/2, 0

n (xe(t) ) tDν/2t−
e+1/2

P̃
0,ν/2
k (xe(t) ) dt+ (−1)n+1(∆t)1−ν

e κv

}
=

∫
Ie

f(t) P̃
0,ν/2
k (xe(t) ) dt − κv (∆t)1−ν

e (ue−1
N )R − He,k,

in which κv = 1/[(1− ν)Γ(1− ν)], and hence by Lemma 6.3.4, we obtain

N∑
n=0

C en
{

Λkn

∫
Ie

we(t)P̃ ν,−ν/2
n (xe(t) ) P̃

−ν/2,ν
k (xe(t) ) dt + (−1)n+1(∆t)1−ν

e κv

}
=

∫
Ie

f(t) P̃
0,ν/2
k (xe(t) ) dt − κv (∆t)1−ν

e (ue−1
N )R − He,k,

where we(t) = (t − te−1/2)−ν/2(te+1/2 − t)−ν/2 and the term (ue−1
N )R represents the

solution we have already obtained for in element Ie−1, which is evaluated at the right

boundary. We note that for e = 1, (u0
N)R is equal to the initial condition u(0) = uD.

The corresponding linear system in element Ie is then obtained as

Se~ce = ~Fe (4.50)

where Se denotes the corresponding N ×N local stiffness matrix in Ie whose entries
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Figure 4.5: Condition number of the stiffness matrix obtained in DSM/DSEM in terms of the
polynomial order N and corresponding to different values of the fractional order ν. We observe
that the condition number grows roughly as N3−ν .

are obtained as

(4.51)

Se[k, n] = Λkn

∫
Ie

we(t)P̃ ν,−ν/2
n (xe(t) ) P̃

−ν/2,ν
k (xe(t) ) dt + (−1)n+1(∆t)1−ν

e κv

in which Λkn is explicitly given in (5.72). In (4.50), we also compute the local load-

vector ~Fe of size N as

Fe[k] =

∫
Ie

f(t) P̃
0,ν/2
k (xe(t) ) dt − κv (∆t)1−ν

e (ue−1
N )R − He,k, (4.52)

in which He,k is given by

He,k = Fe(t
−
e+1/2

) + (−1)k+1Fe(t
+
e−1/2

)−
(
Fe(t) ,

d

dt
P̃

0,ν/2
k (xe(t) )

)
Ie

(4.53)

Remark 4.4.6. Similarly to DSM, the stiffness matrix Se in DSEM scheme is also a

full matrix, whose entries similarly follow the property Se[k, n] = (−1)k+nSe[n, k].
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By the same argument, due to the weight function we(t) appearing as a result of the

choice of the basis and test functions the entries of Se can be computed exactly using

a standard quadrature rule. By performing local element operations and considering

an affine mapping from of the physical element to the standard one, we can efficiently

compute the entries of Se as

Se[k, n] = Λkn

∫
Ie

we(t) P̃
ν,−ν/2
n (xe(t) )P̃

−ν/2,ν
k (xe(t) ) dt = (4.54)

J · Λkn

∫ +1

−1

(1− x)−ν/2(1 + x)−ν/2 P ν,−ν/2
n (x )P

−ν/2,ν
k (x ) dx =

J · Sste [k, n],

where J = [(∆t)e/2]1−ν represents the Jacobian of the transformation and Sst de-

notes the stiffness matrix on the standard element in the interval [−1, 1], obtained

as

Sst[k, n] = Λkn

N+1∑
j=1

P ν,−ν/2
n (xj )P

−ν/2,ν
k (xj )ρ

−ν/2,−ν/2
j , (4.55)

in which xj’s are the standard Gauss-Lobatto-Jacobi (GLJ) quadrature points in

the interval [−1, 1] and ρj represent the corresponding weights. The relation (4.55)

shows that in order to compute Se in each element, we only need to obtain Sste once

and multiply it to the corresponding Jacobian in each element. Clearly, on a uniform

mesh where (∆t)1 = (∆t)2 = · · · = (∆t)Nel = T/Nel, the stiffness matrix is invariant

in each element and we compute it only once for the entire of the simulation.

In addition, we study the condition number of the stiffness matrix in the DSEM

and DSM schemes versus the fractional order ν and polynomial order N in Fig. 4.5.

This plot shows that as ν decreases the condition number of the stiffness matrix

increases. It can be attributed to the fact that the singularity in the definition of

the fractional derivative in (4.1), also the ones appearing in the weight functions
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Figure 4.6: DSEM for FIVP: L2-error of the approximate solution to FIVP 0Dνt u(t) = f(t), t ∈
[0, 1],, corresponding to ν = 1/2; (left): log-linear plot of p-refinement compared to the h-refinement
versus the degrees of freedom N ; and (right): log-log plot of the error versus the number of elements
Nel. Here, the exact solution is uext(t) = t10.

w(t) (DSM) and we(t) (DSEM) become stronger as the fractional order ν possesses

smaller values. It would suggest that the global character of the fractional differential

operator in our problem becomes more significant as ν, leading to higher stiffness

condition numbers. However, we notice in Fig. 4.5 that as ν → 1, we recover the

standard condition number of the stiffness matrix corresponding to the integer-order

(non-fractional) problem.

4.4.3 Numerical Tests for DSEM

The L2-error of the approximate solution to FIVP 0Dνt u(t) = f(t), t ∈ [0, 1], using

discontinuous spectral element method (DSEM), corresponding to ν = 1/2 is shown

in Fig. 4.6, where the exact solution is uext(t) = t10. We compare the log-linear plot

of p-refinement on the left to the h-refinement, where we observe the exponential

convergence in the p-refinement and the algebraic convergence in the h-refinement.

We show the algebraic convergence rate to be −1.673 in the log-log L2-error plot on

the right for p = 1 (linear element).
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Figure 4.7: DSEM for FIVP: log-log L2-error plot of the approximate solution to FIVP 0Dνt u(t) =
f(t), t ∈ [0, 1], corresponding to ν = 1/10 and 9/10 versus the number of elements Nel. Here, the
exact solution is uext(t) = t6+5/11.

Next, we are going to examine the effect of the fractional order ν ∈ (0, 1) on the

order of algebraic convergence, where we require the exact solution to possess enough

smoothness. To this end, we present the log-log L2-error plot of the approximate

solution to FIVP 0Dνt u(t) = f(t), t ∈ [0, 1], obtained using DSEM and corresponding

to ν = 1/10 and 9/10 in Fig. 4.7. The exact solution in this numerical test is

uext(t) = t2+1/10, and the algebraic order of convergence obtained is −1.115 and

−2.066 corresponding to ν = 1/10 and 9/10 respectively, when piecewise linear basis

functions are employed. In the other test (Fig. 4.7; right), we employ piecewise

cubic basis functions and we observe the convergence order to be −3.687 and −2.841

corresponding to ν = 9/10 and 1/10 respectively.

In the next test case, we address the issue of the long-time integration. Moreover,

we observe that in some cases when the exact solution does not possess enough

smoothness p-refinement may not be the best choice of improving the finite element

space VN . Accordingly, we take the FIVP 0Dνt u(t) = f(t), t ∈ [0, 10], where ν = 1/2,

for long-time integration in which the exact solution is uext(t) = t1+1/10. The L2-error

of the approximate solution to the aforementioned problem using DSEM is shown in

Fig. 4.8. The h-refinement top plot exhibits algebraic convergence with rates −1.890
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Figure 4.9: History fading in DSEM: the L2-error of the numerical solution to FIVP 0Dνt u(t) =
f(t), t ∈ [0, 1], corresponding to ν = 1/10 and different polynomial order p, versus the number of
the past elements considered in computation of history function (5.81). Here, the exact solution is
uext(t) = t6.

and −1.643 corresponding to ν = 1/10 and 9/10 respectively. In the middle plot, the

log-linear plot of the error versus the number of degrees of freedom N , compared to

the p-refinements is shown. We observe that the aforementioned h-refinements are

shown to be lower and upper bounds for the decay of the error in the p-refinements.

If we now increase the smoothness in the exact solution as presented in the lower

plot, we recover the exponential convergence using p-refinement where we partition

the domain into Nel = 5 elements.

Finally, we examine the idea of memory fading/truncation in the calculation of

the history term (5.80). In this technique we do not take all the past elements

into account at the expense of losing accuracy, and instead, an effective history

length is chosen to calculate (5.80). Such an effective length is well-known to be

dependent mainly on the fractional order ν. In fact, the greater ν in 0Dνt u(t) the

less history-length is needed since as ν → 1, we approach 0Dνt → d/dt, which is

completely a local operator for which no history is required. To this end, we solve

0Dνt u(t) = f(t), t ∈ [0, 1], partitioning the domain into Nel = 10 non-overlapping
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uniform elements when the fractional order is ν = 1/10. As shown in Fig. 4.9, in

order to get the convergence down to machine precision, higher modes demand longer

history lengths; therefore we need to include the whole history to achieve such an

accuracy. We emphasize that such a phenomenon is independent of the discretization

method and is solely due to the global nature of the fractional differential operators.

4.5 Discussion

We conclude this chapter by comparing the performance of the developed schemes

with the finite difference method (FDM) developed in [111], where the fractional

derivative 0Dνt u(t) is represented as

0Dνt u(t) =
1

Γ(2− ν)

k∑
j=0

bj
u(tk+1−j)− u(tk−j)

(∆t)ν
+ rk+1

∆t , (4.56)

where rk+1
∆t ≤ Cu(∆t)

2−ν and bj := (j + 1)1−ν − j1−ν , j = 0, 1, · · · , k; a central

difference method has been employed to approximate the kernel in the fractional

derivative.

In Fig. 4.10, we have solved (4.1) using DSEM for having the T = 10;

we plot the normalized L2-error versus the number of the elements (= T/∆t) cor-

responding to the fractional order ν = 1/10 and ν = 9/10. In DSEM, we utilized

both piecewise linear (p = 1) and piecewise cubic (p = 3) basis functions. First,

we observe that when ν = 1/10, DSEM (p = 1) performs slightly better than FDM

in terms of the rate of the convergence in the range of h-refinement examined (see

Fig. 4.10; Left). By increasing the fractional order to ν = 9/10, we obtain a good

agreement between the rate of convergence in FDM and DSEM (p = 1). However,
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Figure 4.10: Finite difference method versus discontinuous spectral element method (DSEM);
L2-norm error (normalized by the L2-norm of the exact solution) of the approximate solution to

0Dνt u(t) = f(t), T = 10, corresponding to (Left): ν = 1/10 and (Right): ν = 9/10.

increasing the polynomial order p (from 1 to 3), DSEM leads to a noticeable faster

convergence rate.

In addition to the fast convergence of the high-order methods developed in this

work, we show that the computational cost (number of operations) in PG, DSM and

DSEM asymptotically increases as O(N), O(N3), O(N2
el N

3), respectively, where N

represents the polynomial order employed, and Nel denotes the number of elements.

In contrast, the computational cost of FDM grows as N2
g , where Ng stands for the

number of the grid-points in the computational domain. Moreover, we compute the

CPU time (in seconds) required for solving (4.1) corresponding to ν = 1/10, 1/2,

and 9/10 in Table 4.1, where the exact solution is uext(t) = t6 and the integration

time T = 1. We developed all codes in Wolfram Mathematica 8.0.4.0.

Although the implementation of FDM is simpler than the schemes developed in

this study, it turns out that FDM becomes computationally prohibited, especially

when we ask for slightly higher accurate results and ν is not necessarily close to zero.

For instance, in order to reach the L2-error of order 10−6 using FDM, we needed to

include Ng = 7500 grid-points when ν = 1/2. By increasing the fractional-order

to ν = 9/10, Mathematica ran out of memory and the error level 10−6 was not
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achieved. In fact, it highlights the strong sensitivity of the CPU time in FDM on the

fractional-order ν, in addition to the accuracy dependency of FDM on ν as shown

in (4.56). In contrast, the corresponding memory allocation and CPU time in our

schemes were considerably less than what needed in FDM. As shown in Table 4.1,

while we exactly capture the solution by just setting the polynomial order to N = 6

in DSM and DSEM in all cases, the CPU time taken in FDM to reach the error

level 10−6 (when ν = 1/2) was almost 6500 times larger than that in PG spectral

method, 1500 times larger than CPU time in DSM, and 850 times larger than that

in DSEM. We also performed the CPU time comparison shown in Table 4.1 for the

four test-cases shown in Fig. 4.1, and we obtained similar results.
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Table 4.1: CPU time (seconds) on a Intel (Xeon X5550) 2.67GHz processor, corresponding to PG spectral method, DSM, DSEM, and FDM for
solving 0Dνt u(t) = f(t), u(0) = 0, and the exact solution is uext(t) = t6. Here, N denotes the expansion order in PG spectral method, DSM, and
DSEM with Nel = 2 (in each element), also Ng represents the number of grid points in FDM, and the simulation time is set to T = 1.

(ν = 1/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 6) 0.0749885 (N = 5) 0.251108 × (Ng = 48) 0.048815
O(10−5) × × (N = 5) 0.390158 (Ng = 180) 0.24374
O(10−6) (N = 7) 0.0969855 (N = 6) 0.344162 (exact) (N = 6) 0.652402 (exact) (Ng = 640) 3.74287

(ν = 1/2)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 6) 0.0584915 (N = 5) 0.235509 (N = 4) 0.256461 (Ng = 340) 0.966354
O(10−5) × × (N = 5) 0.374215 (Ng = 1600) 23.0223
O(10−6) (N = 7) 0.073489 (N = 6) 0.336951 (exact) (N = 6) 0.565914 (exact) (Ng = 7500) 480.12

(ν = 9/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 6) 0.076988 (N = 5) 0.244935 × (Ng = 3000) 74.5901
O(10−5) × × (N = 5) 0.389906 (Ng = 23000) 3348.96
O(10−6) (N = 7) 0.097985 (N = 6) 0.343947 (exact) (N = 6) 0.645917 (exact) Running Out of Memory



Chapter Five

Fractional Delay Differential

Equations
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In this chapter, we aim to develop a spectrally accurate Petrov-Galerkin (PG) spec-

tral method for fractional delay differential equations (FDDEs). This scheme is

developed based on a new spectral theory for fractional Sturm-Liouville problems

(FSLPs), which has been recently presented in [187]. Specifically, we obtain solutions

to FDDEs in terms of new non-polynomial basis functions, called Jacobi polyfractono-

mials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspond-

ingly, we employ another space of test functions as the span of polyfractonomial

eigenfunctions of the FSLP of second kind (FSLP-II). We prove the wellposedness of

the problem and carry out the corresponding stability and error analysis of the PG

spectral method. In contrast to standard (non-delay) fractional differential equations

(FDEs), the delay character of FDDEs might induce solutions, which are either non-

smooth or piecewise smooth. In order to effectively treat such cases, we first develop

a discontinuous spectral method (DSM) of Petrov-Galerkin type for FDDEs, where

the basis functions do not satisfy the initial conditions. Consequently, we extend

the DSM scheme to a discontinuous spectral element method (DSEM) for possible

adaptive refinement and long time-integration. In DSM and DSEM schemes, we em-

ploy the asymptotic eigensolutions to FSLP-I&-II, which are of Jacobi polynomial

form, both as basis and test functions. Our numerical tests demonstrate spectral

convergence for a wide range of FDDE model problems with different benchmark

solutions.

5.1 Background

Time-fractional differential equations (FDEs) appear in science and engineering ap-

plications as mathematical models representing sub-diffusive transport with long

history effects. Examples are chemical and contaminant transport in heterogeneous
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aquifers [10], transport of passive tracers carried by fluid flow in a porous medium

in groundwater hydrology [156], propagation of mechanical diffusive waves in vis-

coelastic media [116], long-time memory in financial time series [139], etc. More

applications of FDEs in the fields of physics, biology, chemistry and finance can be

found in [4, 89, 155].

In some of these systems with sub-diffusive processes, the future state is to some

extent determined by their history. For such problems, delay terms cannot be omitted

in spite of the whole history being considered by the FDEs. For example, many

automatic control systems with feedback contain time delay [105, 160]; time delay

may also exist in random walk [133]. In modeling HIV infection of CD4+T -cells,

time delay describes the time between infection of CD4+T -cells and the emission of

viral particles on a cellular level [44, 181].

Mathematical Model: The scalar time-fractional differential equation with con-

stant time delay (FDDEs) has the general form:

0Dνt u(t) = f
(
t, u(t), u( t− τ )

)
, t ∈ [0, T ],

(5.1)

u(t) = ξ(t), t ∈ [−τ, 0],

where τ is a positive fixed delay, 0 < ν ≤ 1, the function f : [0, T ]×R×R→ R, and

ξ(t) is the given solution at the initial time-segment. Here, the fractional differential

operator 0Dνt can be defined in many closely connected ways as the generalization

of the integer-order time-derivative to a fractional-order one. In the limit-case as

ν → 1, equation (5.1) becomes u′(t) = f(t, u(t), u(t−τ)), which is the classical delay

differential equation (DDE). For properties of analytical solutions and numerical
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methods for DDEs, we refer to [16, 65]. If the delay term u( t− τ ) is not present, it

reduces to a time-fractional differential equation 0Dνt u(t) = f(t, u(t)). For existence,

uniqueness and stability of analytical solutions of FDEs, see [50, 142].

There are also other types of time delay in modeling of industrial and engineering

problems. For instance, wave motion in the overhead supply line to an electrified

railway system is modeled by y′(x) = f(y(x), y(qx)) with initial condition y(0),

where 0 ≤ x <∞, 0 < q < 1 and qx is called pantograph delay; for more details see

[79, 62, 2].

Literature Review: Recently, many authors have studied the properties of FDDEs

theoretically. Deng et al. [48] used Laplace transform and the characteristic equa-

tion to study the stability of n-dimensional linear FDDEs. Lakshmikantham [102]

developed the basic theory for the initial value problems for fractional functional dif-

ferential equations (substitute u(t− τ) with ut(s) = u(t + s), −τ ≤ s ≤ 0 in (5.1)),

and he discussed both local and global existence of solutions. Moreover, the existence

and stability of solutions of linear fractional system with input and state delays are

discussed in [105, 160]. In addition, Morgado, Ford and Lima [129] discussed exis-

tence, uniqueness and stability of analytical solution for the one-dimensional linear

version of equation (5.1); for more results see [19, 78, 97, 175]. Moreover, existence

and uniqueness of impulsive differential equations of fractional order with infinite

delay has been studied in [18, 17].

The time delay in (5.1) causes the solution at current time to rely on the so-

lution information at certain past time. Furthermore, due to the definition of the

fractional order derivative, it is a nonlocal operator, which means that the fractional

order derivative requires a longer history of the solution at previous time-steps than

what the delay term provides. In fact, in the former case, the solution at a time tn
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only depends on the solution at tn−1 and a certain previous time-step tn − τ , while

in the latter, it depends on the whole history t < tn. When the time delay τ is com-

paratively large, computations may run into storage problems when high accuracy is

demanded and a small time-step size is taken. The globality of the non-integer order

derivative makes the design of accurate and fast methods more difficult. In view

of finite-difference approaches and multi-step/multi-stage time-integration methods,

it is a big challenge when all the past history of the solution has to be saved in

order to compute the solution at the current time. This would prohibit large-scale

simulation of systems characterized by FDDEs especially where highly accurate sim-

ulations are needed. Hence, due to the global nature of such problems, developing

high-order global numerical methods for FDDEs is an effective approach to overcome

this barrier.

Spectral methods and discontinuous Galerkin (DG) methods for time and/or

space discretization of FDEs have been employed before. Li and Xu [110] proposed a

spectral method for temporal discretization of the time-fractional diffusion equation

and provided a priori error estimates. In [130], Mustapha and Mclean applied a

piecewise-linear DG method for time discretization and proved its super-convergence

at the nodes. Khader et al. [85] developed a spectral collocation method based on the

generalized Laguerre polynomials for solving multi-term fractional orders initial value

problems. For finite-difference methods and other numerical methods for FDEs, see

[61, 107, 132, 141].

With respect to FDDEs, a number of works have appeared in the literature.

Khader and Hendy [87] proposed a Legendre pseudo-spectral method. Bhalekar [21]

transformed the FDDE to the Volterra integral equation for which they provided an

algorithm based upon a composite trapezoidal quadrature formula and a predictor-

corrector method. Wang [176] provided an iterative algorithm and proved that it
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is convergent to Grünwald-Letnibov derivative under Lipschitz conditions. In [167],

Sweilam et al. studied the Chebyshev spectral method for the fractional order logistic

differential equation with two delays. They also considered the fractional complex

transform and variational iteration method to solve the equation.

Motivation: The objective of our paper is to develop generalized and spectrally

accurate spectral and spectral element methods for deterministic FDDEs 0Dνt u(t) =

h(t)−A(t)u(t)−B(t)u(gτ (t)) subject to homogeneous Dirichlet initial condition. To

this end, we first develop a Petrov-Galerkin (PG) spectral method whose correspond-

ing stiffness matrix is diagonal and the corresponding mass and delay mass matrices

are obtained exactly. Moreover, we study the wellposedness of the problem and then

carry out the corresponding stability and convergence analysis of our scheme. Subse-

quently, we develop a discontinuous spectral method (DSM) of Petrov-Galerkin type

with exact quadrature rules for the aforementioned FDDEs. This scheme is also

extended to a discontinuous spectral element method (DSEM) for efficient longer

time-integrations and adaptive refinement. These schemes are developed based on

a new spectral theory for fractional Sturm-Liouville problems (FSLPs) in [187] and

in continuation to the recent work on high-order methods for (non-delay) fractional

ODEs [189]. In addition, these eigenfunctions have been recently employed as space-

time bases for solving fractional advection equation in [188], and, their corresponding

nodal representations were used to develop fractional spectral collocation methods

for non-delay fractional ODEs/PDEs [190].

We examine a wide range of exact solutions with constant and time-dependent

coefficients A(t) and B(t). We consider the delay term u(gτ (t)) to be of u(t − τ),

pantograph type u(qt) and harmonic delay form u(q sin(πt)). Consistently, in all the

aforementioned test cases and schemes, spectral convergence of the L2-norm error is
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achieved. We furthermore examine delay problems whose exact solutions are discon-

tinuous and by employing the DSEM scheme we recover the spectral convergence.

5.2 Notation and Problem Definition

For simplicity, we rewrite the FDDE of order ν ∈ (0, 1] as

0Dνt u(t) = h(t)− A(t)u(t)−B(t)u(gτ (t)), t ∈ [0, T ], (5.2)

u(0) = u0(t), t ∈ [gτ (0), 0],

where u(gτ (t)) is the term with time delay (we call it delay term in the following)

and gτ (t) could be t− τ , qt or another function of t with gτ (0) ≤ 0 and gτ (t) ≤ t for

t > 0. Here, u0(t) is the initial function when gτ (0) < 0 and the initial value when

gτ (0) = 0. We choose u0(t) ≡ u0 in all cases in this paper. 0Dνt denotes the left-sided

Reimann-Liouville fractional derivative of order ν ∈ (0, 1] following [142], defined as

0Dνt u(t) =
1

Γ(1− ν)

d

dt

∫ t

0

u(s)ds

(t− s)ν , t > 0, (5.3)

where Γ represents the Euler gamma function. We could also define the fractional

differential operators in (5.2) to be the Caputo fractional derivatives C
0Dνt . In fact,

this fractional operator can be defined by (5.3), where the order of the integration

and differentiation is reversed. However, the two definitions are closely linked by the

following relationship

0Dνt u(t) =
u(0)

Γ(1− ν) tν
+ C

0Dνt u(t). (5.4)
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Hence, when u0 = 0 in (5.2), these problems become identical to the corresponding

problems with the Caputo derivatives by virtue of (5.4).

5.3 Petrov-Galerkin Spectral Method: Continu-

ous & Single-Domain

As the first step, we develop a Petrov-Galerkin (PG) spectral method for the FDDE

(5.2), subject to homogeneous Dirichlet initial conditions. To this end, we introduce

the proper spaces of basis and test functions, where the basis functions satisfy the

homogeneous initial-condition exactly. Later, we shall show how this scheme can

be generalized for any non-zero Dirichlet initial conditions. Hence, we denote the

following spaces

UN = span{tµP−µ,µn (
2

T
t− 1), n = 0, 1, · · · , N − 1},

WN = span{(T − t)µP µ,−µ
n (

2

T
t− 1), n = 0, 1, · · · , N − 1}.

Then, the numerical scheme is to find uN ∈ UN such that

(0Dµt uN ,tDµTw) = (h− AuN −BuN,gτ , w), w ∈ WN . (5.5)

In what follows, we further elaborate on the choice of basis and test functions and

their key properties.
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5.3.1 Space of Basis Functions

Here, we employ

(1)P µ
n (x) = (1 + x)µP−µ,µn−1 (x), x ∈ [−1, 1], (5.6)

as our basis functions, which are the explicit fractional eigenfunctions of fractional

Sturm-Liouville problem in [187]. Now, let u0 = 0 and t ∈ [0, T ]. Then,

(1)P̃ µ
n (t) =

( 2

T

)µ
tµP−µ,µn−1 (x(t) ) (5.7)

represent the shifted basis functions of fractional order (n− 1 + µ) that is obtained

through the affine mapping x = 2t/T − 1, transforming the standard interval [−1, 1]

to [0, T ]. From the properties of the eigensolutions in [187], the left-sided Riemann-

Liouville fractional derivative of (5.7) is given as

0D µ
t

(
(1)P̃ µ

n ( t )
)

=
( 2

T

)µ
−1D µ

x

(
(1)P µ

n (x)
)

=
( 2

T

)µ Γ(n+ µ)

Γ(n)
Pn−1(x(t) ), (5.8)

stating that the µ th order fractional derivative of such fractional (non-polynomial)

basis functions of order (n − 1 + µ) is a standard Legendre polynomials of integer

order (n−1). Moreover, since u(0) = u0 = 0, the aforementioned Riemann-Liouville

fractional derivative is identical to the one of Caputo type by virtue of (5.4).
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5.3.2 Space of Test Functions

We test (5.2) against a different set of test functions, which are eigenfunctions of the

FSLP of second kind, explicitly obtained in [187] as

(2)P µ
k (x) = (1− x)µP µ,−µ

k−1 (x), x ∈ [−1, 1], (5.9)

in our weak formulation. By carrying out the same affine mapping x = 2t/T − 1, we

can obtain the shifted test functions

(2)P̃ µ
k ( t ) = (

2

T
)µ (T − t)µP µ,−µ

k−1 (x(t) ), (5.10)

corresponding to the interval [0, T ]. Now, following [187], the right-sided Riemann-

Liouville fractional derivative of (5.10) is obtained as

tD µ
T

(
(2)P̃ µ

k (t)
)

=
( 2

T

)µ
xD µ

+1

(
(2)P µ

k (x)
)

=
( 2

T

)µ Γ(k + µ)

Γ(k)
Pk−1(x(t) ). (5.11)

Having defined the basis and test functions, next we recall the following lemma in

order to obtain the variational form in the Petrov-Galerkin spectral method.

Lemma 5.3.1. [108]: For all 0 < ξ < 1, if u ∈ H1([0, T ]) such that u(0) = 0 and

w ∈ Hξ/2([0, T ]), then

(0D ξ
t u,w)[0,T ] = ( 0D ξ/2

t u , tD ξ/2
T w )[0,T ], (5.12)

where (·, ·)[0,T ] denotes the standard inner product in the interval [0, T ].

The following lemmas are also useful in our analysis throughout the paper.
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Lemma 5.3.2. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1 + x)β+µ Pα−µ,β+µ
n (x)

Pα−µ,β+µ
n (−1)

=
Γ(β + µ+ 1)

Γ(β + 1)Γ(µ)Pα,β
n (−1)

∫ x

−1

(1 + s)β Pα,β
n (s)

(x− s)1−µ ds, (5.13)

and

(1− x)α+µ Pα+µ,β−µ
n (x)

Pα+µ,β−µ
n (+1)

=
Γ(α + µ+ 1)

Γ(α + 1)Γ(µ)Pα,β
n (+1)

∫ 1

x

(1− s)α Pα,β
n (s)

(s− x)1−µ ds. (5.14)

By the definition of the left-sided Riemann-Liouville integral RL−1Iµx and evaluating

the special end-values Pα−µ,β+µ
n (−1) and Pα,β

n (−1), we can re-write (10.16) as

RL
−1Iµx

{
(1 + x)βPα,β

n (x)
}

=
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + x)β+µ Pα−µ,β+µ

n (x). (5.15)

Now, by taking the fractional derivative RL
−1Dµx on both sides of (5.15) when β = −µ

we obtain

RL
−1Dµx

{
Pα−µ,0
n (x)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1 + x)−µPα ,−µ

n (x). (5.16)

By the definition of the right-sided Riemann-Liouville integral RLxIµ1 and evaluating

the special end-values Pα−µ,β+µ
n (+1) and Pα,β

n (+1), we can re-write (10.17) as

RL
xIµ1
{

(1− x)αPα,β
n (x)

}
=

Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

n (x). (5.17)

In a similar fashion, by taking the fractional derivative RL
xDµ−1 on both sides of (6.21)

when α = −µ we obtain

RL
xDµ1

{
P 0,β−µ
n (x)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1− x)−µP−µ,βn (x). (5.18)
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5.3.3 Stability and Error Analysis

We consider (5.2) under the following assumption:

Assumption 5.3.3. A and B are constants and u(gτ (t)) = u(t− τ).

Let h be a continuous function on [0, T ] also the initial condition φ(t) be contin-

uous on [−τ, 0]. We denote by ‖v‖ the L2-norm of v over the domain [0, T ]. Define

the norm ‖v‖µ = (‖v‖2 + ‖0Dµt v‖2)1/2 and its associated Sobolev space

Hµ([0, T ]) =
{
v|v, 0Dµt v ∈ L2([0, T ])

}
. (5.19)

The space H−µ([0, T ]) is the dual of Hµ([0, T ]) with respect to the L2-inner product.

We denote the norm in H−µ([0, T ]) by ‖·‖−µ. The space C([0, T ]) is the space of

continuous functions over [0, T ] with maximum norm.

Wellposedness of Problem (5.2)

Theorem 5.3.4. Assume that the function h is continuous on [0, T ], φ(t) = 0 and

ε := A − |B| + C−1
p > 0, where the constant Cp is from the following Poincare

inequality

‖v‖2 ≤ Cp

∫ T

0
0Dµt v(t) tDµTv(t)dt, ∀v ∈ Hµ([0, T ]) ∩ {v|v ∈ C[0, T ], v(0) = 0} .

(5.20)

Then for any 0 < ν < 1, there exists a constant C > 0 such that the solution of the

problem (5.2) sunder the assumption (5.3.3), u, satisfies

‖0Dµt u‖+ ‖u‖ ≤ C ‖h‖−µ , (5.21)
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where C depends on A,B,Cp, µ and T .

Proof. We recall that there exists a unique continuous solution to (5.2) sunder the

assumption (5.3.3), see [129]. Define the following bilinear form: for u ∈ Hµ([0, T ])

and v ∈ Hµ([0, T ])

a(u, v) :=

∫ T

0
0Dµt u(t) tDµTv(t)dt+ A

∫ T

0

u(t)v(t)dt+B

∫ T

0

uτ (t)v(t) dt. (5.22)

and the linear functional F(v) =
∫ T

0
h(t)v(t)dt. We first prove the coercivity. We

need the following conclusion, see e.g. [110, Lemma 2.4]: there are positive constants

C1 and C2, such that for any v ∈ Hµ([0, T ])

C1

∫ T

0
0Dµt v(t) tDµTv(t)dt ≤ ‖0Dµt v‖2 ≤ C2

∫ T

0
0Dµt v(t) tDµTv(t)dt. (5.23)

By Cauchy inequality, (5.20) and (5.23), we have

a(u, u) =

∫ T

0
0Dµt u(t) tDµTu(t) dt+ A ‖u‖2 +B

∫ T

0

uτ (t)u(t) dt

≥
∫ T

0
0Dµt u(t) tDµTu(t) dt+ (A− |B|) ‖u‖2

=

∫ T

0
0Dµt u(t) tDµTu(t) dt+ (ε− C−1

p ) ‖u‖2

≥ min(1, εCp)

∫ T

0
0Dµt u(t) tDµTu(t) dt ≥ C−1

2 min(1, εCp) ‖ 0Dµt u‖2 .

Then we conclude from here and (5.23) that there exists a constant C > 0 such that

a(u, u) ≥ C ‖u‖2
µ . (5.24)

It can be readily checked that by the Cauchy inequality, (5.23) and the fact that
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‖ tDµTv‖L2([0,T ]) is equivalent to ‖ 0Dµt v‖L2([0,T ]) (see e.g. [59]), we have

a(u, v) ≤ (C2 + |A|+ |B|) ‖u‖µ ‖v‖µ . (5.25)

The linear functional F(v) is bounded by |F(v)| ≤ ‖v‖µ ‖h‖−µ. Then by (5.24),

(5.25) and Lax-Millgram therorem, we have the well-posedness of the following prob-

lem: given any h ∈ H−µ([0, T ]), find u ∈ Hµ([0, T ]), such that

a(u, v) = F (v), v ∈ Hµ([0, T ]),

and thus (5.21) holds.

Stability and Error Estimates of the Numerical Solution

We note that (5.2) sunder the assumption (5.3.3) can be written in an equivalent

form

u(t) = 0Iµt 0Iµt [h− Au−Buτ ], t ∈ [0, T ], (5.26)

u(t) = 0, t ∈ [−τ, 0].

Defining v = tDµTw, where w ∈ WN . By the property of the fractional integral (6.21)

and derivative (5.11), we have w = tIµTv and v ∈ VN , where

VN = span{Pn(
2

T
t− 1), n = 0, 1, · · · , N − 1}.
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Then the numerical scheme (5.5) can be written in an equivalent form:

(0Dµt uN , v) = (0Iµt [h− AuN −BuN,τ ], v), ∀v ∈ VN . (5.27)

where we have used the argument of integration by parts (5.3.1) and the projection

PN from L2([0, T ]) to VN is defined by

(z − PNz, v) = 0, ∀v ∈ VN .

When z ∈ Hr([0, T ]) and r ≥ 0, we then have, see [29, Chapter 5]

‖PNz − z‖ ≤ CN−r ‖∂rxz‖ . (5.28)

Then we can represent (5.27) by

PN 0Dµt uN = PN 0Iµt [h− AuN −BuN,τ ], (5.29)

or simply, by 0Dµt uN ∈ VN ,

0Dµt uN = PN 0Iµt [h− AuN −BuN,τ ]. (5.30)

Noticing that 0Dµt uN ∈ VN and take 0Iµt over both side of (5.29), we have

P µ
NuN = P µ

N 0Iµt PN 0Iµt [h− AuN −BuN,τ ], (5.31)

where P µ
NuN = tµPN(t−µuN) or we can simply write

uN = 0Iµt PN 0Iµt [h− AuN −BuN,τ ], (5.32)
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because 0Iµt VN = UN which can be readily checked by the the property of the

fractional integral (5.15).

The numerical solution (5.32) can be rewritten as

uN + A 0Iνt uN +B 0Iνt uN,τ = 0Iµt PN 0Iµt [−AuN −BuN,τ ]− 0Iνt [−AuN −BuN,τ ]

+0Iµt PN 0Iµt h.

By Theorem 5.3.4, we have

‖0Dµt uN‖+‖uN‖ ≤ C(‖PN 0Iµt [−AuN −BuN,τ ]− 0Iµt [−AuN −BuN,τ ]‖+‖PN 0Iµt h‖).

(5.33)

It requires to estimate ‖PN 0Iµt [−AuN −BuN,τ ]− 0Iµt [−AuN −BuN,τ ]‖ . We have

‖PN 0Iµt [−AuN −BuN,τ ]− 0Iµt [−AuN −BuN,τ ]‖

≤ CN−µ ‖−AuN −BuN,τ‖ ≤ CN−µ ‖uN‖ . (5.34)

where we have used (5.28) and the fact that

‖0Iµt v‖Hµ ≤ C ‖v‖ .

Then by (5.33), we have

‖0Dµt uN‖+ ‖uN‖ ≤ CN−µ ‖uN‖+ ‖0Iµt h‖ . (5.35)

When h = 0, we take N to +∞, we have ‖uN‖ = 0 and thus uN = 0. This proves
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the stability of the numerical scheme (5.5) .

Theorem 5.3.5 (Convergence rate). In addition to the assumptions in Theorem

5.3.4, assume also that the solution to (5.2) under the assumption (5.3.3) u ∈

Hm([0, T ]) and t−µu ∈ Hk([0, T ]) and h ∈ Hr([0, T ]). Let uN be the solution to

(5.2) under the assumption (5.3.3). Then there exists a positive constant C indepen-

dent of N such that

‖u− uN‖ ≤ C(N−µ−r ‖∂rt h‖+N−m+µ ‖∂mt u‖+N−µ−k
∥∥∂kt (t−µu)

∥∥). (5.36)

Moreover, we have

‖u− uN‖ ≤ C(N−µ−r ‖∂rt h‖ωr,r +N−m+µ ‖∂mt u‖ωm,m +N−µ−k
∥∥∂kt (t−µu)

∥∥
ωk,k

),

(5.37)

when all the weighted norms are bounded. Here ‖v‖ωr,r = (

∫ T

0

v2tr(T − t)r dt)1/2.

Proof. Let eN = uN − P µ
Nu and η = P µ

Nu − u. By (5.26) and (5.31), we have the

following error equation,

eN + A 0Iνt eN +B 0Iνt eN,τ = 0Iµt PN 0Iµt [−AeN −BeN,τ ]− 0Iνt [−AeN −BeN,τ ]

+0Iµt PN 0Iµt [−Aη −Bητ ] + [0Iµt PN 0Iµt h− 0Iνt h]

+[0Iµt PN 0Iµt 0Dνt u− 0Iνt 0Dνt u],

where we also used the fact that 0Dµt u = 0Iµt [h− Au(t)−Buτ ].
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Similar to the proof of (5.33) and (5.35), we have

‖0Dµt eN‖+ ‖eN‖ ≤ C ‖PN 0Iµt [−AeN −BeN,τ ]− 0Iµt [−AeN −BeN,τ ]‖

+ ‖PN 0Iµt [−Aη −Bητ ]‖+ ‖0Iµt PN 0Iµt h− 0Iµt h‖

+ ‖PN 0Iµt 0Dνt u− 0Iµt 0Dνt u‖ . (5.38)

Similar to the proof of (5.34), we have

‖PN 0Iµt [−AeN −BeN,τ ]− 0Iµt [−AeN −BeN,τ ]‖ ≤ CN−µ ‖eN‖ ,

‖PN 0Iµt h− 0Iµt h‖ ≤ CN−µ−r ‖∂rt h‖ ,

‖PN 0Iµt 0Dνt u− 0Iµt 0Dνt u‖ ≤ CN−m+µ ‖∂mt u‖ . (5.39)

Recall that η = P µ
Nu− u and P µ

Nu = tµPN(t−µu). Then by (5.28), we have

‖PN 0Iµt [−Aη −Bητ ]‖ ≤ CN−µ ‖Aη +Bητ‖ ≤ CN−µ ‖η‖ ≤ CN−µ−k
∥∥∂kt (t−µu)

∥∥ .
(5.40)

Then by (5.38), (5.39) and (5.40), we obtain (5.36) via the triangle inequality. The

estimate (5.37) can be obtained similarly if we use the following estimate (see e.g.

[40])

‖PNz − z‖ ≤ CN−r ‖∂rxz‖ωr,r .

instead of the estimate (5.28).

Remark 5.3.6. It is possible to obtain a sharper estimate for the convergence rate

when the solutions and h belongs to some subspace of the employed Sobolev spaces.

For example, when the solution belongs to some weighted Sobolev spaces, such as in

[40], we can have better smoothness indices and may obtain better convergence rate.

In other words, the present error estimate is general and thus it may be conservative

for many situations.
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5.3.4 Implementation of the PG Spectral Method

In FDDE (5.2), we seek an approximate solution of the form

u(t) ≈ uN(t) =
N∑
n=1

an
(1)P̃ µ

n (t), (5.41)

where an are the unknown expansion coefficients to be determined. By plugging

(5.41) into (5.2), we obtain the residual RN(t) as

RN(t) = 0Dνt uN(t) + A(t)uN(t) +B(t)uN( gτ (t) )− h(t)

to be L2-orthogonal to all elements in the set of test functions {(2)P̃ µ
k ( t ) : k =

1, 2, · · · , N}. Next, we choose µ = ν/2, and by Lemma 5.3.1, we obtain

N∑
n=1

an

∫ T

0
0Dµt

(1)P̃ µ
n (t) tDµT

(2)P̃ µ
k ( t ) dt + (5.42)

N∑
n=1

an

[ ∫ T

0

A(t)
(1)P̃ µ

n (t)
(2)P̃ µ

k ( t ) dt
]

+

N∑
n=1

an

[ ∫ T

0

B(t)
(1)P̃ µ

n ( gτ (t) )
(2)P̃ µ

k ( t ) dt
]

=∫ T

0

h(t)
(2)P̃ µ

k ( t ) dt,

where by (5.8) and (5.11) we obtain the stiffness term, i.e., the first term of (5.42),

as

N∑
n=1

an

∫ T

0
0Dµt

(1)P̃ µ
n (t) tDµT

(2)P̃ µ
k ( t ) dt =

N∑
n=1

an

( 2

T

)2µ−1
(

Γ(n+ µ)

Γ(n)

)2
2

2n− 1
δnk, (5.43)
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in which δnk denotes the Kronecker delta and it highlights that this scheme yields

a diagonal stiffness matrix on the left-hand side. By substituting (5.43) back into

(5.42) we obtain the following linear system

Stot ~a = ~F (5.44)

in which ~a denotes the vector of unknown coefficients, ~F represents the load-vector

whose components are obtained as

~Fk =

∫ T

0

h(t)
(2)P̃ µ

k ( t ) dt = (
2

T
)µ
∫ T

0

(T − t)µh(t)P µ,−µ
k−1 (x(t)) dt (5.45)

≈ (
2

T
)µ

Q∑
q=0

wqh(tq)P
µ,−µ
k−1 (x(tq)),

where in this context, {wq}Qq=1 and {tq}Qq=1 are the Gauss-Lobatto-Jacobi quadrature

weights and points corresponding to the Jacobi weight function (T − t)µt0. Finally

Stot is the corresponding N ×N matrix obtained as

Stot = S + M + Mdelay, (5.46)

where S is the diagonal N ×N stiffness matrix, whose diagonal entries are given as

Skk = (
2

T
)2µ−1

(
Γ(k + µ)

Γ(k)

)2
2

2k − 1
, (5.47)

M denotes the A(t)-weighted N ×N mass matrix whose entries are given as

Mkn =

∫ T

0

A(t)
(2)P̃ µ

k ( t )
(1)P̃ µ

n (t) dt, (5.48)

≈ (
2

T
)2µ

QM∑
q=1

wqA(tq)P
µ,−µ
k−1 (x(tq))P

−µ,µ
n−1 (x(tq)),
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in which wq and tq denote the Gauss-Lobatto-Jacobi weights and quadrature points

associated with the weight function (T − t)µ tµ. Moreover, Mdelay represents the

corresponding N × N delay mass matrix associated with the weight function B(t),

given as

Mdelay
kn =

∫ T

0

B(t)
(2)P̃ µ

k ( t )
(1)P̃ µ

n (gτ (t)) dt. (5.49)

Based on the choice of the delay function gτ (t), we can obtain proper quadrature

rules. For instance, if gτ (t) = t− τ then

Mdelay
kn = (

2

T
)2µ

∫ T

τ

(T − t)µ (t− τ)µB(t)P µ,−µ
k−1 (x(t)) P−µ,µn−1 (x(t− τ)) dt

≈ (
2

T
)2µ

QMd∑
q=1

wqB(tq)P
µ,−µ
k−1 (x(tq))P

−µ,µ
n−1 (x(tq − τ)),

where wq and tq represent the Gauss-Lobatto-Jacobi weights and quadrature points

associated with the weight function (T − t)µ (t− τ)µ. Alternatively, when we employ

a pantograph delay function of form gτ (t) = ct, we obtain the entries of the delay

mass matrix via

Mdelay
kn ≈ cµ(

2

T
)2µ

QMd∑
q=1

wqB(tq)P
µ,−µ
k−1 (x(tq))P

−µ,µ
n−1 (x(ctq)),

where, this time, wq and tq are the weights and quadrature points corresponding to

(T − t)µ tµ.

Remark 5.3.7. In the aforementioned quadrature rules, ≈ can be replaced by = if

f(t), A(t) and B(t) are nice functions by choosing Q, QM , and QMd
sufficiently large

in the numerical simulations.

For the case of non-homogeneous initial conditions when u(0) = u0 6= 0, we
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employ the method of lifting a known solution, where we decompose the solution

u(t) into two parts as

u(t) = uH(t) + uD, (5.50)

in which uH(t) corresponds to the homogeneous solution and uD ≡ u0 is the non-

zero initial condition, given in (5.2). We substitute (5.50) into (5.2) and take the

fractional derivative of the known uD to the right hand-side to obtain

0Dνt uH(t) = L(t)− A(t)u(t)−B(t)u( gτ (t) ), t ∈ (0, T ], (5.51)

uH(0) = 0,

where L(t) = h(t) − uD
Γ(1−ν) tν

. Then, Theorem 5.3.4 holds since L(t) ∈ H−µ([0, T ]).

Moreover, we note that if we replace the fractional derivative in (5.51) by a Caputo

one, the same scheme can be used, where this time h(t) ≡ L(t), since the Caputo

fractional derivative of the constant initial value u0(= uD) is identically zero.

5.3.5 Numerical Examples for PG Spectral Method

We shall examine our PG spectral method for solving FDDE (5.2) for different cases.

We consider the following model problems in which: (i) A and B are constant and

the delay term is represented as u(t− τ), (ii) A(t) and B(t) are time-dependent yet

the delay term is introduced as u(t−τ), and (iii) A and B are constant but the delay

term is represented as u(qt), known as pantograph delay, furthermore as u(q sin(πt)),

introduced as harmonic delay for some real-valued q. In each model problem, we
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shall consider the following two exact solutions, one as a monomial

uext(t) =


u0 = 0, t ∈ [−τ, 0],

t10, t ∈ (0, T ],

(5.52)

and the other one as a fractional function given as

(5.53)

uext(t) =


u0 = 0, t ∈ [−τ, 0],

t13/2 sin(πt4/3), t ∈ (0, T ].

However, the corresponding forcing term h(t) is specifically obtained in each model

problem separately. In all test-cases, we set the simulation time T = 1, and we

examine two extreme values of fractional orders ν = 1/0 and 9/10. For each model

problem, we present the corresponding log-linear L2-error of the numerical solution

versus N , the order-index in (5.41) to assess the convergence rate.

Model Problem 3.4.1: Constant A = B = 1, and delay term u(t− τ).

As the first example, we consider the following FDDE:

0Dνt u(t) = h(t)− u(t)− u( t− τ ), t ∈ (0, 1], (5.54)

u(t) = 0, t ∈ [−τ, 0],

where τ is taken as a fraction of the whole simulation time T . We obtain the

corresponding linear system from (5.44), where the stiffness matrix and the mass

matrix are obtained by (5.47), and (5.48), respectively, in which A = B = 1. Given
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Figure 5.1: Model problem 3.4.1 with A = B = 1 and delay term of form u(t−τ); (Left): log-linear
L2-error of the numerical solution to (5.54), versus N , the order-index in (5.41), corresponding to
uext(t) = t10 and uext(t) = t13/2 sin(πt4/3), also associated with ν = 1/10 and ν = 9/10 in each

case. Here, the simulation time T = 1. (Right): the rate of convergence | log(‖ε2‖2‖ε1‖2 )/ log(N2

N1
)|.

the analytical solutions, the corresponding forcing term h(t), associated with the

monomial solution (5.52), is obtained as

h(t) =


Γ(11)

Γ(11−ν)
t10−ν + t10, t ∈ [0, τ ],

Γ(11)
Γ(11−ν)

t10−ν + t10 + (t− τ)10, t ∈ (τ, T ].

(5.55)

Hence, h(t) corresponds to the following fractional analytical solution (5.53):

h(t) =



∑∞
j=0

(−1)j

(2j+1)!
π2j+1 Γ( 53+16j

6
)

Γ( 53+16j
6
−ν)

t
47+16j

6
−ν + t13/2 sin(πt4/3), t ∈ [0, τ ],

∑∞
j=0

(−1)j

(2j+1)!
π2j+1 Γ( 53+16j

6
)

Γ( 53+16j
6
−ν)

t
47+16j

6
−ν + t13/2 sin(πt4/3)+

(t− τ)13/2 sin
(
π(t− τ)4/3

)
, t ∈ (τ, T ].

correspondingly, the load-vector ~Fk is obtained by plugging h(t) in (5.45).

In Fig. 5.1 (left), we present the log-linear L2-error plot corresponding to frac-

tional order ν = 1/10 and 9/10, where we have examined both the exact solutions,
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given in (5.52) and (5.53). The first observation we make is that the results are in-

dependent of the time-delay τ , where error plots corresponding to τ = T/8, T/4 and

T/2 coincide for each ν. Moreover, we observe that the rate of convergence for the

case of uext(t) = t10 is higher than what is achieved when uext(t) = t13/2 sin(πt4/3).

We explain this by the fact that uext(t) = t10 is infinitely-many differentiable in con-

tract to the fractional function uext(t) = t13/2 sin(πt4/3), which is not as smooth as

the monomial case.

In addition, we obtain the rate of convergence in the Model Problem 3.4.1. in

Fig. 5.1 (right). While the theory conservatively estimates the rate of convergence

in the case of uext = t10 (using the weighted norm) as 21 − ν, also, in the case of

uext = t13/2 sin(πt4/3) the rate is estimated as 16.6 − ν, the table of convergence

represents faster rates.

Model Problem 3.4.2: Time-Dependent A(t) and B(t) with delay term u(t− τ).

As the second example, we consider

0Dνt u(t) = h(t)− A(t)u(t)−B(t)u( t− τ ), t ∈ (0, 1], (5.56)

u(t) = 0, t ∈ [−τ, 0],

where τ is taken as a constant, and similar to the previous test-problem, to be a

fraction of the whole simulation time T . We consider two choices for A(t) and B(t):

(i) a cubic function A(t) = B(t) = t2 − t3 and (ii) harmonic function A(t) = B(t) =

sin(πt). For each choice of A(t) and B(t), we separately consider the exact solutions

shown in (5.52) and (5.53).

In a similar fashion, in Fig. 5.2-left and corresponding to A(t) = B(t) = t2 − t3,
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Figure 5.2: Model problem 5.4.2 with time-dependent A(t) = B(t) and delay term of form
u(t− τ): log-linear L2-error of the numerical solution to (5.56), versus N , the order-index in (5.41),
corresponding to A(t) = B(t) = t2 − t3 (left) and A(t) = B(t) = sin(πt) (right). Here, ν = 1/10
and ν = 9/10, also exact solutions uext(t) = t10 and uext(t) = t13/2 sin(πt4/3) in each case, where
the simulation time T = 1.

we present the log-linear L2-error plot corresponding to fractional order ν = 1/10

and 9/10, where we make similar observations. Again, we demonstrate the spectral

convergence, independent of the value of the time-delay τ for each ν, where we

have examined τ = T/8, T/4, and T/2. This model problem demonstrates that

our PG spectral method can be effectively employed for time-dependent coefficient

FDDEs with the same ease. In Fig. 5.2-right, we plot the log-linear L2-error plot

corresponding to fractional order ν = 1/10 and 9/10 for the case of A(t) = B(t) =

sin(πt), where we make similar observations.

Model Problem 3.4.3: Constant A and B, with delay term u(qt) & u(q sin(πt)).

As the third model problem, we consider the following FDDE

0Dνt u(t) = h(t)− u(t)− u( gτ (t) ), t ∈ (0, 1], (5.57)

u(t) = 0, t ∈ [−τ, 0],
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Figure 5.3: Pantograph & harmonic FDDEs: log-linear L2-error of the numerical solution to
(5.57), versus N , the order-index in (5.41), corresponding to pantograph delay term u( gτ (t) ) =
u( qt ) (left) and harmonic delay term u( gτ (t) ) = u( q sin(πt) ) (right); here ν = 1/10 and ν = 9/10,
uext(t) = t10 and uext(t) = t13/2 sin(πt4/3) in each case, where the simulation time T = 1.

where we have set A = B = 1 and have modified the time delay term as u( gτ (t) ).

Here, we consider two forms of gτ (t); in the first test-case, we consider the pantograph

delay gτ (t) = qt. Subsequently, we set gτ (t) = q sin(πt), as a harmonic delay time

term. We note that having such type of the delay term does not require the definition

of the solution in [−τ, 0]. Now, for each delay term we provide the forcing term h(t)

as

h(t) =
Γ(11)

Γ(11− ν)
t10−ν + t10 + (t− τ)10, t ∈ [0, T ], (5.58)

corresponding to the exact solution uext(t) = t10, also

h(t) =
∞∑
j=0

(−1)j

(2j + 1)!
π2j+1 Γ(53+16j

6
)

Γ(53+16j
6
− ν)

t
47+16j

6
−ν + t13/2 sin(πt4/3) (5.59)

+ (t− τ)13/2 sin(π(t− τ)4/3), t ∈ [0, T ],

associated with the exact solution uext(t) = t13/2 sin(πt4/3). In Fig. 5.3-left corre-

sponding to u( gτ (t) ) = u(qt), and in Fig. 5.3-right corresponding to u( gτ (t) ) =

u(qt), q ≤ 1
π
, we present the log-linear L2-error of the numerical solution to (5.57),
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versus N , the order-index in (5.41). For both pantograph and harmonic delay prob-

lems and independent of the modulation coefficient q, we obtain the spectral conver-

gence.

5.4 Discontinuous Galerkin (DG) Schemes

The most obvious difference between FDEs and FDDEs is the initial data. For

FDDEs we usually provide not just the value of the solution at the initial point, but

also the history with the certain length related to τ , that is, the solution at times

prior to the initial point. The fact that FDDEs have an initial history may lead to

a discontinuity of the exact solution or some higher derivatives of the exact solution

[57]. The property is important when solving FDDEs numerically, because general

high-order numerical methods are intended for problems with solutions belonging

to higher Sobolev spaces. Interestingly in such cases, the points on which the exact

solution become non-smooth are always related to the time delay. For problems with

constant time delays, such points are residing at t = τ , 2τ , · · · . This property and

the useful information of the behaviour of the exact solution could be exploited to

develop high-order numerical methods in a multi-element and discontinuous fashion.

Next, we present a new Discontinuous Spectral Method (DSM) to be later ex-

tended to a Discontinuous Spectral Element Method (DSEM) for efficient adaptive

refinement.

The relations (10.18) and (10.20) are useful in computing the corresponding stiff-

ness matrix in the discontinuous scheme presented in the following section.

Next, we first develop a discontinuous spectral (single-element) scheme for FDDE
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(5.2) and subsequently we extend it to a discontinuous spectral element method in

which we partition the computational domain into non-overlapping elements, which

allows us to develop a spectrally accurate scheme for the FDDEs where the exact

solution is only piecewise continuous.

5.4.1 Discontinuous Spectral Method (DSM; Single-Domain)

In the mapped interval [0, T ], we define the space of basis functions as

VN = span{P̃ η,0
j (x(t) ) : η ∈ (0, 1), and j = 0, 1, · · · , N}. (5.60)

We also define the space of test functions as

VN = span{P̃ 0,χ
k (x(t) ) : χ ∈ (0, 1), and k = 0, 1, · · · , N}. (5.61)

We note that VN ≡ VN , however, we adopt this representation for efficient implemen-

tation of the scheme. We call P̃ η,0
j (x(t) ) and P̃ 0,χ

k (x(t) ) asymptotic eigenfunctions

of FSLP-I & -II, which are polynomials. We shall show how this choice of basis and

test polynomial functions leads to efficient and exact calculation of the stiffness ma-

trices arising in the corresponding variational forms using standard Gauss-Legendre

quadrature rules.

We follow a discontinuous Galerkin spectral method and seek an approximate

solution to (5.2), where u(0) = uD 6= 0 generally, in the form

uN(t) =
N∑
n=0

cn P̃
η,0
n (x(t) ), (5.62)

which ∀ϑ(t) ∈ VN satisfies the following variational form obtained from (5.2) in
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I = (0, T ] (see [189], also Lemma 3.5 in [188])

(5.63)(
0+D

ν/2
t uN(t) , tDν/2T ϑ(t)

)
I

+
(
A(t)uN(t) , ϑ(t)

)
I

+
(
B(t)uN(gτ (t)) , ϑ(t)

)
I

− ϑ(T−)T 1−ν

(1− ν)Γ(1− ν)
JuN(0)K =

(
h(t), ϑ(t)

)
I
,

where (·, ·)I denotes the standard inner-product in the interval I, JuN(0)K = uN(0+)−

uN(0−) = uN(0+)−uD represents the jump discontinuity of the solution at the initial

condition, and ϑ(T ) is the test-function evaluated at the end of the time-interval.

We then choose η = χ = ν/2, and by substituting (5.62) into the scheme (5.63),

and taking ϑ(t) = P̃ 0,χ
k (x(t) ) for k = 0, 1, · · · , N , we obtain

N∑
n=0

cn

{∫ T

0
tDηT−P̃

0,ν/2
k (x(t) ) 0+D

ν/2
t P̃ ν/2, 0

n (x(t) ) dt
}

(5.64)

+
N∑
n=0

cn

{∫ T

0

A(t)P̃
0,ν/2
k (x(t) )P̃ ν/2, 0

n (x(t) ) dt
}

+
N∑
n=0

cn

{∫ T

0

B(t)P̃
0,ν/2
k (x(t) ) P̃ ν/2, 0

n (x( gτ (t) ) ) dt
}

−
N∑
n=0

cn

{ P̃ 0, ν/2
k (T )T 1−ν

(1− ν)Γ(1− ν)
P̃ ν/2, 0
n (0+)

}
=

∫ T

0

h(t) P̃
0,ν/2
k (x(t) ) dt− P̃

0, ν/2
k (T−)T 1−ν

(1− ν)Γ(1− ν)
uD,

where by virtue of (10.18) and (10.20) and explicitly evaluating the end-points

P̃
ν/2, 0
k (T−) ≡ 1 and P̃

ν/2, 0
n (0+) ≡ (−1)n, (5.64) yields the following linear system

Stot ~c = ~F (5.65)
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in which ~c denotes the vector of unknown coefficients, ~F represents the load-vector

whose components are obtained as

~Fk =

∫ T

0

h(t) P̃
0,ν/2
k (x(t) ) dt− P̃

0, ν/2
k (T−)T 1−ν

(1− ν)Γ(1− ν)
uD, (5.66)

and Stot is the corresponding (N + 1)× (N + 1) matrix obtained as

Stot = Sdis + Mdis + Mdis,delay + Jjump, (5.67)

where Jjump denotes a (N + 1)× (N + 1) jump matrix whose entries are obtained as

Jjumpkn =
(−1)n+1 T 1−ν

(1− ν)Γ(1− ν)
, (5.68)

and Mdis,delay represents the corresponding (N + 1) × (N + 1) delay mass matrix

associated with the weight function B(t), given as

Mdis,delay
kn =

∫ T

0

B(t)P̃
0,ν/2
k (x(t) ) P̃ ν/2, 0

n (x( gτ (t) ) ) dt. (5.69)

Moreover, Mdis is the A(t)-weighted (N + 1) × (N + 1) mass matrix whose entries

are given as

Mdis
kn =

∫ T

0

A(t)P̃
0,ν/2
k (x(t) ) P̃ ν/2, 0

n (x(t) ) dt, (5.70)

and finally Sdis denotes the corresponding (N + 1)× (N + 1) stiffness matrix whose

entries are obtained by Lemma 5.3.2 as

(5.71)

Sdiskn = Λkn

∫ T

0

t−ν/2 (T − t)−ν/2 P̃ ν,−ν/2
n (x(t) )P̃

−ν/2,ν
k (x(t) ) dt



161

3 5 7 9 11 13 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

N
L

2
−

E
rr

o
r

 

 

 ν =1/10

 ν =9/10

Figure 5.4: Discontinuous spectral method (DSM): log-linear L2-error of the numerical solution
to (5.2), where A(t) = B(t) = 1 and the exact solution is given as uext(t) = t13/2 sin(πt4/3), versus
N , the order-index in (5.62). Here, the simulation time T = 1.

where Λkn is computed explicitly as

Λkn =
Γ(k + 1)

Γ(k − ν/2 + 1)

Γ(n+ 1)

Γ(n− ν/2 + 1)
. (5.72)

Remark 5.4.1. The stiffness matrix Sdis is a full matrix whose entries satisfy Sdiskn =

(−1)k+nSdiskn . Hence, we need to compute only half of the entries. Moreover, such

entries can be computed exactly using the following Gauss quadrature rule thanks

to the weight function t−ν/2 (T − t)−ν/2 arising from the choice of the basis and test

functions

∫ T

0

t−ν/2 (T − t)−ν/2 P̃ ν,−ν/2
n (x(t) )P̃

−ν/2,ν
k (x(t) ) dt ≈ (5.73)

N+1∑
j=1

P̃ ν,−ν/2
n ( tj )P̃

−ν/2,ν
k ( tj )ωj.

This is true since P̃
ν,−ν/2
n P̃

−ν/2,ν
k ∈ P2N for all n, k = 1, 2, · · · , N . Here, tk’s are the

Gauss-Lobatto-Jacobi (GLJ) quadrature points in the interval (0, T ] given by

tj =
T

2

(
ξ
−ν/2,−ν/2
j + 1

)
, j = 1, 2, · · · , N + 1, (5.74)
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following [189] and Lemma 3.5 in [188], where ξ
−ν/2,−ν/2
j are the standard quadrature

GLJ points in [−1, 1], and the corresponding weights are obtained as

ωj = (
T

2
)1−νρ

−ν/2,−ν/2
j , j = 1, 2, · · · , N + 1, (5.75)

in which ρ
−ν/2,−ν/2
j represents the standard GLJ quadrature weights associated with

the Jacobi parameters −ν/2,−ν/2.

Numerical Example for DSM Scheme

In order to demonstrate the performance of the DSM scheme (5.63), we solve for

0Dµt u(t) = −u(t) − u(t − τ) + h(t), t ∈ [0, 1] subject to a homogeneous Dirichlet

initial condition. We plot the corresponding log-linear L2-error of the numerical

solution versus N , the order-index in (5.62) in Fig. 5.4, corresponding to ν = 1/10

and ν = 9/10. The time delay is taken as τ = T/8, T/4, and T/2, where the

convergence results again appear to be independent of τ . Here the exact solution is

chosen as uext(t) = t13/2 sin(πt4/3). We show that our DSM scheme yields spectral

convergence with respect to N , similar to the PG method.

In addition to this test-case, we have examined our DSM scheme for other ex-

amples shown in Sec. 5.3.5, recovering the expected rate of convergence successfully.

Moreover, we recall that DSM is still a single-domain spectral method, in which the

basis functions employed in the expansion (5.41) do not satisfy the initial condition

this time. In what follows, we extend this scheme to a multi-element method for

efficient discontinuity capturing and possible long time-integration.
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5.4.2 Discontinuous Spectral Element Method (DSEM; Multi-

Element)

Now, we partition the time-interval [0, T ] into Nel non-overlapping time-elements,

Ie = [te− 1
2
, te+ 1

2
] such that ∪Nele=1Ie = [0, T ]. Next, we expand the solution in each

element Ie in terms of some basis functions, which are discontinuous at the interfaces

of elements and test the problem against another set of test functions space. Here,

we construct our basis and test functions based upon (5.60) and (5.61), employed in

the development of the DSM scheme, as

V N
h = {v : v

∣∣∣
Ie
∈ VN(Ie), e = 1, 2, · · · , Nel}, (5.76)

and

VNh = {v : v
∣∣∣
Ie
∈ VN(Ie), e = 1, 2, · · · , Nel}, (5.77)

In our discontinuous spectral element method, we seek an approximate solution to

(5.2) on eth time-element in the form

ueN(t) =
N∑
n=1

Cn P̃ η,0
j (xe(t) ), (5.78)
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which ∀ϑe(t) ∈ VNh satisfies the following bilinear form originated from projecting

(5.2) onto ϑe(t) in the time-interval Ie = (te− 1
2
, te+ 1

2
] as

(5.79)(
t+
e−1/2
Dν/2t ueN(t) , tDν/2t−

e+1/2

ϑe(t)
)
Ie

+
(
A(t)ueN(t) , ϑe(t)

)
Ie

+(
B(t)ueN( gτ (t) ) , ϑe(t)

)
Ie
−
ϑe(t−e+1/2)(∆t)1−ν

e

(1− ν)Γ(1− ν)
JueN(te−1/2)K =(

h(t), ϑ(t)
)
Ie
−He,

beginning form the first element, i.e., e = 1, and marching element-by-element along

the time-axis to the e = Nel. Here, (∆t)e denotes the time-length of the element

Ie. We note that the only difference between the scheme (5.79) and the discontinu-

ous spectral (single-element) method in (5.63) is the history-term He appearing on

the right-hand side of (5.79). We shall explain how this term represents an extra

history-load included in (5.79). We first write He in the following convenient and

computationally efficient form as

He = ϑe(t)Fe(t)
∣∣∣t=t−e+1/2

t=t+
e−1/2

−
(
Fe(t) ,

d

dt
ϑe(t)

)
Ie
, (5.80)

where Fe(t) is the history function associated with element Ie

Fe(t) =
e−1∑
ε=1

N∑
δ=0

τδ(t− s)δ+1−νu
(δ)ε
N (s)

∣∣∣s=t−ε+1/2

s=t+
ε−1/2

(5.81)

in which τδ = −1/[Γ(1 − ν)
∏δ

m=0(m + 1 − ν)] is decaying with rate (δ − ν)!, δ =

0, 1, · · · , N , and u
(δ)ε
N represents the δ-th derivative of the solution in Iε to be only

evaluated at the boundaries of Iε. We recall that the approximate solution in each

element is obtained in terms of the basis functions which are Jacobi-polynomials
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in (5.60) whose derivatives can be obtained recursively thanks to their hierarchical

structure. Hence, Fe(t) is a polyfractonomial of degreeN+µ, where µ = 1−ν ∈ (0, 1),

defined in [187]. Furthermore, we note that when we take Nel = 1 in the DSEM

scheme, the history-load term He = 0, then the scheme becomes identical to the

DSM scheme (5.63).

In order to obtain the corresponding linear system, we choose η = χ = ν/2.

Then, by substituting (5.78) into the scheme (5.79), taking ϑe(t) = P̃ 0,χ
k (xe(t) ) for

k = 0, 1, · · · , N and e = 1, 2, · · · , Nel, and by Lemma 5.3.1 we obtain

N∑
n=0

C en
{

Λkn

∫
Ie

we(t)P̃ ν,−ν/2
n (xe(t) ) P̃

−ν/2,ν
k (xe(t) ) dt

}
+

N∑
n=0

C en
{∫

Ie

A(t)P̃
0,ν/2
k (xe(t) ) P̃ ν/2, 0

n (xe(t) ) dt
}

+
N∑
n=0

C en
{∫

Ie

B(t)P̃
0,ν/2
k (xe( gτ (t) ) ) P̃ ν/2, 0

n (xe(t) ) dt
}

+
N∑
n=0

C en
{

(−1)n+1(∆t)1−ν
e κv

}
=

∫
Ie

h(t) P̃
0,ν/2
k (xe(t) ) dt − κv (∆t)1−ν

e (ue−1
N )R − He,k,

in which κv = 1/[(1 − ν)Γ(1 − ν)], we(t) = (t − te−1/2)−ν/2(te+1/2 − t)−ν/2 and the

term (ue−1
N )R represents the solution we have already obtained in element Ie−1, which

is evaluated at the right boundary. We note that for e = 1, (u0
N)R is equal to the

initial condition u(0) = uD. The corresponding linear system in element Ie is then

obtained as

Setot ~ce = ~Fe (5.82)
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in which ~ce denotes the vector of unknown coefficients and Setot is the corresponding

(N + 1)× (N + 1) matrix obtained as

Setot = Se + Me + Me,delay + Je, (5.83)

where Je denotes a (N + 1)× (N + 1) jump matrix whose entries are obtained as

Jekn =
(−1)n+1 (∆t)1−ν

e

(1− ν)Γ(1− ν)
, (5.84)

and Me,delay represents the corresponding (N + 1)× (N + 1) delay mass matrix for

element “e”, associated with the weight function B(t), given as

Me,delay
kn =

∫
Ie

B(t)P̃
0,ν/2
k (xe( gτ (t) ) ) P̃ ν/2, 0

n (xe(t) ) dt. (5.85)

Moreover, Me is the A(t)-weighted (N + 1)× (N + 1) mass matrix whose entries are

given as

Me
kn =

∫
Ie

A(t)P̃
0,ν/2
k (xe(t) ) P̃ ν/2, 0

n (xe(t) ) dt (5.86)

and Se denotes the corresponding (N + 1) × (N + 1) stiffness matrix whose entries

are obtained as

(5.87)

Sekn = Λkn

∫
Ie

we(t)P̃ ν,−ν/2
n (xe(t) ) P̃

−ν/2,ν
k (xe(t) ) dt

in which Λkn is explicitly given in (5.72). In (5.82), ~Fe represents the load-vector,

associated with local element Ie, whose components are obtained as

~Fek =

∫
Ie

h(t) P̃
0,ν/2
k (xe(t) ) dt − κv (∆t)1−ν

e (ue−1
N )R − He,k, (5.88)
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in which He,k is given by

He,k = Fe(t
−
e+1/2

) + (−1)k+1Fe(t
+
e−1/2

)−
(
Fe(t) ,

d

dt
P̃

0,ν/2
k (xe(t) )

)
Ie
. (5.89)

Remark 5.4.2. Similarly to DSM, the stiffness matrix Se in DSEM scheme is also

a full matrix, whose entries follow the property Sekn = (−1)k+nSenk. By the same

argument, due to the weight function we(t) appearing as a result of the choice of the

basis and test functions the entries of Se can be computed exactly using a standard

quadrature rule. By performing local element operations and considering an affine

mapping from of the physical element to the standard one, we can efficiently compute

the entries of Se as

Sekn = Λkn

∫
Ie

we(t) P̃
ν,−ν/2
n (xe(t) )P̃

−ν/2,ν
k (xe(t) ) dt = (5.90)

J · Λkn

∫ +1

−1

(1− x)−ν/2(1 + x)−ν/2 P ν,−ν/2
n (x )P

−ν/2,ν
k (x ) dx =

J · Se,stkn ,

where J = [(∆t)e/2]1−ν represents the Jacobian of the transformation and Se,st

denotes the stiffness matrix on the standard element in the interval [−1, 1], obtained

as

Se,stkn = Λkn

N+1∑
j=1

P ν,−ν/2
n (xj )P

−ν/2,ν
k (xj )ρ

−ν/2,−ν/2
j , (5.91)

in which xj’s are the standard Gauss-Lobatto-Jacobi (GLJ) quadrature points in

the interval [−1, 1] and ρj represent the corresponding weights. The relation (5.91)

shows that in order to compute Se in each element, we only need to obtain Se,st once

and multiply it to the corresponding Jacobian in each element. Clearly, on a uniform

mesh where (∆t)1 = (∆t)2 = · · · = (∆t)Nel = T/Nel, the stiffness matrix is invariant
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Figure 5.5: (Left): long time-integration using DSEM: log-linear L2-error of the numerical

solution to 0D1/2
t u(t) = −u(t) − u(t − τ) + h(t), t ∈ [0, 10], where the exact solution is given as

uext(t) = sin(4πt/T ) and Nel = 4, versus N , the order-index in (5.78). Here, the simulation time
is set to T = 10. (Right): memory fading effect: log-linear L2-error of the numerical solution to

0D1/10
t u(t) = −u(t)−u(t−τ)+h(t), t ∈ [0, 2], where the exact solution is given as uext(t) = t6 and

Nel = 2, versus history length (to be multiplied by τ). Here, N denotes the maximum polynomial
order utilized in the expansion (5.78). Here, the simulation time is set to T = 2.

in each element and we compute it only once for the entire course of the simulation.

5.4.3 Numerical Examples for DSEM scheme

One can check that the DSEM scheme can be successfully employed in all model prob-

lems, introduced in Sec. 5.3.5, with the expected exponential convergence. Here, we

demonstrate the performance of DSEM in the particular case of long time-integration

of FDDEs with constant coefficients and constant time delay. Moreover, since there

is an extra history term arising in DSEM scheme, we shall study the effect of memory

fading, in which only a portion of the history information is taken into account.
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Model Problem 4.3.2: Long Time-Integration

To examine the effectiveness of DSEM in carrying out long-time integration of FD-

DEs, we consider a case where the the exact solution is given as

uext(t) =


u0 = 0, t ∈ [−τ, 0],

sin(4πt/T ), t ∈ (0, T ],

(5.92)

where T = 10. By setting Nel = 4 and performing p-refinement, we plot the log-linear

L2-error of the numerical solution to 0D1/2
t u(t) = −u(t)− u(t− τ) + h(t), t ∈ [0, T ],

versus N , the order-index in (5.78) in Fig. 5.5 (left). We take three values of time

delay τ = 0.5, (T/20), τ = 1, (T/10), and τ = 2, (T/5). The exponential convergence

of error is shown to be independent of τ in long time-integrations as well.

Model Problem 4.3.3: Memory Fading

We now examine the idea of memory fading/truncation in the calculation of the

history term (5.80). In this technique we do not take all the past elements into

account at the expense of losing accuracy, and instead, an effective history length is

chosen to calculate (5.80). Such an effective length is well-known to be dependent

mainly on the fractional order ν. In fact, the greater ν in 0Dνt u(t) the less history-

length is needed since as ν → 1, we approach 0Dνt → d/dt, which is a local operator

for which no history is required. To this end, we solve 0D1/10
t u(t) = −u(t) − u(t −

τ)+h(t), t ∈ [0, 1], partitioning the domain into Nel = 2 uniform elements when the

fractional order is ν = 1/10 and τ = T/10. As shown in Fig. 5.5 (right), in order to

get the convergence down to machine precision, higher modes demand longer history

lengths; therefore we need to include the whole history to achieve such an accuracy.
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We emphasize that such a phenomenon is independent of the discretization method

and is solely due to the global nature of the fractional differential operators.

5.5 Discussion

We compare the computation performance of the developed schemes with the finite

difference method (FDM) developed in [111], where the fractional derivative 0Dνt u(t)

is represented as

0Dνt u(t) =
1

Γ(2− ν)

k∑
j=0

bj
u(tk+1−j)− u(tk−j)

(∆t)ν
+ rk+1

∆t , (5.93)

where rk+1
∆t ≤ Cu(∆t)

2−ν and bj := (j + 1)1−ν − j1−ν , j = 0, 1, · · · , k. We solve (5.2),

where A = B = 1, and τ is taken as constant. We compare the computational cost

of solving such FDDE using FDM and the three high-order methods developed here.

We note that the number of operations in PG, DSM and DSEM schemes asymptot-

ically increases as O(N), O(N3), O(N2
el N

3), respectively, where N represents the

polynomial order employed, and Nel denotes the number of elements. Moreover, the

computational cost of FDM grows as N2
g , where Ng stands for the number of the

grid-points in the computational domain.

We also compute the CPU time (in seconds) required for solving (5.2) corre-

sponding to ν = 1/10, ν = 1/2, and 9/10 in Table 5.1, where the exact solution

is uext(t) = t6 and the integration time T = 1. We furthermore present the CPU

time (in seconds) taken by the aforementioned schemes when the exact solution is

uext(t) = t13/2 sin(π t4/3) in Table 5.2, corresponding to ν = 1/10, ν = 1/2, and 9/10.

We developed the codes in Mathematica 8. Clearly, the implementation of FDM
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is simpler than our schemes. Moreover, FDM appears to be comparable with our

high-order schemes in terms of CPU time when ν ∈ (0, 1/2) for the given range of

accuracy (i.e., L2- error ≥ 10−6). However, it turns out that FDM becomes compu-

tationally prohibited, especially when we ask for slightly higher accurate results, also

when the fractional order ν ∈ [1/2, 1). For instance, Table 5.2 clearly shows that

reaching the L2-error of order 10−6 in FDM leads to running out of memory and this

accuracy is not achieved when ν = 9/10.

In the other example shown in Table 5.2, FDM for the case ν = 1/2 appears to be

almost 50 times more CPU time-consuming than DSEM, 75 times more costly than

DSM, and 150 times slower than PG spectral method when uext(t) = t13/2 sin(π t4/3).

We also repeated this test for the case where the exact solution uext(t) = t10. In this

case, while we exactly captured the solution by just setting the polynomial order to

N = 6 in all cases, the CPU time taken in FDM when ν = 1/2 was almost 200 times

larger than that in DSEM and DSM, and is roughly 100 times bigger than the CPU

time demanded by PG spectral method. Similar to the previous case, reaching the

L2-error of order 10−6 in FDM leaded to running out of memory and this accuracy

was not achieved when ν = 9/10.
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Table 5.1: CPU time (seconds) on a Intel (Xeon X5550) 2.67GHz processor, corresponding to PG spectral method, DSM, DSEM, and FDM for
solving 0Dνt u(t) +u(t) +u(t− τ) = f(t), u(0) = 0, and the exact solution is uext(t) = t6. Here, N denotes the expansion order in PG spectral method,
DSM, and DSEM with Nel = 2 (in each element), also Ng represents the number of grid points in FDM, and the simulation time is set to T = 1.

(ν = 1/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 8) 2.84157 (N = 5) 1.3393 (N = 5) 2.02553 (Ng = 48) 0.048993
O(10−5) (N = 9) 3.86191 × × (Ng = 180) 0.25846
O(10−6) (N = 10) 5.10322 (N = 6) 2.14667 (exact) (N = 6) 2.54888 (exact) (Ng = 640) 3.75593

(ν = 1/2)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 8) 2.73908 (N = 5) 1.3258 (N = 5) 2.05569 (Ng = 340) 0.966354
O(10−5) (N = 9) 3.73393 × × (Ng = 1600) 23.4289
O(10−6) (N = 10) 4.92675 (N = 6) 2.11268 (exact) (N = 6) 2.52712 (exact) (Ng = 7500) 482.26

(ν = 9/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 8) 2.84057 (N = 5) 1.3428 (N = 5) 2.16667 (Ng = 3000) 75.2966
O(10−5) (N = 9) 3.80792 × × (Ng = 23000) 3352.53
O(10−6) (N = 10) 5.05573 (N = 6) 2.14167 (exact) (N = 6) 2.56261 (exact) Running Out of Memory
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Table 5.2: CPU time (seconds) on a Intel (Xeon X5550) 2.67GHz processor, corresponding to PG spectral method, DSM, DSEM, and FDM for
solving 0Dνt u(t) + u(t) + u(t − τ) = f(t), u(0) = 0, and the exact solution is uext(t) = t13/2 sin(π t4/3). Here, N denotes the expansion order in PG
spectral method, DSM, and DSEM with Nel = 2 (in each element), also Ng represents the number of grid points in FDM, and the simulation time is
set to T = 1.

(ν = 1/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 7) 2.90106 (N = 9) 6.43152 (N = 9) 8.99263 (Ng = 48) 0.393939
O(10−5) (N = 9) 5.04973 (N = 11) 11.5942 (N = 11) 17.5835 (Ng = 200) 1.12583
O(10−6) (N = 11) 8.14076 (N = 2) 15.3367 (N = 12) 23.5779 (Ng = 760) 6.85696

(ν = 1/2)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 7) 2.87756 (N = 9) 6.51001 (N = 9) 9.1976 (Ng = 340) 2.17417
O(10−5) (N = 9) 4.99024 (N = 11) 11.5367 (N = 11) 16.9739 (Ng = 1600) 28.8981
O(10−6) (N = 11) 7.99078 (N = 2) 15.0037 (N = 12) 22.7535 (Ng = 7500) 1137.6

(ν = 9/10)

L2-norm Error PG Spectral Method DSM DSEM (Nel = 2) FDM

O(10−4) (N = 7) 2.85357 (N = 9) 6.38253 (N = 9) 9.04712 (Ng = 2000) 62.9404
O(10−5) (N = 9) 4.96675 (N = 11) 11.3878 (N = 11) 16.9654 (Ng = 16000) 1968
O(10−6) (N = 11) 8.05677 (N = 12) 14.1633 (N = 12) 22.4631 Running Out of Memory



Chapter Six

Spectral Element Methods for

Fractional Advection Equation
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We develop spectral element methods for time- and space- Fractional Advection

Equation (TSFAE) of the form 0Dτt u(x, t)+θ 0Dνxu(x, t) = f(x, t), of order τ ∈ (0, 1],

ν ∈ (0, 1), subject to Dirichlet initial/boundary conditions. We present two expo-

nentially accurate and efficient methods for global discretization of both the temporal

and spatial terms, instead of employing traditional low-order time-integration meth-

ods. To this end, we first develop a Petrov-Galerkin in time and discontinuous

Galerkin in space (PG-DG) method, where we carry out the time-integration using

a single time-domain spectral method (SM), and we perform the spatial discretiza-

tion using the discontinuous spectral/hp element method (DSEM). This scheme also

leads to a more efficient time-integration when the time-derivative is integer-order

i.e., τ = 1. We develop the SM-DSEM scheme based on a new spectral theory for

fractional Sturm-Liouville problems (FSLPs), recently presented in [187]. We choose

the corresponding space-time bases from the span of tensor product of the introduced

eigenfunctions. Specifically, we employ the eigenfunctions of the FSLP of first kind

(FSLP-I), called Jacobi polyfractonomials, as temporal bases. We also employ the

corresponding asymptotic eigensolutions to FSLP-I, which are Jacobi polynomials,

as spatial basis. Next, we construct a different test function space, defined as the

span of tensor product of polyfractonomial eigenfunctions of the FSLP of second

kind (FSLP-II), as the temporal test functions, and the corresponding asymptotic

eigensolutions to FSLP-II, as the spatial ones. Subsequently, we extend the PG-DG

to a DG-DG scheme employing DG method in both time and space. In this scheme,

both time-integration and spatial discretization are performed in an DSEM fashion

(DSEM-DSEM). Our numerical tests confirm the expected exponential-like/algebraic

convergence, respectively, in corresponding p- and h-refinements in various test-cases,

and show a four-order of magnitude speed-up compared to finite-difference discretiza-

tions.
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6.1 Background

The notion of fractional differential operators has been rapidly extended to many

fractional partial differential equations (FPDEs) such as fractional Burgers’ equa-

tion [163], fractional Fokker-Planck equation [14], and fractional advection-diffusion

equation [67]. However, the extension of existing numerical methods, developed for

integer-order PDEs (see e.g., [64, 106, 68, 195, 77] and references therein) to their

corresponding FPDEs is not a straightforward task. It is mainly because of the non-

local nature and long-range history-dependence of fractional differential operators.

However, the development of numerical schemes in this area has received enormous

attention and has undergone a fast evolution in recent years. Most of numerical meth-

ods developed for integer-order PDEs have been applied to FPDEs; methods such

as Finite Difference Methods (FDM), Spectral Methods (SM), and Finite/Spectral

Element Methods (FEM/SEM).

As indicated in previuous chapters, the implementation of FDM approaches (see

e.g., [51, 104, 166, 30]) is relatively easy, however, the challenging issue in FDM is

that the convergence is algebraic and the accuracy is limited. Moreover, FDM suffers

from the heavy cost of computing the long-range memory since FDM is inherently a

local approach whereas fractional derivatives are essentially global (nonlocal). This

fact would suggest global schemes such as spectral methods may be more appropriate

tools for discretizing FPDEs.

The early works in SM were developed in [163, 25, 147] employing collocation ap-

proaches. The idea of collocation was later adopted by Khader [86], who proposed a

Chebyshev collocation method for the discretization of the space-fractional diffusion

equation. More recently, Khader and Hendy [87] developed a Legendre pseudospec-
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tral method for fractional-order delay differential equations. The aforementioned

schemes are relatively easy to implement however their performance has not been

tested rigorously or systematically and only limited cases have been examined. The

first fundamental work on spectral methods for FPDEs was done by Li and Xu

[108, 109], which was based on the early work of Fix and Roop [60]. They devel-

oped a time-space SM for time-fractional diffusion equation, where the spatial term

is integer-order, with exponential convergence. In this scheme, the corresponding

stiffness and mass matrices however are dense and gradually become ill-conditioned

when the fractional order tends to small values. Hence, due to the nature of single-

domain spectral methods, carrying out long-time and/or adaptive integration using

such a SM becomes prohibited. Moreover, we note that the expected fast conver-

gence in SMs is achieved only when the solution belongs to higher Sobolev spaces

and possesses high regularity. This motivates employing domain decomposition and

developing proper finite element methods in addition to spectral element methods

in an efficient form.

Unlike the great effort put on developing FDM and the considerable work done

on SM schemes, very little attention has been put on developing rigorous high-

order FEM and SEM methods. Fix and Roop [60] developed the first theoretical

framework for the least-square FEM approximation of a fractional order differential

equation, where optimal error estimates are proven for piecewise linear elements.

However, Roop [151] later showed that the main hurdle to overcome in FEM is

the non-local nature of the fractional operator, which leads to large dense matrices;

he showed that even the construction of such matrices presents difficulties. Among

other rigoours works, McLean and Mustapha [122] developed a piecewise-constant

Discontinuous Galerkin (DG) method for the time-discretization of a sub-diffusion

equation. A Chebyshev-SEM for fractional-order transport was adopted by Hanert
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[66], and later on, the idea of the least-square FEM was extended to SEM by Carella

[31]. Recently, Deng and Hesthevan [49], also Xu and Hesthaven [179] developed

Local Discontinuous Galerkin (LDG) methods for solving space-fractional diffusion

and advection-diffusion problems with optimal accuracy.

In our earlier study in [189], we developed efficient and highly accurate Petrov-

Galerkin (PG) spectral and discontinuous Galerkin (DG) spectral element methods

for FODEs of the form 0Dτt u(t) = f(t) and tDτTu(t) = f(t), τ ∈ (0, 1), subject to

Dirichlet initial conditions. The goal of the present study is to generalize the afore-

mentioned schemes to linear hyperbolic FPDEs, where the corresponding temporal

and spatial stiffness/mass matrices co-exist. The main contribution of this paper is

the development of highly accurate and efficient methods for time- and space- Frac-

tional Advection Equation (TSFAE) of the form 0Dτt u(x, t) + θ 0Dνxu(x, t) = f(x, t),

of order τ ∈ (0, 1], ν ∈ (0, 1). We accomplish this following the spectral theory on

the fractional Sturm-Liouville eigen-problem, recently developed in [187], where the

corresponding eigenfunctions, called Jacobi polyfractonomials, are employed as basis

and test functions.

The TSFAE problem is of physical and mathematical importance. From the view

point of transport kinetics, this equation governs the PDF of the continuous-time

random walk (CTRW) limit processes, known as τ&ν-stable Lévy processes with

strictly positive jumps and waiting times when the spatial order ν ∈ (0, 1) [124].

In fluid mechanics, the aforementioned equation when τ = 1/2 and ν → 1 has

been shown to be equivalent to the governing equations in Stokes first and second

problems after performing a proper change of variable through Laplace transform

[98]. From the mathematical development point of view, our approach is analogous to

the first DG method, developed in 1973 [148] for time-independent linear advection

equations that paved the way for further development of DG schemes for other
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PDEs. The present study provides a suitable platform for further development of PG-

DG methods for higher-order FPDEs such as fractional wave or advection-diffusion

equation. Here in this study, the major feature of our schemes is the global and

multi-element discretization of the temporal term, in addition to the spatial term,

rather than utilizing traditional low-order time-integration methods, particularly

when τ = 1.

We first develop a Petrov-Galerkin in time and discontinuous Galerkin in space

(PG-DG) method, where we carry out the time-integration using a SM-type dis-

cretization, and we perform the spatial discretization using the discontinuous spectral/hp

element method (DSEM). This scheme is in contrast to the traditional approaches

(e.g., see [111]) which treat the temporal term using FDM and discretize the spatial

term by SM. In fact, in such mixed FDM-SM schemes, the high-order spatial de-

scretization can be easily polluted by the low accuracy of the time-integration. Here,

we develop the SM-DSEM scheme based on a new spectral theory for fractional

Sturm-Liouville problems (FSLPs), introduced in [187], which provides proper spaces

of basis and test functions. Subsequently, we extend the PG-DG to a DG-DG scheme,

in which both time-integration and spatial discretization are performed in an hp-

element fashion (DSEM-DSEM ). In contrast to common FEM/SEM methods, in

which the construction of the corresponding mass and stiffness matrices is challeng-

ing (see e.g., [151]), all the aforementioned matrices in our methods are constructed

exactly and efficiently.
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6.2 Problem Definition

We consider the following linear time- and space-Fractional Advection Equation

(TSFAE)

0Dτt u(x, t) + θ 0Dνxu(x, t) = f(x, t), (x, t) ∈ [0, L]× [0, T ], (6.1)

u(x, 0) = g(x),

u(0, t) = h(t),

where θ > 0, g ∈ C[0, L] and h ∈ C[0, T ], such that g(0) = h(0) = 0. Moreover,

denoted by 0Dτt u(x, t) is the left-sided Reimann-Liouville time-fractional derivative

of order τ ∈ (0, 1] following [142], defined as

0Dτt u(x, t) =
1

Γ(1− τ)

∂

∂t

∫ t

0

u(x, s)

(t− s)τ ds, t > 0, x ∈ [0, L], (6.2)

in which Γ represents the Euler gamma function. In (6.2), as ν → 1, the global

(non-local) operator 0Dτt u(x, t)→ ∂u(x, t)/∂t, recovering the local first-order partial

derivative with respect to t. Also, 0Dνxu(x, t) denotes the left-sided Reimann-Liouville

space-fractional derivative of order ν ∈ (0, 1), defined as

0Dνxu(x, t) =
1

Γ(1− ν)

∂

∂x

∫ x

0

u(z, t)

(x− z)ν
dz, x > 0, t ∈ [0, T ]. (6.3)

We could also define the fractional derivatives in (6.1) to be of Caputo fractional

derivative sense i.e, C0Dτt and C
0Dνx, respectively, defined as

C
0Dτt u(x, t) =

1

Γ(1− τ)

∫ t

0

∂u(x, s)/∂s

(t− s)τ ds, t > 0, x ∈ [0, L], (6.4)



181

and

C
0Dνxu(x, t) =

1

Γ(1− ν)

∫ x

0

∂u(z, t)/∂z

(x− z)ν
dz, x > 0, t ∈ [0, T ]. (6.5)

These fractional operators are defined in fact by interchanging the order of the in-

tegration and differentiation in (6.2) and (6.3). However, the two definitions are

closely linked by the following relationships

0Dτt u(x, t) =
g(x)

Γ(1− τ) tτ
+ C

0Dτt u(x, t), (6.6)

and

0Dνxu(x, t) =
h(t)

Γ(1− ν) xν
+ C

0Dνxu(x, t), (6.7)

By virtue of (6.6) and (6.7), the TSFAE (6.1) becomes identical to the corresponding

problem with the Caputo fractional derivatives when g(x) = h(t) = 0. Without loss

of generality, we consider (6.1) subject to homogeneous Dirichlet initial and boundary

conditions in this study. Moreover, we note that when the aforementioned fractional

derivatives apply to a univariate function, the corresponding partial derivative is

replaced by an ordinary derivative one.

6.3 PG-DG Method: SM-in-Time & DSEM-in-

Space

We develop a PG-DG method for (6.1), where the time-fractional order τ ∈ (0, 1] and

space-fractional order ν ∈ (0, 1), subject to homogeneous Dirichlet initial/boundary

conditions. Here, we aim rather than utilizing traditional low-order time-integrators

such as FDM when τ ∈ (0, 1), or Adams families when τ = 1, to treat the tem-

poral term ∀τ ∈ (0, 1] globally by employing a spectral method (SM) in the single
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time-domain [0, T ]. Moreover, we perform the spatial discretization by a Discon-

tinuous Spectral Element Method (DSEM). In the SM-DSEM scheme, we parti-

tion the computational domain into Nel non-overlapping space-time elements, Ωe =

[xe−1/2, xe+1/2] ×[0, T ], such that ∪Nele=1Ωe = [0, L] × [0, T ]. In SM-DSEM, the new

eigensolutions, introduced in [187], yield new sets of basis and test functions, prop-

erly suited for our Petrov-Galerkin framework.

6.3.1 Basis Functions

In SM-DSEM, we represent the solution in each space-time element Ωe in terms of

special basis functions, constructed as the tensor product of the the eigenfunctions in

the following manner. We first recall the following Jacobi polyfractonomials, obtained

as the eigenfunctions of the FSLP of first kind explicitly in [187] as

(1)Pα,β,µn (x) = (1 + x)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (x), x ∈ [−1, 1], (6.8)

where Pα−µ+1,−β+µ−1
n−1 (x) are the standard Jacobi polynomials in which µ ∈ (0, 1),

−1 ≤ α < 2 − µ, and −1 ≤ β < µ − 1. Particularly, (1)Pα,β,µn (x) represent the

eigenfunctions of the singular FSLP of first kind (SFSLP-I) when α 6= −1 and

β 6= −1; otherwise (1)P µ
n (x) ≡ (1)P−1,−1,µ

n (x) denote the eigenfunctions of the regular

FSLP of first kind (RFSLP-I). The eigenfunctions (6.8) are the baseline of our space-

time basis construction.

To define the spatial basis in the interval [xe−1/2, xe+1/2], let the fractional power

of the multiplier term in (6.8) (−β + µ − 1) → 0, then (1)Pα,β,µn (x) → Pα−µ+1,0
n−1 (x),

where α − µ + 1 = η ∈ (0, 1), since −1 ≤ α < 2− µ and −1 ≤ β < µ− 1, recalling

from [187]. Hence, through an affine mapping from [−1, 1] to [xe−1/2, xe+1/2], we
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define the spatial basis as

P̃ η,0
m (xe ), m = 0, 1, 2, · · · , xe ∈ [xe−1/2, xe+1/2], (6.9)

which are Jacobi polynomials associated with the parameters η and 0.

In order to define the temporal basis in the interval [0, T ], we recall that the

regular {(1)P µ
n (x)}Nn=1 and singular {(1)Pα,β,µn (x)}Nn=1 sets (for some N ∈ N) have

identical approximating properties when α = β. Hence, by choosing α = β = −1

and through the affine mapping x(t) = 2t/T − 1, from the standard interval [−1, 1]

to [0, T ] we define our temporal basis as

(1)P̃ µ
n (t) =

( 2

T

)µ
tµP−µ,µn−1 (x(t) ), n = 1, 2, · · · , t ∈ [0, T ], (6.10)

known as shifted Jacobi polyfractonomial of fractional order (n − 1 + µ). Now,

having defined the spatial and temporal functions in (6.9) and (6.10), we construct

the space-time trial (basis) space V e as

V e ≡ span{P̃ η,0
m (xe )

(1)P̃ µ
n (t) : m = 0, 1, . . . ,M, n = 1, 2, . . . , N}, (6.11)

where we shall approximate the solution to (6.1) in terms of a linear combination of

elements in V e. The corresponding space-time basis functions are then discontinuous

in space at the interfaces of elements Ωe, e = 1, 2, · · · , Nel, while they satisfy the

homogeneous initial condition in the single time-domain. We note that the corre-

sponding nodal representation of (6.10) has been recently employed in developing

fractional spectral collocation methods for fractional ODEs/PDEs [190].
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Fractional Derivatives of the Bases

The following lemma is useful to obtain the space-fractional derivative of the spatial

basis P̃ η,0
m (xe ).

Lemma 6.3.1. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1 + x)β+µ Pα−µ,β+µ
m (x)

Pα−µ,β+µ
m (−1)

=
Γ(β + µ+ 1)

Γ(β + 1)Γ(µ)Pα,β
m (−1)

∫ x

−1

(1 + s)β Pα,β
m (s)

(x− s)1−µ ds. (6.12)

By the definition of the left-sided Riemann-Liouville integral −1Iµx (see e.g. [142])

and evaluating the special end-values Pα−µ,β+µ
m (−1) and Pα,β

m (−1), we can re-write

(6.12) as

−1Iµx
{

(1 + x)βPα,β
m (x)

}
=

Γ(m+ β + 1)

Γ(m+ β + µ+ 1)
(1 + x)β+µ Pα−µ,β+µ

m (x). (6.13)

Now, by taking the fractional derivative −1Dµx on both sides of (6.13) when β = −µ

we obtain

−1Dµx
{
Pα−µ,0
m (x)

}
=

Γ(m+ 1)

Γ(m− µ+ 1)
(1 + x)−µPα ,−µ

m (x). (6.14)

Moreover, from the properties of the eigensolutions in [187], the left-sided Riemann-

Liouville fractional derivative of (6.10) is given as

0D µ
t

(
(1)P̃ µ

n (t)
)

=
( 2

T

)µ Γ(n+ µ)

Γ(n)
Pn−1(x(t) ), (6.15)

stating that the µ th order fractional derivative of such fractal (non-polynomial) basis

functions of order (n − 1 + µ) is a standard Legendre polynomial of integer order

(n− 1).
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6.3.2 Test Functions

In order to construct the space of test functions, we recall the following Jacobi

polyfractonomials, introduced as the eigensolutions of the FSLP of second kind,

obtained explicitly as

(2)Pα,β,µn (x) = (1− x)−α+µ−1P−α+µ−1 , β−µ+1
n−1 (x), x ∈ [−1, 1], (6.16)

in [187], where −1 < α < µ − 1 and −1 < β < 2 − µ, and µ ∈ (0, 1). Partic-

ularly (2)Pα,β,µn (x) denote the eigenfunctions of the singular FSLP of second kind

(SFSLP-II) when α 6= −1 and β 6= −1, also (2)P µ
n (x) ≡ (2)P−1,−1,µ

n (x) denote the

eigenfunctions of the regular FSLP of first kind (RFSLP-II). In a similar fashion, we

employ the eigenfunctions (6.16) as the baseline of construction for our space-time

test functions.

To define the spatial test functions in the interval [xe−1/2, xe+1/2], we set the

power of the fractional multiplier in (6.16) (−α + µ − 1) → 0, then (2)Pα,β,µn (x) →

P 0,β−µ+1
n−1 (x), where β − µ+ 1 = χ ∈ (0, 1). Hence, we define the spatial basis as

P̃ 0,χ
i (xe ), i = 0, 1, 2, · · · , xe ∈ [xe−1/2, xe+1/2], (6.17)

which are Jacobi polynomials associated with the parameters 0 and χ. We also

define the temporal basis in the interval [0, T ] by choosing α = β = −1 in (6.16) and

mapping from the standard interval [−1, 1] to [0, T ] as

(2)P̃ µ
j ( t ) = (

2

T
)µ (T − t)µP µ,−µ

j−1 (x(t) ), j = 1, 2, · · · , t ∈ [0, T ]. (6.18)

Now, having defined the spatial and temporal functions in (6.17) and (6.18), we
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construct the space-time test space Ve as

Ve ≡ span{P̃ 0,χ
i (xe )

(2)P̃ µ
j ( t ) : i = 0, 1, . . . ,M, j = 1, 2, . . . , N}, (6.19)

where we test the problem (6.1) against the elements in Ve.

Fractional Derivatives of the Test Functions

We use the following lemma to calculate the space-fractional derivative of the spatial

test functions P̃ 0,χ
i (xe ).

Lemma 6.3.2. [5] For µ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(1− x)α+µ Pα+µ,β−µ
i (x)

Pα+µ,β−µ
i (+1)

=
Γ(α + µ+ 1)

Γ(α + 1)Γ(µ)Pα,β
i (+1)

∫ 1

x

(1− s)α Pα,β
i (s)

(s− x)1−µ ds. (6.20)

Once again by the definition of the right-sided Riemann-Liouville integral xIµ1
(see e.g. [142]) and evaluating the special end-values Pα−µ,β+µ

i (+1) and Pα,β
i (+1),

we can re-cast (10.17) as

xIµ1
{

(1− x)αPα,β
i (x)

}
=

Γ(i+ α + 1)

Γ(i+ α + µ+ 1)
(1− x)α+µPα+µ,β−µ

i (x). (6.21)

In a similar fashion, by taking the fractional derivative xDµ−1 on both sides of (6.21)

when α = −µ we obtain

xDµ1
{
P 0,β−µ
i (x)

}
=

Γ(i+ 1)

Γ(i− µ+ 1)
(1− x)−µP−µ,βi (x). (6.22)

The relations (6.14) and (10.20) are useful in computing the corresponding spatial

stiffness matrix in the discontinuous SM-DSEM.
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Next, following [187], the right-sided Riemann-Liouville fractional derivative of

(6.18) is obtained as

tD µ
T

(
(2)P̃ µ

j (t)
)

=
( 2

T

)µ Γ(j + µ)

Γ(j)
Pj−1(x(t) ). (6.23)

The relations (C.37) and (C.38) will be employed in computing the corresponding

temporal stiffness matrix in the SM-DSEM scheme.

Remark 6.3.3. The Jacobi polynomials P 0,χ
i (x) in (6.19) and P η,0

m (x) in (6.9) have

been previously utilized by Li and Xu [108], where they formulated exact quadrature

rules for the corresponding temporal matrices arising in their Galerkin method. Here,

we obtain and interpret the aforementioned polynomials as the asymptotic forms of

the polyfractonomial eigen-functions of FSLPs, and employ them in a discontinuous

Petrov-Galerkin framework.

The following lemma is useful in carrying out the temporal fractional integration-

by-parts in the development of the SM-DSEM scheme.

Lemma 6.3.4. [108]: For all 0 < ξ < 1, if u ∈ H1([a, b]), such that u(a) = 0, and

w ∈ Hξ/2([a, b]), then

(aD ξ
s u,w)Ω = ( aD ξ/2

s u , sD ξ/2
b w )Ω, (6.24)

where (·, ·)Ω represents the standard inner product in Ω = [a, b].

Next, we prove the following lemma that is useful in deriving the weak form

in the DSEM-DSEM scheme and discretizing the spatial advection term using the

discontinuous spectral element method.
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Lemma 6.3.5. For all 0 < ξ < 1, if u ∈ H1([a, b]) and w ∈ Hξ/2([a, b]), then

( a+D ξ
s u,w )Ω = ( a+D ξ/2

s u , sD ξ/2
b w )Ω. (6.25)

Proof. Let u(a) = uD 6= 0 (constant). Then,

( a+D ξ
s u,w )Ω = ( a+D ξ

s (u− uD) , w )Ω + ( a+D ξ
s uD , w )Ω,

= ( a+D ξ/2
s (u− uD) , xD ξ/2

s w )Ω + ( a+D ξ
s uD , w )Ω, by Lemma 6.3.4

= (a+Dξ/2s u, xDξ/2s w )Ω − (a+Dξ/2s uD, xDξ/2s w )Ω + (a+DξsuD, w )Ω.

Now, it remains to show that (a+DξsuD, w )Ω = (a+D
ξ/2
s uD, xDξ/2s w )Ω. We note that

the lower-terminal of the fractional derivative now is a+ and not a. Therefore, it

does not contradict the previous lemma. Moreover, we can always represent uD in

terms of Qn(s) ∈ C∞0 ([a, b]) such that ∀s ∈ (a, b), limN→∞
∑N

n=1 cnQn(s) converges

to uD in a point-wise fashion. Hence,

(a+DξsuD , w )Ω = (a+Dξs lim
N→∞

N∑
n=1

cnQn(s), w )Ω

= ( lim
N→∞

N∑
n=1

cn[a+Dξ/2s Qn(s)], sDξ/2b w )Ω, by Lemma 6.3.4 since Qn(s) ∈ C∞0 ([a, b])

= (a+Dξ/2s uD, sDξ/2b w )Ω.
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6.3.3 Implementation of SM-DSEM Scheme

Now, we implement the SM-DSEM scheme to solve TSFAE (6.1), where we seek

the solution in Ωe = [xe−1/2, xe+1/2] ×[0, T ] in terms of the linear combination of

elements in the basis function space V e of the form

ueMN(x, t) =
M∑
m=0

N∑
n=1

ûeMN P̃
η,0
m (xe) ˜(1)Pµn (t). (6.26)

The ultimate step of the SM-DSEM scheme is to obtain a linear system corresponding

to (6.1) of the form

A ÛeB + C ÛeD = E, (6.27)

for some matrices A, B, C, D, and E, where Ûe is the matrix of unknown coefficient in

Ωe and (Û
e
)mn = ûemn. The linear system (6.27) is called Lyapunov matrix equation

for which there are several numerical approaches introduced (see e.g., [71, 137, 152,

174] and references therein). To this end, we require the solution (6.26) to satisfy

the following variational (weak) form as

(6.28)(
0Dτ/2t ueMN(x, t) , tDτ/2T ve(x, t)

)
Ωe

+ θ

(
x+
e−1/2
Dν/2x ueMN(x, t) , xDν/2x−

e+1/2

ve(x, t)

)
Ωe

+ γe

(
JueMN(xe−1/2, t)K , ve(x−e+1/2, t)

)
[0,T ]

=
(
f(x, t), ve(x, t)

)
Ωe
− θ · Hx

e ,

∀ve(x, t) ∈ Ve, beginning from the first space-time element, i.e., e = 1, and march-

ing element-by-element along the x-axis to e = Nel. In (6.28), γe = − θ(∆x)1−νe

(1−ν)Γ(1−ν)
,

JueMN(xe−1/2, t)K represents the jump discontinuity of the solution at x = xe−1/2 as
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Construct St and Mt ;

for e = 1; e = Nel do

Construct M e
x, Sex, and ηe ;

if e = 1 then

Hx
e = 0 ;

else

Compute Hx
e then construct F e ;

end

Solve M e
xÛ

e
STt + (θSex + γe η

e) Û
e
MT

t = F e ;

end

Algorithm 1: First PG-DG Method: a pseudocode for the SM-DSEM scheme,
employed in a non-uniformly partitioned domain.

a function of time t ∈ [0, T ], (∆x)e = xe+1/2 − xe−1/2 is the (spatial) length of the

e-th sub-domain; also (·, ·)Ωe and (·, ·)[0,T ] represent, respectively, the standard inner

product in the space-time element Ωe, i.e.,

(
f(x, t), g(x, t)

)
Ωe

=

∫ T

0

∫ x−
e+1/2

x+
e−1/2

f(x, t)g(x, t) dx dt,

and the standard inner product in the time interval [0, T ] is defined as

(
p(t), q(t)

)
[0,T ]

=

∫ T

0

p(t) q(t) dt.

Finally, Hx
e is the history-load term, which we shall obtain in a convenient and

computationally efficient form shortly.

We obtain the corresponding linear system by plugging the expansion (6.26) into

the weak form (6.28), taking ve(x, t) = P̃ 0,χ
i (xe )

(2)P̃ µ
j ( t ), and choosing η = χ =

ν/2 and µ = τ/2 as the following Lyapunov matrix equation

M e
xÛ

eSTt + (θSex + γeη
e) ÛeMT

t = F e, (6.29)



191

where ηe is a constant matrix associated with e-th element and Ûe is the unknown

(M + 1) × N matirx of coefficients. Moreover, the matrices St and Mt represent

the corresponding temporal stiffness and mass matrices, also Sex and M e
x denote the

spatial stiffness and mass matrices, associated with element Ωe, respectively. Finally,

in (6.29), F e is the total load matrix and the superscript T is the transpose operation.

In Algorithm 1, we present the necessary steps in the SM-DSEM scheme, where

the computational domain is assumed to be non-uniformly partitioned. However,

dealing with uniform elements, the matrices St, Mt, M
e
x, and Sex are constructed

once at a preprocessing step. In the following, we obtain the aforementioned matrices

efficiently and exactly.

Temporal Stiffness Matrix: St is an N × N diagonal matrix whose entries are

obtained using (C.37) and (C.38) as

(St)jn =

∫ T

0
tD

τ/2
T

(2)P̃τ/2j (t)0D
τ/2
t

(1)P̃τ/2n (t)dt (6.30)

= δjn

(
2

T

)τ−1(
Γ(n+ τ/2)

Γ(n)

)2
2

2n− 1
,

in which δjn is the Kronecker delta.

Temporal Mass Matrix: Mt is also an N ×N matrix whose entries are obtained

as

(Mt)jn =

∫ T

0

(2)P̃τ/2j (t)(1)P̃τ/2n (t) dt, (6.31)

which can be computed exactly by mapping [0, T ] to the reference element [−1, 1]

and employing the Gauss-Lobatto-Jacobi (GLJ) quadrature rule as follows:
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(Mt)jn = Jt ·
∫ 1

−1

(2)P̃τ/2j (t(s))(1)P̃τ/2n (t(s)) ds (6.32)

= Jt ·
∫ 1

−1

(1− s)τ/2 (1 + s)τ/2 P
τ/2,−τ/2
j−1 (s)P

−τ/2,τ/2
n−1 (s)ds

= Jt ·
Q−1∑
k=0

w
τ/2,τ/2
k P

τ/2,−τ/2
k−1 (sk)P

−τ/2,τ/2
n−1 (sk),

when 2Q − 3 = 2(N − 1). In (6.32), Jt = (T/2) represents the Jacobian of the

transformation, also {sk}Q−1
k=0 and {wτ/2,τ/2k }Q−1

k=0 are the corresponding quadrature

points and weights, associated with GLJ rule.

Spatial Stiffness Matrix: Sex is an (M + 1)× (M + 1) matrix whose entries are

obtained as

(Sex)im =

∫ xe+1/2

xe−1/2

xe−1/2
Dν/2x P̃

ν/2,0
i (x)xDν/2xe+1/2

P̃ 0,ν/2
m (x)dx, (6.33)

which can be computed exactly by mapping [xe−1/2, xe+1/2] to the reference element

[−1, 1] and employing another Gauss-Lobatto-Jacobi (GLJ) rule corresponding to a

different weight function as follows:

(Sex)im = Ce
x ·
∫ 1

−1
−1Dν/2z P̃

ν/2,0
i (x(z))zDν/21 P̃ 0,ν/2

m (x(z))dz (6.34)

= Ce
x · Λim

∫ 1

−1

(1− z)−ν/2 (1 + z)−ν/2 P
ν,−ν/2
i (z)P−ν/2,νm (z)

= Ce
x · Λim

M∑
k=0

P
ν,−ν/2
i (zk)P

−ν/2,ν
m (zk)ρ

−ν/2,−ν/2
k ,
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where Ce
x = (2/∆xe)

ν−1, also

Λim =
Γ(i+ 1)

Γ(i− ν/2 + 1)

Γ(m+ 1)

Γ(m− ν/2 + 1)
.

Moreover, {zk}Mk=0 and {ρk}Mk=0 are the corresponding Gauss-Lobato-Jacobi (GLJ)

quadrature points and weights in the interval [−1, 1], associated with the weight

function (1− z)−ν/2 (1 + z)−ν/2. Here, we have used the relations (6.14) and (10.20)

to obtain

−1Dν/2z P ν/2,0
m (z) =

Γ(m+ 1)

Γ(m− τ/2 + 1)
(1 + z)−ν/2P ν,−ν/2

m (z),

zDν/21 P
0,ν/2
i (z) =

Γ(i+ 1)

Γ(i− τ/2 + 1)
(1− z)−ν/2P

−ν/2,ν
i (z),

in the reference element, employed in (6.34).

Spatial Mass Matrix: M e
x is also an (M + 1)× (M + 1) matrix whose entries are

defined as

(M e
x)im =

∫ xe+1/2

xe−1/2

P̃
0,ν/2
i (xe)P̃

ν/2,0
m (xe)dx, (6.35)

where, we compute the mass matrix exactly as well using the standard Gauss-Lobato-

Legendre (GLL) rule by choosing Q so that 2Q− 3 = 2M

(M e
x)im = Jex

∫ 1

−1

P
0,ν/2
i (x(ξ))P ν/2,0

m (x(ξ))dξ (6.36)

= Jex

Q∑
k=0

wkP
0,ν/2
i (ξk)P

ν/2,0
m (ξk),

where Jex = (∆xe)/2 = 1/2(xe+1/2 − xe−1/2) is the Jacobian of the transformation.
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Figure 6.1: SM-DSEM; (Left) h-refinement : log-log L2-error versus number of elements Nel,
corresponding to piecewise linear/cubic spatial bases and ν = 1/10,9/10 while τ = 1/2; (Right)
p-refinement : log-linear L2-error versus M/N the spatial/temporal order-indices in (6.26). In
the spatial p-refinement, the spatial orders are ν = 1/10 and 9/10 while τ = 1/2, also in the
temporal p-refinement τ = 1/10 and 9/10 while ν = 1/2. The first row corresponds to uext(x, t) =
t10 x13/2 sin(πx4/3), the second row to uext(x, t) = t6 sin(πt) [x13/2 sin(πx4/3)], and the third row to
u(x, t) = t10[x6 exp(x2) + x8+5/7 + x10+1/3].
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Figure 6.2: SM-DSEM: h-refinement : log-log L2-error versus number of elements Nel, corre-
sponding to piecewise linear/cubic spatial bases, temporal order N = 13 fixed, τ = ν = 1/2, and
the exact solution uext(x, t) = t10 x1+3/7.

Constant Matrix: ηe is also an (M+1)×(M+1) matrix whose entries are defined

as

( ηe )im = P
0,ν/2
i (+1)P ν/2,0

m (−1) (6.37)

= P ν/2,0
m (−1)

= (−1)m,

for m = 0, 1, 2, · · · ,M .

Total Load Matrix F e is an (M + 1) × (N) matrix defined in terms of the

aforementioned stiffness and mass matrices

F e = F e − γeηeÛ
e−1

MT
t − θHx

e (6.38)

in which F e = (f(x, t), ve(x, t))Ωe , Û
e−1

denotes the coefficient matrix, known in

the previously resolved element Ie−1, and we obtain the history-load term Hx
e in a
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computationally efficient form as

(6.39)

(Hx
e )ij = Fe(x)P

0,ν/2
i (x)

∣∣∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx,

in which Fe(x) represents the history function associated with the current element

Ωe

Fe(x) =
e−1∑
ε=1

F ε
e (x), (6.40)

consisting of all the past element contributions as

F ε
e (x) =

∑
m,n

ûεmn (Mt)jn

M∑
δ=0

(
Cδ · (x− s)δ+1−ν

)
P̃ ν/2,0(δ)
m (s)

∣∣∣∣s=s−ε+1/2

s=s+
ε−1/2

, (6.41)

where P̃
ν/2,0(δ)
m (s) represents the δ-th derivative of P̃

ν/2,0
m (s). The coefficient Cδ =

−1/{Γ(1−ν)
∏δ

k=0(k+1−ν)} decays in a factorial fashion with respect to δ. We note

that when e = 1, there is no history introduced into the problem, hence (Hx
1)ij ≡ 0.

In Fig. 6.1, we present the h-refinement (left panel), and p-refinement (right

panel) tests for SM-DSEM. For the case of h-refinement, we present the log-log L2-

error versus the number of elements Nel, corresponding to piecewise linear/cubic

spatial bases and ν = 1/10, 9/10 while τ = 1/2. Associated with the p-refinement,

we plot the log-linear L2-error versus M or N the spatial/temporal order-indices

in (6.26). In the spatial p-refinement, the spatial orders ν = 1/10 and 9/10 while

τ = 1/2, also in the temporal p-refinement τ = 1/10 and 9/10 while ν = 1/2.

The first row corresponds to uext(x, t) = t10 x13/2 sin(πx4/3), the second row to

uext(x, t) = t6 sin(πt) [x13/2 sin(πx4/3)], and the third row to u(x, t) = t10[x6 exp(x2)+

x8+5/7 + x10+1/3]. We observe an exponential-like convergence in p-refinement and
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the algebraic convergence in h-refinement.

In all above cases, the exact solutions are relatively smooth. We examine a case

where the exact solution does not belong to higher Sobolev spaces. For this case,

we confirm the success of h-refinement in Fig. 6.2. In this plot, we present the log-

log L2-error versus number of elements Nel, corresponding to piecewise linear/cubic

spatial bases, temporal order N = 13 fixed, τ = ν = 1/2, and the exact solution

uext(x, t) = t10 x1+3/7, which is not smooth with respect to x.

6.4 Time-integration using SM-DSEM when τ = 1

We recall that SM-DSEM works equally well when the temporal time-derivative

order τ tends to 1. In general, a PDE/FPDE, which is first-order in time, reads as

∂u

∂t
= F (u;x, t), (6.42)

where particularly in view of (6.1), the operator F (u;x, t) is given as

F (u;x, t) = f(x, t)− θ 0Dνxu(x, t),

Here, we regard the PG-DG method as an alternative scheme for exponentially ac-

curate time-integration for a general F (u;x, t), rather than utilizing existing alge-

braically accurate methods, including multi-step methods such as the Adams fam-

ily and stiffly-stable schemes, also multi-stage approaches such as the Runge-Kutta

method.

The idea of employing SM-DSEM when τ = 1 is simply based on the useful
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Table 6.1: CPU time (seconds) on a dual-core 2.9 GHz Intel processor, corresponding to the
third-order in time SSS-DSEM, AB-DSEM, AM-DSEM, and our high-order SM-DSEM scheme all
with two elements in space and polynomial order M = 3. The spatial fractional order is ν = 1/2
and the temporal time-order is τ = 1. Here, the simulation time T = 1.

L2-Error SSS-DSEM AB-DSEM AM-DSEM SM-DSEM
O(10−4) 8.5830 15.9770 9.2260 (N = 7) 11.2020
O(10−8) 117.423 328.655 136.976 (N = 13) 28.634
O(10−9) 233.153 652.611 272.125 (N = 15) 37.619
O(10−10) 463.874 1302.793 685.618 (N = 17) 48.919

property by which a full first-order derivative d/dt can be decomposed into a product

of the sequential (1
2
)-th order derivatives 0D1/2

t 0D1/2
t , a result that is not valid in the

standard (integer-order) calculus. Hence, by virtue of the fractional integration-by-

parts (see Lemma 6.3.4), such a decomposition artificially induces non-locality to the

temporal term in the corresponding weak form. Therefore, it provides an appropriate

framework for global (spectral) treatment of the temporal term using SM-DSEM.

To demonstrate the efficiency of SM-DSEM when 0Dτt → d/dt, we compare the

computational cost of SM-DSEM with that of the multi-step methods such as Stiffly-

Stable Scheme (SSS), Adams-Bashforth (AB), and Adams-Moulton (AM). To this

end, we recall these schemes to integrate (9.81) in time, where we employ DSEM

to discretize the spatial domain as before. However, we note that our approach is

independent of the type of the spatial discretization.

In Table 6.1, we present the CPU time (seconds) corresponding to the backward

and forward multi-step time-integration schemes introduced along with that of our

SM-DSEM. We particularly compare the CPU time in the third-order SSS-DSEM ,

AB-DSEM , AM-DSEM and our SM-DSEM developed in Sec. 6.3.3. We choose the

exact solution to be uext(x, t) = x3t13/2 sin(πt4/3), where we consider two elements

in space and setting the polynomial order M = 3 to accurately resolve the spatial
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solution. Moreover, we set the spatial fractional order to ν = 1/2 and set the

temporal time-order to the integer value τ = 1. Among the multi-step methods, we

observe SSS-DSEM to be more efficient than AB-DSEM and AM-DSEM specially at

smaller error-levels. Moreover, Table 6.1 shows that all the aforementioned schemes

are comparable in terms of the CPU time at the relatively large L2-error O(10−4).

However, SM-DSEM outperforms all the multi-step methods by about one order of

magnitude speed-up at smaller error-levels.

6.5 DG-DG Method: DSEM-in-Time & DSEM-

in-Space

We extend our SM-DSEM scheme to another method, which is more appropriate

for adaptive and/or long time-integration of (6.1). The idea is to discretize both

the space- and time-domain employing DSEM in an hp-element fashion. We set

τ ∈ (0, 1) and ν ∈ (0, 1) in (6.1), subject to homogeneous Dirichlet initial/boundary

conditions. In DSEM-DSEM, we first decompose the space-domain [0, L] into Nx
el

non-overlapping sub-intervals Ixẽ = [xẽ−1/2 , xẽ+1/2] and the time-domain [0, T ] into

N t
el sub-intervals I tê = [tê−1/2 , tê+1/2]. Next, we partition the whole computational

domain Ω = [0, L]× [0, T ] into N el = Nx
el ·N t

el structured space-time elements Ωe ≡

Ixẽ × I tê such that ∪N ele=1Ωe = Ω. In this setting, the element number “ e ” corresponds

to a particular pair of the spatial sub-interval number “ ẽ ” and the temporal one

“ ê ”, respectively.
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6.5.1 Basis and Test Function Spaces in DSEM-DSEM Scheme

We construct the basis function space Ve as the tensor product of the asymptotic

(temporal and spatial) eigenfunctions, presented in Sec. 6.3.3, as

Ve ≡ span{P̃ ηx,0
m (xẽ ) P̃ ηt,0

n ( tê ) : m = 0, 1, . . . ,M, n = 0, 1, . . . , N}, (6.43)

where ηx, ηt ∈ (0, 1) and the temporal bases P̃ ηt,0
n ( tê ) are Jacobi polynomials,

defined in the time-interval I tê = [tê−1/2 , tê+1/2] as the asymptotic eigenfunction

P ηt,0
n ( ξ ) through an affine mapping from the standard domain [−1, 1] to the physi-

cal time-subdomain I tê. We approximate the solution to (6.1) in Ωe in terms of linear

combination of elements in Ve. In our Petrov-Galerkin DSEM-DSEM scheme, we

construct the space of test functions Ve, constructed as

Ve ≡ span{P̃ 0,χx

i (xẽ ) P̃ 0,χt

j ( tê ) : i = 0, 1, . . . ,M, j = 0, 1, . . . , N}, (6.44)

where we test problem (6.1) against elements in Ve.

6.5.2 Implementation of DSEM-DSEM Scheme

The space-time basis functions in our DSEM-DSME are discontinuous in both space

and time at the interfaces of the two-dimensional (time-space) element Ωe. Here, we

seek the approximation solution to (6.1), restricted in element Ωe, of the form

u(x, t)
∣∣∣
Ωe
≈ ueMN(x, t) =

M∑
m=0

N∑
n=0

u e
mnP̃

ηx,0
m (xẽ ) , P̃ ηt,0

n ( tê ). (6.45)
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Once again the ultimate step in our DSEM-DSEM scheme is to construct a linear

system corresponding to (6.2) of Lyapunov form (6.27). To this end, we require the

solution (6.45) to satisfy the following weak form is

(6.46)(
t+
ê−1/2
Dτ/2t ueMN(x, t) , tDτ/2t−

ê+1/2

ve(x, t)

)
Ωe

+ θ

(
x+
ẽ−1/2
Dν/2x ueMN(x, t) , xDν/2x−

ẽ+1/2

ve(x, t)

)
Ωe

+γ x
ẽ

(
JueMN(xẽ−1/2 , t)K , ve(x−ẽ+1/2 , t)

)
It
ê

+γ t
ê

(
JueMN(x , tê−1/2)K , ve(x , t−ê+1/2)

)
Ix
ẽ

=
(
f(x, t), ve(x, t)

)
Ωe
− θ · Hx

ẽ −Ht
ê

∀ve(x, t) ∈ Ve. In (6.46),

γ x
ẽ = − θ(∆x)1−ν

ẽ

(1− ν)Γ(1− ν)
, (6.47)

also

γ t
ê = − (∆t)1−τ

ê

(1− τ)Γ(1− τ)
, (6.48)

where (∆x)ẽ = xẽ+1/2−xẽ−1/2 and (∆t)ê = tê+1/2−tê−1/2. Moreover, JueMN(xẽ−1/2 , t)K

denotes the (spatial) jump discontinuity of the solution at x = xẽ−1/2 as a function of

time t ∈ I tê and JueMN(x , tê−1/2)K is the (temporal) jump discontinuity of the solution

at t = tê−1/2 as a function of space x ∈ Ixẽ . Similarly, (·, ·)Ωe , (·, ·)It
ê
, and (·, ·)Ix

ẽ
are,

respectively, the standard inner product in the local space-time element Ωe

(
f(x, t), g(x, t)

)
Ωe

=

∫
It
ê

∫
Ix
ẽ

f(x, t)g(x, t) dx dt,
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the inner product in I tê, defined as

(
p(t), q(t)

)
It
ê

=

∫ t−
ê+1/2

t+
ê−1/2

p(t) q(t) dt,

and the inner product in Ixẽ

(
Y (x),W (x)

)
Ix
ẽ

=

∫ x−
ẽ+1/2

x+
ẽ−1/2

Y (x)W (x) dx,

Finally, in (6.46), Hx
ẽ and Ht

ê represent the corresponding spatial history-load and

temporal history-load term, which we compute in an efficient fashion similarly as

presented in Sec. 6.3.3.

Next, we obtain the corresponding linear system resulting from our DSEM-DSEM

scheme by substituting the solution (6.45) into the weak form (6.46), taking ve(x, t) =

P̃ 0,χx

i (xẽ ) P̃ 0,χt

j ( tê ), and choosing ηx = χx = ν/2 and µ = τ/2 as another Lyapunov

equation

M ẽ
x U

e
(S êt

T
+ γ t

ê η
ê) + (θS ẽx + γ x

ẽ η
ẽ) U

e
M ê

t

T
= Fe, (6.49)

where we recall that the element number “ e ” is associated with the pair of “ ẽ ”

and “ ê ”, the spatial and temporal sub-intervals Ixẽ and I tê . In the Lyapunov system

(6.49), U
e

is the (M + 1) × (N + 1) matrix of unknown coefficient associated with

Ωe whose entries are U
e

mn = u e
mn. In addition, the spatial matrices S ẽx, M

ẽ
x, and

ηẽ represent the corresponding (M + 1) × (M + 1) spatial stiffness, mass, and the

constant matrices, respectively, which are identical to those obtained in (6.34), (6.36)

and (6.37), by setting “ e ” to “ ẽ ”. Moreover, S êt , M
ê
t , and ηê are, respectively, the

temporal stiffness, mass, and constant matrices.

In Algorithm 2, we present the corresponding pseudocode for our DSEM-DSEM
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for e = 1; e = Nel do

Construct M ẽ
x , S ẽ

x , ηẽ, also M ê
t , S ê

t , and ηê ;

if e = 1 then

Hx
ẽ = 0 and Ht

ê = 0 ;

else
Compute Hx

ẽ and Ht
ê then construct Fe ;

end

Solve M ẽ
x U

e
(S êt

T
+ γ t

ê η
ê) + (θS ẽx + γ x

ẽ η
ẽ) U

e
M ê

t
T

= Fe ;

end

Algorithm 2: Pseudocode of DSEM-DSEM scheme, employed in a non-uniform
structured partitioned domain.

scheme, where the computational space- and time-domain are assumed to be non-

uniformly partitioned. As before, if the elements are uniform, we construct the

matrices M ẽ
x , S ẽ

x , ηẽ, also M ê
t , S ê

t , and ηê only once at a preprocessing step. In the

following, we present the construction of the corresponding temporal matrices.

Temporal Stiffness Matrix: S ê
t is an (N + 1) × (N + 1) matrix whose entries

are obtained as

(S ê
t )jn =

∫ tê+1/2

tê−1/2

tê−1/2
Dτ/2t P̃

τ/2,0
j (tê) tDτ/2tê+1/2

P̃ 0,τ/2
n (tê)dt (6.50)

= C ê
t · Λt

im

N∑
k=0

P
τ,−τ/2
j (zk)P

−τ/2,τ
n (zk)ρ

−τ/2,−τ/2
k

which we compute exactly by mapping [tê−1/2, tê+1/2] to the reference element [−1, 1]

and performing a GLJ rule similar to (6.34). Here, C ê
t = {2/(∆t)ê}τ−1, also

Λt
jn =

Γ(j + 1)

Γ(j − τ/2 + 1)

Γ(n+ 1)

Γ(n− τ/2 + 1)
.
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Moreover, {zk}Nk=0 and {ρk}Nk=0 are the corresponding Gauss-Lobato-Jacobi (GLJ)

quadrature points and weights in the interval [−1, 1], associated with the weight

function (1− z)−τ/2 (1 + z)−τ/2.

Temporal Mass Matrix: M ê
t is also an (N + 1)× (N + 1) matrix whose entries

are obtained as

(M ê
t )jn = =

∫ tê+1/2

tê−1/2

P̃
0,τ/2
j (tê)P̃

τ/2,0
n (tê)dx (6.51)

= J êt

Q∑
k=0

wkP
0,τ/2
j (ξk)P

τ/2,0
m (ξk),

in which J êt = (∆x)ê/2 is the Jacobian of the transformation from the time sub-

interval to the standard element. Here, we compute the mass matrix exactly based on

the standard Gauss-Lobato-Legendre (GLL) rule and choosingQ so that 2Q−3 = 2N

similar to (6.32).

Constant Matrix: ηê is also an (M+1)×(M+1) matrix whose entries are defined

as

( ηe )jn = P
0,τ/2
j (+1)P τ/2,0

n (−1) (6.52)

= (−1)n,

for j, n = 0, 1, 2, · · · , N .

Total Load Matrix: Fe is an (M + 1)× (N + 1) matrix defined as

Fe = Fe − γ x
ẽ

(
ηẽ Û

e−1
M ê

t

T
)
− γ t

ê

(
M ẽ

x

T
Û
e−1

ηê
)
− θHx

ẽ −Ht
ê (6.53)
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in which Fe = (f(x, t), ve(x, t))Ωe , Û
e−1

denotes the coefficient matrix, known in the

previously resolved element Ωe−1, and we obtain the spatial and temporal history-

load terms Hx
ẽ and Ht

ê in a similar computationally efficient form as

(Hx
ẽ )ij = Fe(x)P

0,ν/2
i (x)

∣∣∣∣x=x−
ẽ+1/2

x=x+
ẽ−1/2

−
∫ xẽ+1/2

xẽ−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx, (6.54)

and

(Ht
ê)ij = Ge(t)P

0,τ/2
j (t)

∣∣∣∣t=t−ê+1/2

t=t+
ê−1/2

−
∫ tê+1/2

tê−1/2

Ge(t)
d

dt
P

0,τ/2
j (t) dt, (6.55)

respectively. We then obtain the corresponding spatial history functions Fe(x) in

(6.40), setting “ e ” to “ ẽ ”. Similarly, we obtain the temporal history function Ge(x)

associated with the current element Ωe as

Ge(t) =
ê−1∑
ε=1

Gε
ê(t), (6.56)

in which

Gε
ê(t) =

∑
m,n

ûεmn (M ẽ
x)im

N∑
δ=0

(
Ct
δ · (t− s)δ+1−τ

)
P̃ τ/2,0(δ)
n (s)

∣∣∣∣s=s−ε+1/2

s=s+
ε−1/2

, (6.57)

where the coefficient Ct
δ = −1/{Γ(1− τ)

∏δ
k=0(k + 1− τ)}.

We have examined the DSEM-DSEM for all the test-cases presented previously

successfully. Here, we examine DSEM-DSEM for log-time integration. In Fig. 6.3,

and corresponding to the simulation time T = 10 and τ = ν = 1/2, we plot the

log-linear L2-error versus the temporal order-index N in (6.45). We partition the
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Figure 6.3: DSEM-DSEM; Long-time integration: log-linear L2-error versus the temporal order-
index N in (6.45), corresponding to N t

el = 2 and 4 temporal sub-intervals, also Nx
el = 2 spatial sub-

intervals kept fixed, i.e., total Nel = Nx
el.N

t
el = 4 and 8 space-time elements. Here, the simulation

time T = 10 and τ = ν = 1/2.

whole computational domain into 4 and 8 element by choosing N t
el = 2 and 4, also

Nx
el = 2 fixed. While we have increased the simulation time from T = 1 to T = 10,

we recover the exponential convergence in DSEM-DSEM.

6.6 Discussion

Although we have formulated the aforementioned methods when (6.1) is subject to

homogeneous Dirichlet boundary and initial conditions, i.e., h(t) = g(x) = 0, these

schemes are equally valid when inhomogeneous conditions are enforced. In such

cases, we first homogenize the problem by the method of lifting a known solution.

Using this trick, we first set the solution u(x, t) = uH(x, t) + g(x) + h(t), and then

substitute in (6.1). Hence, we obtain a modified/homogenized TSFAE of the form

0Dτt uH(x, t) + θ 0DνxuH(x, t) = f̃(x, t), (x, t) ∈ [0, L]× [0, T ], (6.58)

uH(x, 0) = 0,

uH(0, t) = 0,
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Table 6.2: Inhomogeneous boundary conditions: p−refinement in the spatial dimension for Case-
I: uext(x, t) = t3+1/2 cos(πx), and the for Case-II: uext(x, t) = t10[exp(x2) + 10π]. Here, we set
T = L = 1, τ = ν = 1/2 and N = 15.

M L2−Error, Case-I L2−Error, Case-II
1 0.0384286 0.334819
3 0.0007635 0.001144
5 4.98 ×10−6 1.71 ×10−5

7 6.18 ×10−8 1.54×10−7

where f̃ = f − (0Dτt + θ 0Dνx){h(t) + g(x)}, and we recall that h(0) = g(0). For

demonstration of the generality of the schemes presented, we solve (6.1) subject to

inhomogeneous boundary conditions e.g., using SM-DSEM. We consider the follow-

ing two test-cases: (i) the exact solution uext(x, t) = t3+1/2 cos(πx), corresponding to

the time-variable inhomogeneous boundary condition u(0, t) = h(t) = t3+1/2, and (ii)

the exact solution uext(x, t) = t10[exp(x2) + 10π], in which the boundary condition is

given by u(0, t) = h(t) = 10πt10. We solve the problem by taking T = L = 1, setting

τ = ν = 1/2, and keeping N = 15 in all simulations. In Table 6.2, we show the

corresponding p−refinements for the aforementioned problems, where we achieve an

exponential-like convergence in both cases.

We finally conclude the work by comparing the performance of the developed

methods with the finite difference method (FDM) developed in [111], where the

fractional derivative 0Dνt u(t) is represented as

0Dτt u(x, t) =
1

Γ(2− τ)

k∑
j=0

aj
u(x, tk+1−j)− u(x, tk−j)

(∆t)τ
+ rk+1

∆t , (6.59)

where rk+1
∆t ≤ Cu(∆t)

2−τ and aj := (j + 1)1−τ − j1−τ , j = 0, 1, · · · , k; where a similar
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Table 6.3: CPU time (seconds) on a dual-core 2.9 GHz Intel processor, corresponding to PG-SM,
PG-DSEM and FDM with ν = 1/2 (kept constant), when the exact solution is u(x, t) = t3x3. In
all cases, we set spatial polynomials order M = 3, and we set Ω = [0, 1]× [0, 1].

τ = 1/10

Error SM-DSEM DSEM-DSEM(Nx
el = N t

el = 2) FDM(N t
g = 200)

O(10−4) 3.69 – (Nx
g = 10) 15.705

O(10−5) 4.69 (exact) 4.09 (Nx
g = 40) 173.385

τ = 1/2

Error SM-DSEM DSEM-DSEM(Nx
el = N t

el = 2) FDM(N t
g = 200)

O(10−4) 3.64 – (Nx
g = 50) 253.771

O(10−5) 4.58 (exact) 4.01 (Nx
g = 300) 12128.341

τ = 9/10

Error SM-DSEM DSEM-DSEM(Nx
el = N t

el = 2) FDM(N t
g = 200)

O(10−4) 3.60 – (Nx
g = 500) 5.89 · 104

O(10−5) 4.55 (exact) 4.13 (Nx
g = 2000) Out of Memory

formulation can be obtained for the spatial fractional derivative as

0Dνxu(x, t) =
1

Γ(2− ν)

k∑
j=0

bj
u(x, tk+1−j)− u(x, tk−j)

(∆x)ν
+ rk+1

∆x . (6.60)

where bj := (j + 1)1−ν − j1−ν , j = 0, 1, · · · , k.

In Table 6.3, we compute the CPU time (in seconds), required for solving (6.1),

corresponding to three temporal fractional orders τ = 1/10, 1/2, and 9/10, where

we keep the spatial fractional order ν = 1/10 fixed. Here, the exact solution is

u(x, t) = t3x3 and the integration time T = 1 and the spatial domain size L = 1.

We compare SM-DSEM with (Nel = 1) and (Nel = 2) elements with FDM.
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We first observe that our schemes are not sensitive to the fractional order τ ,

however, the CPU time in FDM is shown to be strongly dependent on τ . It is actually

consistent with the fact that the order of accuracy of FDM is O((∆t)2−τ +(∆x)2−ν).

Here, we set the relatively big error-levels O(10−4) and O(10−5) for comparison, also

the spatial fractional order ν = 1/2 was kept constant. We observe that when τ is

very small, FDM and our methods become comparable in terms of computational

cost. However, increasing τ to 1/2 and 9/10, the cost of FDM becomes two to four

orders of magnitude greater than that in our methods, depending on the error level

and τ . Moreover, we observe that when τ is close to one, FDM becomes almost first-

order accurate in time, which leads to a significant amount of memory storage that

might not be available on a PC. Clearly, for higher values of ν, even larger memory

allocation is required; moreover, the CPU time will significantly be increased in

FDM. Regarding DSEM-DSEM and for all the aforementioned cases, we obtain the

exact solution by setting N = M = 3.



Chapter Seven

Fractional Spectral Collocation

Method
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In this chapter, we develop a spectrally accurate Fractional Spectral Collocation

Method (FSCM) for solving steady-state and time-dependent Fractional PDEs (FPDEs).

We first introduce a new family of interpolants, called fractional Lagrange inter-

polants, which satisfy the Kronecker delta property at collocation points. We perform

such a construction following a spectral theory recently developed in [187] for frac-

tional Sturm-Liouville eigenproblems. Subsequently, we obtain the corresponding

fractional differentiation matrices, and we solve a number of linear FODEs in addi-

tion to linear and nonlinear FPDEs to investigate the numerical performance of the

fractional collocation method. We first examine space-fractional advection-diffusion

problem and generalized space-fractional multi-term FODEs. Next, we solve FPDEs

including time- and space-fractional advection-diffusion equation, time- and space-

fractional multi-term FPDEs, and finally the space-fractional Burgers’ equation. Our

numerical results confirm the exponential convergence of the fractional collocation

method.

7.1 Background

Galerkin/Petrov-Galerkin (PG) projection type schemes have in general difficulties

in the treatment of nonlinear FPDEs and multi-term FPDEs, since no straightfor-

ward variational form can be efficiently obtained for such problems. The colloca-

tion schemes for fractional equations are relatively easy to implement and they can

overcome the aforementioned challenges. The idea of collocation was proposed by

Khader in [86], who presented a Chebyshev collocation method for the discretization

of the space-fractional diffusion equation. More recently, Khader and Hendy [87]

developed a Legendre pseudospectral method for fractional-order delay differential

equations. However, in these works only linear problems have been considered and
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the performance of such methods has not been fully investigated.

The aim of this study is to develop an exponentially accurate fractional spectral

collocation method (FSCM) for solving steady-state and time-dependent Fractional

PDEs (FPDEs). In this chapter, we introduce fractional Lagrange interpolants, which

satisfy the Kronecker delta property at collocation points. Moreover, we obtain the

corresponding fractional differentiation matrices. Next, we solve a number of linear

and nonlinear FPDEs to investigate the numerical performance of the fractional col-

location method. In this section, we examine steady-state problems such as space-

fractional advection-diffusion problem and generalized space-fractional multi-term

problems, in addition to time-dependent FPDEs such as time- and space-fractional

advection-diffusion equation, time- and space- fractional multi-term FPDEs, and

finally the space-fractional Burgers’ equation. We demonstrate the exponential con-

vergence of FSCM.

7.2 Notation and Definitions

Before presenting our fractional spectral collocation method, we start with some

preliminary definitions of fractional calculus [142]. The left-sided and right-sided

Riemann-Liouville fractional derivatives of order µ, when 0 < µ < 1, are defined as

(RL−1Dµxf)(x) =
1

Γ(1− µ)

d

dx

∫ x

−1

f(s)ds

(x− s)µ , x > −1, (7.1)

and

(RLxDµ1f)(x) =
1

Γ(1− µ)
(
−d
dx

)

∫ 1

x

f(s)ds

(s− x)µ
, x < 1. (7.2)
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Furthermore, the corresponding left- and right-sided Caputo derivatives of order

µ ∈ (0, 1) are obtained as

( C
−1Dµxf)(x) =

1

Γ(1− µ)

∫ x

−1

f ′(s)ds

(x− s)µ , x > −1, (7.3)

and

(CxDµ1f)(x) =
1

Γ(1− µ)

∫ x

−1

−f ′(s)ds
(x− s)µ , x < 1. (7.4)

The two definitions of fractional derivatives of Riemann-Liouville and Caputo type

are closely linked by the following relationship

(RL−1Dµxf)(x) =
f(−1)

Γ(1− µ)(x+ 1)µ
+ ( C
−1Dµxf)(x), (7.5)

and

(RLxDµ1f)(x) =
f(1)

Γ(1− µ)(1− x)µ
+ (CxDµ1f)(x). (7.6)

We also recall a useful property of the Riemann-Liouville fractional derivatives. As-

sume that 0 < p ≤ 1 and 0 < q ≤ 1 and f(−1) = 0 x > −1, then

RL
−1Dp+qx f(x) =

(
RL
−1Dpx

) (
RL
−1Dqx

)
f(x) =

(
RL
−1Dqx

) (
RL
−1Dpx

)
f(x). (7.7)

Finally, from [142] and for µ ∈ (0, 1), we have

C
0Dµxxk =


0, k < µ,

Γ(k+1)
Γ(k+1−µ)

xk−µ, 0 < µ ≤ k.

(7.8)

In this paper, we deal with fractional problems with homogeneous boundary/initial

conditions. Hence, from now on, we drop the type of the fractional derivative and

represent them by Dµ. Clearly, any problem with non-homogeneous boundary/initial

conditions can be converted to a corresponding homogeneous one through (7.5) and
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(7.6).

7.3 Fractional Lagrange interpolants

In standard collocation methods, interpolation operators are the key to circumvent

the need for evaluating the inner products in Galerkin and Petrov-Galerkin type

spectral methods. To this end, we define a set of interpolation points {xi}Ni=1 on

which the corresponding Lagrange interpolants are obtained. Moreover, to form a

collocation method, we require the residual to vanish on the same set of grid points

called collocation points {yi}Ni=1. In general, these residual-vanishing points do not

need to be same as the interpolation points. Our fractional collocation scheme is

inspired by a new spectral theory developed for fractional Sturm-Liouville eigen-

problems (FSLP) in [187], by which we solve

0D τ
t u(x, t) = Lν u(x, t), x ∈ [−1, 1], t ∈ [0, T ], (7.9)

u(x, 0) = g(x),

u(−1, t) = 0, ν ∈ (0, 1),

u(−1, t) = u(1, t) = 0, ν ∈ (1, 2),

in which τ ∈ (0, 1) and Lν denotes a fractional differential operator, where ν denotes

the highest fractional order. We represent the solution to (7.9) in terms of new

fractal (non-polynomial) basis functions, called Jacobi polyfractonomials, which are

the eigenfunctions of the FSLP of first kind, explicitly obtained as

(1)Pα,β,µn (x) = (1 + x)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (x), x ∈ [−1, 1], (7.10)
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where Pα−µ+1,−β+µ−1
n−1 (x) are the standard Jacobi polynomials in which µ ∈ (0, 1),

−1 ≤ α < 2− µ, and −1 ≤ β < µ− 1. It has been shown that eigenfunctions with

α = β exhibit identical approximating properties when they are utilized as basis

functions. Hence, we consider the polyfractonomial eigenfunctions corresponding to

α = β = −1 as

(1)P µ
n (x) = (1 + x)µP−µ,µn−1 (x), x ∈ [−1, 1]. (7.11)

From the properties of the eigensolutions in [187], the left-sided fractional derivative

of (7.11), of both Riemann-Liouville and Caputo sense, is given as

−1D µ
x

(
(1)P µ

n (x )
)

=
Γ(n+ µ)

Γ(n)
Pn−1(x ), (7.12)

where Pn−1(x ) denotes a Legendre polynomial of order (n − 1). In our fractional

collocation method, we seek solutions

uN ∈ V µ
N = span{(1)P µ

n (x), 1 ≤ n ≤ N}, (7.13)

µ ∈ (0, 1), x ∈ [−1, 1], of the form

uN(x) =
N∑
j=1

ûj
(1)P µ

j (x). (7.14)

This polyfractonomial modal expansion can also be alternatively expressed as a nodal

expansion as

uN(x) =
N∑
j=1

uN(xj)h
µ
j (x), (7.15)

where hµj (x) represent fractional Lagrange interpolants and are defined using the

aforementioned interpolations points −1 = x1 < x2 < · · · < xN = 1. The inter-
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polants hµj (x) are all of fractional order (N + µ− 1) and defined as

hµj (x) =
( x− x1

xj − x1

)µ N∏
k=1
k 6=j

( x− xk
xj − xk

)
, 2 ≤ j ≤ N. (7.16)

Here, we call the superscript µ interpolation parameter to be set prior to solving (7.9).

We note that a general FPDE however can be associated with multiple fractional

differentiation orders νk, k = 1, 2, · · · , K, for some positive integer K. We shall show

how to set µ just from the fractional orders νk, given in the problem.

Remark 7.3.1. Because of the homogeneous Dirichlet boundary condition(s) in (7.9),

we only construct hµj (x) for j = 2, 3, · · · , N when maximum fractional order ν ∈

(0, 1), for which we set uN(−1) = 0. Moreover, when ν ∈ (1, 2), there are only

(N − 2) fractional Lagrange interpolants hµj (x), j = 2, 3, · · · , N − 1, to construct

since we impose uN(±1) = 0.

The fractional interpolants, shown in (11.19), satisfy the Kronecker delta prop-

erty, i.e., hµj (xk) = δjk, at interpolation points, however they vary as a polyfractono-

mial between xk’s. We employ these interpolants as fractional nodal basis functions

in (7.15), where they mimic the key structure of the eigenfunctions (7.11), utilized

as fractional modal bases in the expansion (7.14).
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7.3.1 Fractional differentiation matrix Dσ, 0 < σ < 1

Next, we obtain the differentiation matrix Dσ of a general fractional order σ ∈ (0, 1).

We substitute (11.19) in (7.15) and take the σ-th order fractional derivative as

−1D σ
x uN(x ) = −1D σ

x

[ N∑
j=2

uN(xj)h
µ
j (x)

]
=

N∑
j=2

uN(xj) −1D σ
x

[
hµj (x)

]
=

N∑
j=2

uN(xj) −1D σ
x

[( x− x1

xj − x1

)µ N∏
k=1
k 6=j

( x− xk
xj − xk

)]

=
N∑
j=2

uN(xj) −1D σ
x

[
(1 + x)µPj(x)

]
aj (7.17)

where aj = 1
(xj−x1)µ

, and Pj(x) =
∏N

k=1
k 6=j

(
x−xk
xj−xk

)
, j = 2, 3, · · · , N , are all polynomials

of order (N − 1), which can be represented exactly in terms of Jacobi polynomials

P−µ,µn−1 (x) as

Pj(x) =
N∑
n=1

βjnP
−µ,µ
n−1 (x). (7.18)

We note that the unknown coefficients βjn can be obtained analytically. Plugging

(C.1) into (7.17), we obtain

−1D µ
x uN(x ) =

N∑
j=2

uN(xj) −1D σ
x

[
(1 + x)µ

N∑
n=1

βjnP
−µ,µ
n−1 (x)

]
aj

=
N∑
j=2

uN(xj)aj

N∑
n=1

βjn −1D σ
x

[
(1 + x)µP−µ,µn−1 (x)

]
, by (7.11),

=
N∑
j=2

uN(xj)aj

N∑
n=1

βjn −1D σ
x

[
(1)P µ

n (x)
]
, by (7.12). (7.19)
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I) The Particular Case σ = µ ∈ (0, 1)

In this case, we use the property (7.12) and obtain

−1D σ
x uN(x ) =

N∑
j=2

uN(xj)aj

N∑
n=1

βjn

[Γ(n+ µ)

Γ(n)
Pn−1(x )

]
. (7.20)

Consequently, we take the interpolation and collocation points to be identical, also re-

calling Remark 7.3.1 and by evaluating −1D µ
x uN(x ) at the collocation points {xi}Ni=2

we obtain

−1D µ
x uN(x )

∣∣∣
xi

=
N∑
j=2

uN(xj)aj

N∑
n=1

βjn

[Γ(n+ µ)

Γ(n)
Pn−1(xi )

]
,

=
N∑
j=2

Dµ
ij uN(xj), (7.21)

where Dµ
ij are the entries of the (N − 1)× (N − 1) fractional differentiation matrix

Dµ, obtained as

Dµ
ij =

1

(xj + 1)µ

N∑
n=1

Γ(n+ µ)

Γ(n)
βjn Pn−1(xi ). (7.22)

II) The General Case σ ∈ (0, 1)

This case is important when the fractional differential operator is associated with

multiple fractional derivatives of different order. To obtain the fractional differenti-

ation matrix in this case, we perform an affine mapping from x ∈ [−1, 1] to s ∈ [0, 1]
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through s = (x+ 1)/2, and re-write (C.2) as

−1D σ
x uN(x ) =

N∑
j=2

uN(xj)aj

N∑
n=1

βjn −1D σ
x(s)

[
(1)P µ

n (x(s))
]
,

=
N∑
j=2

uN(xj)aj

N∑
n=1

βjn (
1

2
)σ 0D σ

s

[
(1)P µ

n (x(s))
]
, (7.23)

where (1)P µ
n (x(s)) denotes the shifted basis that can be represented as

(1)P µ
n (x(s)) = 2µ

n−1∑
q=0

(−1)n+q−1

n− 1 + q

q


n− 1 + µ

n− 1− q

 sq+µ. (7.24)

Substituting (7.24) into (7.23) we have

−1D σ
x uN(x ) =

2µ−σ
N∑
j=2

uN(xj)aj

N∑
n=1

βjn

n−1∑
q=0

(−1)n+q−1

n− 1 + q

q


n− 1 + µ

n− 1− q

 0D σ
s

[
sq+µ

]
,

in which 0D σ
s

[
sq+µ

]
, can be evaluated exactly by (7.8), and finally by an inverse

transformation we obtain the σ-fractional derivative of the approximate solution as

−1D σ
x uN(x ) =

N∑
j=2

uN(xj)
[
aj

N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq (x+ 1)q+µ−σ
]
, (7.25)

in which dσ − µe denotes the ceiling of σ − µ and

bnq = (−1)n+q−1(
1

2
)q

n− 1 + q

q


n− 1 + µ

n− 1− q

 Γ(q + µ+ 1)

Γ(q + µ− σ + 1)
. (7.26)
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Now, similarly by evaluating −1D µ
x uN(x ) at the collocation points {xi}Ni=2,

−1D σ
x uN(x )

∣∣∣
xi

=
N∑
j=2

uN(xj)
[
aj

N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq (xi + 1)q+µ−σ
]
,

=
N∑
j=2

Dσ
ij uN(xj), (7.27)

where Dσ
ij are the entries of the (N − 1)× (N − 1) fractional differentiation matrix

Dσ, computed as

Dσ
ij =

1

(xj + 1)µ

N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq (xi + 1)q+µ−σ. (7.28)

7.3.2 Fractional differentiation matrix D1+σ, 0 < σ < 1

As before, we split the derivation into two parts.

I) The Particular Case σ = µ

The fractional derivative matrix D1+σ when σ = µ can be directly obtained following

(7.7) and by taking the first derivative of (C.3) as

−1D 1+µ
x uN(x ) =

d

dx

[
−1D µ

x uN(x )
]

=
d

dx

N∑
j=2

uN(xj)aj

N∑
n=1

βjn

[Γ(n+ µ)

Γ(n)
Pn−1(x )

]
=

N∑
j=2

uN(xj)aj

N∑
n=1

βjn

[Γ(n+ µ)

Γ(n)

dPn−1(x )

dx

]
=

N∑
j=1

uN(xj)aj

N∑
n=2

βjn

[Γ(n+ µ)

Γ(n)

n

2
P 1,1
n−2(x )

]
.
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Similarly, we can evaluate −1D 1+µ
x uN(x ) at the collocation points {xi}Ni=1 to obtain

−1D 1+µ
x uN(x )

∣∣∣
xi

=
N∑
j=1

uN(xj)aj

N∑
n=2

βjn

[Γ(n+ µ)

Γ(n)

n

2
P 1,1
n−2(xi )

]
=

N∑
j=1

D1+µ
ij uN(xj), (7.29)

where D1+µ
ij are the entries of the fractional differentiation matrix D1+µ, provided as

D1+µ
ij =

1

(xj + 1)µ

N∑
n=2

βjn

[Γ(n+ µ)

Γ(n)

n

2
P 1,1
n−2(xi )

]
. (7.30)

II) Case σ 6= µ

For the case σ 6= µ, it suffices to take the first derivative of (7.25) in terms of x as

d

dx

[
−1D σ

x uN(x )
]

=
N∑
j=2

uN(xj)aj

N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq
d

dx

[
(x+ 1)q+µ−σ

]
,

=
N∑
j=2

uN(xj)
[
aj

N∑
n=1

βjn

n−1∑
q=dσ−µe

b∗nq (x+ 1)q+µ−σ−1
]
,

where by evaluating the above expression at the collocation points, we obtain:

−1D 1+σ
x uN(x )

∣∣∣
x=xi

=
N∑
j=2

uN(xj)
[
aj

N∑
n=1

βjn

n−1∑
q=dσ−µe

b∗nq (xi + 1)q+µ−σ−1
]
,

=
N∑
j=2

D1+σ
ij uN(xj), (7.31)

in which D1+σ
ij are the entries of D1+σ, computed as

D1+σ
ij =

1

(xj + 1)µ

[ N∑
n=1

βjn

n−1∑
q=dσ−µe

b∗nq (xi + 1)q+µ−σ−1
]
, (7.32)
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where b∗nq = (q + µ− σ)bnq, see (11.22).

Remark 7.3.2. We note that the coefficients βjn, shown in (C.1), are obtained only

once and are utilized as many as times needed to calculate Dσ or D1+σ of any order

σ ∈ (0, 1).

7.3.3 Collocation/interpolation points

In principle, the collocation and interpolation points can be chosen arbitrarily. How-

ever, the right choice of the collocation/interpolation points is the key to obtaining

efficient schemes resulting in well-conditioned linear systems. Here, we examine five

methods which yield different sets of collocation/interpolation points for the con-

struction of the differentiation matrix Dσ1 , and D1+σ2 , σ1, σ2 ∈ (0, 1). For a general

FODEs/FPDEs where both Dσ1 and D1+σ2 may appear, we consider N collocation

points of Gauss-Lobatto type in order to include both boundary points. We refer to

the aforementioned points as:

(i) Equidistant points : this choice is inspired by the well-known Fourier collocation

points, and we obtain the N points as xi = −1 + 2(i−1)
N−1

, i = 1, 2, · · · , N .

(ii) Roots of
(1)P̃ µ

M(x ) = (1+x)µP−µ,µM−1 (x): theM zeros of such Jacobi polyfractono-

mial are essentially Gauss-Radau points, obtained through finding the (M−1)

roots of the Jacobi polynomial P−µ,µM−1 (x) in addition to the left-boundary point

x = −1 due to the fractional multiplier term. Setting M = N − 1 and includ-

ing the right boundary-point x = 1 provides the N collocation/interpolation

points needed.

(iii) Roots of −1D µ
x [ (1)P µ

M(x ) ]: the corresponding M − 1 roots are Gauss points,

which lie in the interior domain in this case. Here, we can think of these colloca-
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tion/interpolation points as the (fractional) extrema of the Jacobi polyfractono-

mial (1)P µ
M(x ) because we compute the roots of the (fractional) derivative of

the eigenfunction. We perform such root finding easily using the property

(7.12) and equivalently obtaining the M − 1 roots of Legendre polynomial

PM−1(x). Finally, we set M = N−2 and add both the left- and right-boundary

points x = −1 and x = 1 to provide the N points needed.

(iv) Chebyshev roots, − cos( (2j+1)
M

π
2
), j = 0, 1, · · · ,M−1: theM roots of Chebyshev

polynomial TM(x) are also Gauss points. Hence, we set M = N − 2 and

similarly add both the left- and right-boundary points x = −1 and x = 1.

(v) Roots of dTN+1(x)/dx, i.e., − cos( jπ
N−1

), j = 0, 1, · · · , N − 1: this choice pro-

vides the N collocation/interpolation points which are the extrema points of

the Chebyshev polynomial TN+1(x) roots. These N points are essentially of

Gauss-Lobatto type and the boundary-points x = ±1 are included automati-

cally.

In order to examine the efficiency of each choice of collocation/interpolation

points, we consider two canonical steady-state problems, namely one-dimensional

(1-D) steady-state space-fractional advection equation and 1-D steady-state space-

fractional diffusion problem. In these test-cases, we compare the obtained accuracy

in addition to the condition number of the corresponding linear system for the five

aforementioned choices of the collocation/interpolation points.



224

3 5 7 9 11 13
10

−10

10
−5

10
0

N

L
2
−

E
rr

o
r

(ν=1/10)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

3 5 7 9 11 13
10

0

10
1

10
2

10
3

N

C
o
n
d
it
io
n
#

o
f
D

µ

(ν=1/10)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

3 5 7 9 11 13
10

−10

10
−5

10
0

N

L
2
−

E
rr

o
r

(ν=1/2)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

3 5 7 9 11 13
10

0

10
2

10
4

N

C
o
n
d
it
io
n
#

o
f
D

µ

(ν=1/2)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

3 5 7 9 11 13
10

−10

10
−5

10
0

N

L
2
−

E
rr

o
r

(ν=9/10)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

3 5 7 9 11 13
10

0

10
2

10
4

N

C
o
n
d
it
io
n
#

o
f
D

µ

(ν=9/10)

 

 

(i) Equidistant Points

(ii) Jacobi−polyfractonomial Roots

(iii) Extrema of Jacobi−polyfractonomial

(iv) Chebyshev Roots

(v) Extrema of Chebyshev

Figure 7.1: Steady-state fractional advection problem: log-linear L2-norm error of the numerical
solution to −1D ν

x u(x ) = f(x), x ∈ [−1, 1], versus N , employing different collocation/interpolation
points (left column), and the corresponding condition number of the linear system resulting from
each choice of collocation/interpolation points (right column). The first row is associated with the
fractional order ν = µ = 1/10, the middle row is corresponding to ν = µ = 1/2, and the bottom
row corresponds to the fractional order ν = µ = 9/10.
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Steady-state fractional advection equation

First, we consider the simplest FODE that is the following space-fractional advection

equation of order ν ∈ (0, 1):

−1D ν
x u(x ) = f(x), x ∈ [−1, 1], (7.33)

u(−1) = 0.

We seek the solution to (7.33) in the form uN(x) =
∑N

j=2 uN(xj)h
µ
j (x) (note that

uN(x1) = uN(−1) = 0 ). Then, by adopting one the collocation/interpolation points

presented in Sec. 7.3.3, and requiring the residual

Radv
N (x) = −1D ν

x u(x )− f(x) (7.34)

to vanish on the collocation points, and finally setting ν = µ, we obtain

N∑
j=2

Dµ
ij uN(xj)− f(xi) = 0, (7.35)

for i = 2, 3, · · · , N . Hence, the collocation scheme leads to the following linear

system:

Dµ ~uN =~f, (7.36)

in which Dµ is the corresponding (N − 1)× (N − 1) fractional differentiation matrix

given in (C.4).

Corresponding to the force-term f(x) = Γ(7+9/17)
Γ(7+9/17−ν)

(1+x)6+9/17−ν , the analytical

solution to (7.33) is obtained as uext(x) = (1 + x)6+9/17, which is a fractional-order
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function. Having such an exact solution, we show the log-linear L2-norm error of the

numerical solution to (7.33), versus N , in Fig. 7.1. On the left panel, we employ dif-

ferent collocation/interpolation points, and we present the corresponding condition

number of the linear system resulting from each choice of collocation/interpolation

points on the right panel. We examine also three fractional order, where the first row

is associated with the fractional order ν = µ = 1/10, the middle row corresponds to

ν = µ = 1/2, and the bottom row corresponds to ν = µ = 9/10. We first observe

that our fractional collocation method yields exponential convergence (decay of the

L2-error with N) in each case. We also observe that the roots of −1D ν
x [ (1)P ν

M(x ) ],

denoted as (fractional) extrema of the Jacobi polyfractonomials, are the best points

among all cases. It is shown that not only this choice leads to the best accuracy (low-

est error level), but also it results in the lowest condition number with the slowest

growth with respect to N .

Steady-state fractional diffusion problem

Next, we examine a higher-order FODE that is a space-fractional diffusion equation

of order 1 + ν, ν ∈ (0, 1):

−1D 1+ν
x u(x ) = f(x), x ∈ [−1, 1], (7.37)

u(±1) = 0,

to analyze the performance of the higher differentiation matrices. We seek solutions

to (7.37) in the form uN(x) =
∑N−1

j=2 uN(xj)h
µ
j (x), where uN(x1) = uN(−1) =

uN(xN) = uN(+1) = 0. Similarly, by requiring the residual to vanish on any choice
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Figure 7.2: Steady-state fractional diffusion problem: log-linear L2-norm error of the nu-
merical solution to −1D 1+ν

x u(x ) = f(x) , x ∈ [−1, 1], versus N , employing different colloca-
tion/interpolation points (left column), and the corresponding condition number of the linear sys-
tem resulting from each choice of collocation/interpolation points (right column). The first row is
associated with the fractional order ν = µ = 1/10 (of total order 1.1), the middle row is corre-
sponding to ν = µ = 1/2 (of total order 1.5), and the bottom row corresponds to the fractional
order ν = µ = 9/10 (of total order 1.9).
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of the collocation points given in Sec. 7.3.3 and setting µ = ν, we obtain

N∑
j=2

D1+µ
ij uN(xj)− f(xi) = 0, (7.38)

for i = 2, 3, · · · , N − 1, which leads to the following linear system:

D1+µ ~uN =~f, (7.39)

in which D1+µ is the corresponding (N−2)×(N−2) fractional differentiation matrix

given in (11.26). Having the same analytical solution taken in previous case and in

a similar fashion, we present log-linear L2-norm error of the numerical solution to

−1D 1+ν
x u(x ) = f(x), versus N , in Fig. 7.2 on the left panel, where different collo-

cation/interpolation points are utilized. We also show the corresponding condition

number of the linear system resulting from each choice on the right panel. This nu-

merical experiment is also in agreement with our previous observation which again

highlights that the roots of −1D ν
x [ (1)P ν

M(x ) ], denoted as (fractional) extrema of

the Jacobi polyfractonomials, are the best points.

7.4 Numerical Tests

Having established the best choice of the collocation points in the previous section,

we now present further numerical test-cases. In fact, many applications might involve

fractional differential operators consisting of multiple fractional derivative terms pos-

sibly with different fractional order. In this section, we solve a number of linear and

nonlinear FPDEs to investigate the performance of our fractional collocation method.
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7.4.1 Steady-state Problems

We first examine two linear steady-state problems: (i) space-fractional advection-

diffusion equation, and (ii) space-fractional multi-term FODEs. Here, we take a

step-by-step approach to show how the fractional spectral collocation method can

be employed to solve different problems with almost the same ease.

Steady-state fractional advection-diffusion

Here, we consider a two-term equation that describes the dynamics of steady-state

fractional advection-diffusion problem. Particularly, we are interested in the follow-

ing case

c −1D ν1
x u(x )−K −1D 1+ν2

x u(x ) = f(x), x ∈ [−1, 1], (7.40)

u(±1) = 0,

where ν1 and ν2 ∈ (0, 1).

Remark 7.4.1. Problem (7.33) was associated only with a single fractional order ν, for

which we could perform the interpolation (7.15). However, in (7.40), the fractional

differential operator generally is associated with two fractional orders. Hence, we

need to specify a representative fractional order, νrep, to do interpolation operation

at the collocation points. Such νrep can be simply set as the average of the fractional

orders in (7.40), or as the max/min{ν1, ν2}.

This time, we seek the solution to (7.40) as uN(x) =
∑N−1

j=2 uN(xj)h
µ
j (x) con-

sidering µ = νrep, where due to the homogeneous boundary conditions, uN(x1) =

uN(−1) = 0 = uN(1) = uN(xN) we construct hµj (x) only for j = 2, 3, · · · , N − 1.
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Figure 7.3: Steady-state fractional advection-diffusion: log-linear L2-norm error of the numerical
solution to c −1D ν1

x u(x ) − K −1D 1+ν2
x u(x ) = f(x) , x ∈ [−1, 1], versus N , employing different

fractional orders ν1 and ν2 (left column), and the corresponding condition number of the linear
system resulting form each choice of fractional order (right column).
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Then, by requiring the corresponding residual to vanish at the collocation points

{xi}N−1
i=2 ,

c
N−1∑
j=2

Dν1
ij uN(xj) −K

N−1∑
j=2

D1+ν2
ij uN(xj)− f(xi) = 0, (7.41)

we obtain the following linear system

Dν
tot ~uN =~f, (7.42)

where Dν
tot = cDν1 − KD1+ν2 of dimension (N − 2) × (N − 2), in which D1+ν2 is

obtained from (11.26) or (11.21).

To demonstrate the performance of the collocation scheme for such application,

we consider the forcing term

f(x) =
Γ(128

17
)

Γ(128
17
− ν1)

(1 + x)
111
17
−ν1 − (

111

17
− ν2)

Γ(128
17

)

Γ(128
17
− ν2)

(1 + x)
94
17
−ν2 , (7.43)

for which the analytical solution to (7.40) is obtained as uext(x) = (1 + x)6+9/17.

In Fig. 7.3, we show the log-linear L2-norm error of the numerical solution to

−1D ν1
x u(x ) − −1D,1+ν2

x u(x ) = f(x) , x ∈ [−1, 1], versus N , employing different

fractional orders ν1 and ν2 (left column), and the corresponding condition number

of the linear system resulting form each choice of fractional order (right column).

In this figure, the first row is associated with the fractional order ν1 = ν2 = µ, the

middle row corresponds to the case where ν1 < ν2 where the fractional interpolation

parameter µ is taken as νmax, νmin, and νave; and similarly, the bottom row corre-

sponds to ν1 < ν2 such that for this case ν2− ν1 becomes larger than one considered

in the middle row.
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Figure 7.4: Steady-state multi-term problem: log-linear L2-norm error of the numerical solution
to (7.44), versus N , employing fractional orders (left column), and the corresponding condition
number of the linear system resulting form each choice of fractional order (right column). Top row
corresponds to the fractional orders ν1 = σ1 = 1/5, ν2 = σ2 = 1/3 and ν3 = σ3 = 5/7 ; also bottom
row corresponds to , νk = 1− σk, where σ1 = 1/5, σ2 = 1/3, σ3 = 5/7.

The exponential decay of L2-norm error with N is the first observation we make

in Fig. 7.3. Here we employ the roots of −1D ν
x [ (1)P ν

M(x ) ], (fractional) extrema of

the Jacobi polyfractonomials, as our collocation/interpolation points. The second

important observation is about the choice of the fractional interpolation parameter

µ, since we have two different fractional orders ν1 and ν2. It was shown that among

µ = νmax, νmax, and νave, the average value i.e., µ = νave shows the fastest decay

of error with N in Fig. 7.3 in addition to yielding almost the slowest growth of the

condition number with N in the corresponding linear system.
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Multi-term linear advection-diffusion-reaction equations

Next, we generalize (7.33) to a multi-term linear fractional differential equation as

Ma∑
k=1

ck

[
−1D νk

x u(x )
]

+

Md∑
p=1

Ck
[
−1D 1+σp

x u(x )
]

+ Mu(x) = f(x), x ∈ [−1, 1]

u(±1) = 0, (7.44)

where CMd
6= 0, νk and σp ∈ (0, 1), moreover, {ck}Ma

k=1, {Cp}Md
p=1 also M are real

constants given.

We follow similar steps and seek the solution to (7.44) as uN(x) =
∑N−1

j=2 uN(xj)h
µ
j (x)

by setting µ to some representative ν. Next, by requiring the corresponding residual

to vanish at the collocation points {xi}N−1
i=2 (the roots of the Jacobi polyfractonomial),

we obtain

Ma∑
k=1

ck

[
−1D νk

x u(x )
]
x=xi

+

Md∑
p=1

Ck
[
−1D 1+σp

x u(x )
]
x=xi

+ Mu(xi)− f(xi) = 0,

where the fractional differentiation matrices Dνk , k = 1, 2, · · · ,Ma and D1+σp , p =

1, 2, · · · ,Md, are obtained form (11.20) and (11.21). By doing so, the collocated

fractional differential equation results in the following linear (algebraic) system

Dν,σ
tot ~uN =~f, (7.45)

where Dν,σ
tot =

∑Ma

k=1 Dνk +
∑Md

p=1 D1+σp +M I represents the total fractional differen-

tiation matrix whose dimension is (N −2)× (N −2), in which I denotes the identity

matrix.

In Fig. 7.4 (left panel) we plot log-linear L2-norm error of the numerical solution
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to (7.44), versus N , corresponding to different fractional orders νk and σp. In this

case, we take the exact solution to be uext(x) = (1 + x)6+9/17− 2(1 + x)5+9/17. These

results once again confirm the exponential convergence of the fractional collocation

method, and verify that the choice of fractional interpolation parameter µ as the

algebraic mean of all fractional differential orders leads to the fastest exponential

convergence. The corresponding condition number obtained for such average value,

µ, leads to also a small growth with respect to N (see the right panel in Fig. 7.4).

7.4.2 Time-dependent FPDEs

We examine time-dependent FPDEs in which both spatial and temporal differen-

tial terms are considered as fractional-order. Specifically, we consider time- and

space-fractional advection-diffusion equation, time- and sapce-fractional multi-term

FPDEs, and finally time-dependent space-fractional nonlinear Burgers’ equation.

Time- and space-fractional advection-diffusion

As the first time-dependent FPDE, we consider the following problem:

(7.46)

0D τ
t u(x, t ) + c −1D ν1

x u(x, t )−K −1D 1+ν2
x u(x, t ) = f(x, t), x ∈ [−1, 1], t ∈ [0, T ],

u(±1, t) = 0,

u(x, 0) = 0,
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Figure 7.5: Time- and space- fractional advection-diffusion problem; log-linear L2-norm error of
the numerical solution to 7.46, versus N , corresponding to advective fractional order ν1 = 1/3 and
ν2 = 2/3, i.e., total diffusive order 1+2/3 (left), and ν1 = 1/10 and ν2 = 9/10 (right). In each case,
we examine the time-fractional orders τ = 1/10 and 9/10, where the time-integration is performed
for simulation time T = 1. Here, the left panel corresponds to the space-fractional orders ν1 = 1/3
and ν2 = 2/3, while the right panel corresponds to ν1 = 1/10 and ν2 = 9/10.

where x ∈ [−1, 1] and t ∈ [0, T ], and the associated fractional orders τ , ν1 and

ν2 ∈ (0, 1). We seek the solution of form

uMN (x, t) =
N∑
j=1

M∑
m=1

uMN (xj, tm)hµxj (x)lµtm (t), (7.47)

where hµxj (x) are the spatial fractional Lagrange basis functions with the representa-

tive fractional parameter µx, and lµtm (t) represent the corresponding temporal nodal

basis functions with the representative parameter µt, constructed as

lµtm (t) =
( t

tm

)µt M∏
q=1
q 6=m

( t− tq
tm − tq

)
, 2 ≤ q ≤M, (7.48)

where the collocation points can be taken as ti = (xi+1)T/2, where xi are the spatial

collocation points, such that 0 = t1 < t2 < · · · < tN = T . By taking similar steps

as in Sec. 7.3.1 and setting τ = µt, we can obtain the time-fractional differentiation

matrix Dµt , whose entries are given as

Dµt
ij =

1

(tm)µt

M∑
m=1

Γ(m+ µt)

Γ(m)
βjn Pn−1(x(ti) ). (7.49)
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Such temporal fractional interpolants satisfy the property lµtm (xk) = δmk at the time

interpolation points. We note that the same βjn utilized for the space-fractional

differentiation matrix are employed in (7.49). Next, we substitute (7.47) into (7.46)

and take the interpolation and collocation points to be identical. Then, by the

Kronecker property for both time- and space-fractional Lagrange interpolants we

obtain:

UDµtT + [cDν1 −K D1+ν2 ] U = F, (7.50)

in which U and F denote the matrix of approximate solution and load-matrix whose

entries are uMN (xj, tm) and f(xj, tm), respectively. The linear system (7.50) can be

viewed as a Lyapunov equation

A U + UB = F, (7.51)

where A = cDν1 −K D1+ν2 and B = DµtT . Here, the superscript T represents the

transpose operation.

Since we have already studied the spatial discretization of our scheme, the tem-

poral accuracy is now examined in Fig. 7.5, where the aim is to show the exponential

decay of the time-integration error with N , for which the exact solution is taken as

uext(x, t) = t6+2/3
(

(1 + x)6+9/17 − 2(1 + x)5+9/17
)

. We employ the fractional ex-

trema of the Jacobi polyfractonomial as the time interpolation points and plot the

log-linear L2-norm error of the numerical solution to (7.46), versus N , corresponding

to advection fractional order ν1 = 1/3 and ν2 = 2/3, i.e., total diffusive order 1+2/3

(left), and ν1 = 1/10 and ν2 = 9/10 (right). In each case shown in Fig. 7.5, we

examine the time-fractional orders τ = 1/10 and 9/10.
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Figure 7.6: Time-and space-fractional multi-term problem; log-linear L2-norm error of the nu-
merical solution to 7.52, versus N , where the exact solution uext(x, t) = t6+2/3 ( (1 + x)6+9/17 −
2(1 + x)5+9/17 ). The temporal fractional derivative order is τ , the multi-term advective fractional
orders are shown by νk,k = 1, 2, 3, and the diffusive fractional orders are denoted by 1 + σk. The
left figure corresponds to multi-term advective fractional orders νk = 1 − σk, k = 1, 2, 3 where
σ1 = 1/5, σ2 = 1/3,and σ3 = 5/7. The right figure is associated with the νk = σk. In each case,
we examine to time-fractional orders τ = 1/10 and 9/10, where the time-integration is performed
for simulation time T = 1.

Time- and space-fractional multi-term FPDEs

Next, we generalize the fractional advection-diffusion problem (7.46) to a multi-term

linear FPDE as

0D τ
t u(x, t ) +

Ma∑
k=1

ck

[
−1D νk

x u(x, t )
]

+ (7.52)

Md∑
p=1

Ck
[
−1D 1+σp

x u(x, t )
]

+ Mu(x, t) = f(x, t), x ∈ [−1, 1], t ∈ [0, T ],

u(±1, t) = 0,

u(x, 0) = 0,

where CMd
6= 0, τ , νk and σp ∈ (0, 1). In addition, {ck}Ma

k=1, {Cp}Md
p=1 also M are real

constants given as before. Taking similar steps as in Sec. 7.4.2 leads to another

Lyapunov matrix equation

Ã U + UB̃ = F, (7.53)
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in which Ã =
∑Ma

k=1 ckD
νk +

∑Md

p=1 CkD1+νp and B̃ = B = DµtT .

We confirm our observation made in the previous case in Fig. 7.6, where we plot

log-linear L2-norm error of the numerical solution to (7.52), versus N . On the left

figure the distributed advective fractional orders are taken as νk = 1−σk, k = 1, 2, 3

where σ1 = 1/5, σ2 = 1/3,and σ3 = 5/7. Instead, on the right figure, the associated

fractional orders are νk = σk. In each case, we examine to time-fractional orders

τ = 1/10 and 9/10. We have taken the same exact solution as in the previous case,

however, with a different corresponding forcing term f(x, t), obtained using (7.8).

We similarly observed that the algebraic mean of the fractional differentiation orders

would be an appropriate candidate for µ, the fractional interpolation parameter.

Time-dependent space-fractional Burgers’ equation

We shall show one of the most important advantage of our fractional collocation

method that is the efficient treatment of the nonlinear fractional differential terms in

FPDEs. As the last problem, we solve the following time-dependent space-fractional

Burgers’ equation

(7.54)

∂u

∂t
+ u(x, t) −1D ν1

x u(x, t )− ε −1D 1+ν2
x u(x, t ) = f(x, t), x ∈ [−1, 1], t ∈ [0, T ],

u(±1, t) = 0,

u(x, 0) = 0,
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where ν1 and ν2 ∈ (0, 1). The corresponding spatial discretization can be done in a

similar fashion as shown in previous sections as

d ~uN(t)

dt
= −diag[ ~uN(t) ]Dν1 ~uN(t) + ε D1+ν2 ~uN(t) +~f(t), (7.55)

where diag[ ~uN(t) ] represents a diagonal matrix whose diagonal entries are the com-

ponents of the solution vector ~uN(t). The time-integration of this system can be done

using a fourth order Runge-Kutta (RK-4). In Table 8.1 we show the exponential de-

cay of L2-norm error of the numerical solution to (7.54) with N , corresponding to the

fractional orders ν1 = ν2 = 1/2, and the simulation time T = 1/2. In our RK-4 multi-

stage time-integration scheme, we utilize ∆t = 5×10−6. We have examined three val-

ues for ε: (i) ε = 0 corresponding to the inviscid Burgers equation, (ii) ε = 10−4 cor-

responding to the viscous Burgers equation with comparatively small diffusivity, and

(iii) ε = 10−3 corresponding to viscous Burgers equation with comparatively larger

diffusivity. Here, we set the exact solution uext(x, t) = exp(−t) (1 − x)(1 + x)5+9/17

for these test-cases and obtain the corresponding forcing term for each case is as:

f(x, t) =
∞∑
q=1

(−1)qΓ(q + 1)

(Γ + 1− τ)q!
tq−τ + (7.56)

exp(−t)uext(x, t)
[ 2p0

p0 − ν1

(1 + x)p0−1−ν1 − p0 + 1

p0 + 1− ν1

(1 + x)p0−ν1
]

−ε exp(−t)
[2p0(p0 − 1− ν2)

p0 − ν2

(1 + x)p0−2−ν2 − (p0 + 1)(p0 − 1− ν2)

p0 + 1− ν2

(1 + x)p0−1−ν2
]
,

where p0 = 6+9/17, and we truncate the above infinite sum according to the machine

precision.
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Table 7.1: Exponential decay of L2-norm error of the numerical solution to (7.54) with N ,
corresponding to the fractional orders ν1 = ν2 = 1/2, and the simulation time T = 1/2. In the
RK-4 multi-stage time-integration scheme, we use ∆t = 5× 10−6.

N Inviscid Burgres Viscous Burgres (ε = 10−4) Viscous Burgres (ε = 10−3)
3 1.8650958 1.8651994 1.8661323
5 0.5973899 0.6805485 0.6815204
7 2.03×10−4 2.41 ×10−4 2.43×10−4

9 8.71×10−6 8.68×10−6 8.51×10−6

7.5 Discussion

We conclude the chapter by comparing the performance of FSCM with the finite

difference method (FDM) developed in [111], where the fractional derivative 0Dνt u(t)

is represented as

0Dνt u(t) =
1

Γ(2− ν)

k∑
j=0

bj
u(tk+1−j)− u(tk−j)

(∆t)ν
+ rk+1

∆t , (7.57)

where rk+1
∆t ≤ Cu(∆t)

2−ν and bj := (j + 1)1−ν − j1−ν , j = 0, 1, · · · , k; a central differ-

ence method has been employed to approximate the kernel in the fractional deriva-

tive. Finite difference methods are usually easy schemes to implement, however,

they are of low order of accuracy, which potentially leads to an enormous memory

storage in solving FPDEs when relatively well-resolved solutions are needed. Here,

we solve the simplest fractional-order differential equation of form

0D ν
t u( t ) = f(t), t ∈ [0, T ], (7.58)

u(0) = 0.
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Table 7.2: CPU time (seconds) on a single 2.66 GHz Intel processor, corresponding to FSCM,
PG spectral method, and FDM for solving 0Dνt u(t) = f(t), and the exact solution is uext(t) = t6.
Here, N denotes the expansion order in FSCM and PG spectral method, also Ng represents the
number of grid points in FDM, and the simulation time is set to T = 1.

(ν = 1/10)

L2-norm Error FSCM PG Spectral Method FDM

O(10−4) (N = 6) 0.474261 (N = 6) 0.519422 (Ng = 70) 0.412937
O(10−5) (N = 7) 0.54725 × (Ng = 260) 0.574912
O(10−6) (N = 8) 0.726889 (N = 7) 0.538418 (Ng = 1000) 5.43267

(ν = 1/2)

L2-norm Error FSCM PG Spectral Method FDM

O(10−4) (N = 6) 0.490258 (N = 6) 0.494925 (Ng = 450) 1.20882
O(10−5) (N = 7) 0.551916 × (Ng = 2000) 21.9763
O(10−6) (N = 8) 0.740887 (N = 7) 0.501629 (Ng = 7000) 285.797

(ν = 9/10)

L2-norm Error FSCM PG Spectral Method FDM

O(10−4) (N = 5) 0.434934 × (Ng = 3500) 69.9344
O(10−5) (N = 6) 0.497591 (N = 6) 0.491425 (Ng = 26000) 4714.55
O(10−6) (N = 7) 0.531419 (N = 7) 0.502424 Running Out of Memory!

where ν is taken as 1/10, 1/2, and 9/10, also the simulation time is set to T = 1. Such

a model-problem and the aforementioned FDM scheme are actually a building block

for solving more complicated FPDEs, where the time-and space-fractional terms are

discretized in a similar fashion. Moreover, in solving a multi-term FPDE with K

fractional-order terms, one has to re-formulate the problem into a recurrence system

of fractional-order problems resembling (7.58) (see e.g., [112]). However, as we have

shown, our FSCM scheme solves any linear multi-term FPDE with the same ease

and without resorting to re-formulating the original problem.

To highlight this fact, we want to compare the CPU time in FSCM and FDM

scheme, in addition to a Petrov-Galerkin (PG) spectral method, developed in [189].
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In this method, we seek an approximate solution of the form

u(t) ≈ uN(t) =
N∑
n=1

an
(1)P̃ µ

n (t), (7.59)

where an are the unknown expansion coefficients to be determined. By plugging

(7.59) into (7.58), we obtain the residual RN(t) as

RN(t) = 0Dνt uN(t)− f(t)

to be L2-orthogonal to all elements in the set of test functions {(2)P̃ µ
k (x(t) ) : k =

1, 2, · · · , N}, which are the exact eigenfunctions of the fractional Sturm-Liouville

eigen-problems (FSLP) of second kind [187]. This scheme yields a diagonal stiffness

matrix, whose diagonal entries are given by γk = ( 2
T

)2µ−1
(
k+µ
k

)2 2
2k−1

. Consequently,

we obtain the expansion coefficients as

ak =
1

γk

∫ T

0

f(t)
(2)P̃ µ

k (x(t) ) dt, k = 1, 2, · · · , N. (7.60)

In Table 7.2, we show the CPU time corresponding to FSCM, PG spectral

method, and FDM for solving (7.58) corresponding to the following three level of

L2-norm error: O(10−4),O(10−5), and O(10−6). Here, the exact solution is taken as

uext(t) = t6, where by setting T = 1, the computational cost of each method is shown

corresponding to fractional order ν = 1/10 (top), ν = 1/2 (middle), and ν = 9/10

(bottom). Table 7.2 reveals that for the whole range ν, also for the whole range of

error level of interest, our FSCM and PG spectral methods by far outperform FDM.

Quantitatively, at the error level O(10−6), FSCM and PG methods perform roughly

7 and 386 times faster than FDM corresponding to ν = 1/10 and ν = 1/2, respec-

tively. While we see that for such a simple model-problem and setting, FDM can
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not achieve the error level O(10−6), because of the lack of memory. Instead, FSCM

and PG spectral methods reach to the error O(10−6) in a half of a second. Finally,

Table 4.1 shows that FSCM and PG spectral method perform almost equivalently in

solving (7.58). However, we note that in this case, the linear system resulting from

PG spectral method is diagonal. Therefore, in contrast to FSCM, the employment of

PG spectral method in other problems such as linear FPDEs and multi-term FPDEs

becomes computationally more expensive due to the extra cost of quadrature, while

possessing the exponential accuracy.



Chapter Eight

Variable-Order Fractional PDEs
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While several high-order methods have been developed for fractional PDEs (FPDEs)

with fixed order, there are no such methods for FPDEs with field-variable order.

These equations allow multiphysics simulations seamlessly, e.g. from diffusion to

sub-diffusion or from wave dynamics transitioning to diffusion, by simply varying the

fractional order as a function of space or time. We develop an exponentially accu-

rate fractional spectral collocation method for solving linear/nonlinear FPDEs with

field-variable order. Following the spectral theory, developed in [187] for fractional

Sturm-Liouville eigenproblems, we introduce a new family of interpolants, called

left-/right-sided and central fractional Lagrange interpolants. We employ the frac-

tional derivatives of (left-/right-sided) Riemann-Liouville and Riesz type and obtain

the corresponding fractional differentiation matrices by collocating the field-variable

fractional orders. We solve several FPDEs including time- and space-fractional

advection-equation, time- and space- fractional advection-diffusion equation, and

finally the space-fractional Burgers’ equation to demonstrate the performance of

the method. In addition, we develop a spectral penalty method for enforcing in-

homogeneous initial conditions. Our numerical results confirm the exponential-like

convergence of the proposed fractional collocation methods.

8.1 Background

Recently, it has been demonstrated that in many dynamic processes, the underlying

differential operators not only appear as fractional, but they also possess a dynamic

nature in a sense that their order is field-variable, which may vary in time and/or

space. For instance, several classes of random processes with variable-order frac-

tional transition probability densities on unbounded domains have been studied in

[94, 88]. Moreover, the notion of variable-order fractional calculus has been used
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to dynamic modelling of heterogeneous physical systems. Examples are linear and

nonlinear oscillators with viscoelastic damping by Coimbra [42], processing of geo-

graphical data using variable-order derivatives by Cooper and Cowan [43], signature

verification through variable/adaptive fractional order differentiators by Tseng [172],

constitutive laws in viscoelastic continuum mechanics by Ramirez et.al., [146], mod-

eling of diffusive-convective effects on the oscillatory flows [136], anomalous diffusion

problems by Sun et al. [165], fractional advection-diffusion problem by Chen et al.,

[37, 36], mobile-immobile advection-dispersion model by Zhang et al. [193], and

chloride ions sub-diffusion in concrete structures by Chen et. al. [39].

Such an extension from fixed-order to variable-order operators provides an in-

valuable prospect in modeling complex phenomena, whose behaviour otherwise may

not be properly understood. For instance, in Fig. 8.1 (right), we investigate the

decaying solution to the following time- and space fractional diffusion problem

They introduced these polyfractonomials as the eigenfunctions of fractional Sturm-

Liouville problems in [187], explicitly. Moreover, they employed these fractional bases

to introduce a new class of fractional interpolants to develop efficient and spectrally

accurate collocation methods in [190] for a variety of FODEs and FPDEs including

multi-term FPDEs and the nonlinear space-fractional Burgers’ equation. Employing

the Jacobi polyfractonomials, Zayernouri and Karniadakis have recently developed

a unified Petrov-Galerkin spectral method along with a unified fast solver in [183]

that efficiently treats the whole family of elliptic, parabolic, and hyperbolic FPDEs

in high-dimensions with spectral accuracy and in a unified fashion.

C
0Dζ(x)

t u =
∂1+ν u

∂|x|1+ν
, (8.1)
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Figure 8.1: Variable-order (Left) versus fixed-order diffusion (Right). The initial condition is
u(x, 0) = 1 − x2 and the solutions are obtained at t = 1

2 , where the space-fractional order is
(1 + ν) = 1.99. While the fixed-order cases on the right plot exhibit the expected sub-diffusion
process compared to the standard diffusion (SD) problem (i.e., when ζ = 1 and 1 + ν = 2), the
variable-order test-case when ζ(x) = 1/(3|x|+ 11/10) on the left plot exhibit, surprisingly, a super-
diffusion behaviour.

subject to u(x, 0) = (1− x2) and u(±1, t) = 0, in the absence of any external forces.

In (8.1), C0Dζt (·) and ∂1+ν(·)
∂|x|1+ν are fractional derivatives of Caputo and Riesz type, see

section 8.2. Here, we set ζ and ν ∈ (0, 1), highlighting the anomalous sub-diffusion

character of the problem, compared to the standard diffusion denoted by SD, i.e.,

when ζ = ν = 1. We demonstrate the corresponding sub-diffusive behaviour in

(8.1) by taking different but fixed values of ζ and ν and plotting the results in Fig.

8.1 (right) at t = 1/2. As expected, the corresponding curves all lag behind the

standard diffusion. Surprisingly, when we allow the temporal order ζ to vary across

the domain, as shown in Fig. 8.1 (left) at t = 1/4 and t = 1/2, we observe a

super-diffusive behaviour even for ζ(x) ∈ (0, 1); here, ζ(x) = 1/(3|x| + 11/10). In

addition, we notice a more pronounced super-diffusion at earlier times in Fig. 8.1

(left). However, after a long time, the variable-order case becomes a sub-diffusion

process.

The numerical approximation of variable-order FPDEs has been mostly devel-

oped using finite-difference methods (FDMs) (see [194, 158, 38, 157] and references
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therein). Although easier to implement, the main challenge in FDM schemes is

their limited accuracy interwoven with their inherent local character, while fractional

derivatives are essentially global (nonlocal) differential operators. Hence, global

schemes such as Spectral Methods (SM) may be more appropriate for discretizing

fractional operators.

Recently, Zayernouri and Karniadakis [189] developed exponentially accurate

Petrov-Galerkin spectral and spectral element methods for fractional differential

equations, where they employed a new family of fractional bases, called Jacobi

Polyfractonomials. They introduced these polyfractonomials as the eigenfunctions

of fractional Sturm-Liouville problems in [187], explicitly given as

(1)Pα,β,µn (ξ) = (1 + ξ)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (ξ), ξ ∈ [−1, 1], (8.2)

with µ ∈ (0, 1), −1 ≤ α < 2−µ, and −1 ≤ β < µ−1, representing the eigenfunctions

of the singular FSLP of first kind (SFSLP-I), and

(2)Pα,β,µn (ξ) = (1− ξ)−α+µ−1P−α+µ−1 , β−µ+1
n−1 (ξ), ξ ∈ [−1, 1], (8.3)

where −1 < α < µ− 1 and −1 < β < 2− µ, and µ ∈ (0, 1), denoting the eigenfunc-

tions of the singular FSLP of second kind (SFSLP-II). Moreover, they employed these

fractional bases to introduce a new class of fractional interpolants to develop efficient

and exponentially accurate collocation methods in [190] for a variety of FODEs and

FPDEs including multi-term FPDEs and the non-linear space-fractional Burgers’

equation.

To the best of our knowledge, no high-order or spectral methods have been de-

veloped for variable-order FPDEs up to date. The main contribution of the present
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study is the development of a new class of exponentially accurate fractional spec-

tral collocation method for solving linear and nonlinear field-variable order in-time

and in-space FPDEs. To this end, we introduce the left-/right-sided fractional La-

grange interpolants (FLIs) when spatial Riemann-Liouville derivatives are employed,

in addition to the central FLIs when spatial Riesz derivatives are employed.

8.2 Preliminaries

We first provide some definitions from fractional calculus. Following [142], for a

function w(z) ∈ Cn[zL, zR], we denote by zL
Dγzw(z) the left-sided Reimann-Liouville

fractional derivative of order γ, when n− 1 ≤ γ < n, defined as

RL
zL
Dγzw(z) =

1

Γ(n− γ)

dn

dzn

∫ z

zL

w(s)

(z − s)γ+1−n ds, z ∈ [zL, zR], (8.4)

where Γ represents the Euler gamma function, and as γ → n, the global operator

RL
zL
Dγz → dn/dzn, recovering the local n-th order derivative with respect to z. We

also denote by RL
zDγzRw(z) the corresponding right-sided Reimann-Liouville fractional

derivative of order n− 1 ≤ γ < n, defined as

RL
zDγzRw(z) =

1

Γ(n− γ)
(−1)n

dn

dzn

∫ b

z

w(s)

(s− z)γ+1−n ds, z ∈ [zL, zR]. (8.5)

Similarly, as γ → n, the right-sided fractional derivative tends to the standard n-th

order local derivative. We also recall from [142] a useful property of the Riemann-

Liouville fractional derivatives. Assume that 0 < p ≤ 1, 0 < q ≤ 1 and z > zL,

then

RL
zL
Dp+qz w(z) =

(
RL
zL
Dpz
) (

RL
zL
Dqz
)
w(z) =

(
RL
zL
Dqz
) (

RL
zL
Dpz
)
w(z), (8.6)
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when w(zL) = 0, and

RL
zDp+qzR

w(z) =
(
RL
zDpzR

) (
RL
zDqzR

)
w(z) =

(
RL
zDqzR

) (
RL
zDpzR

)
w(z), (8.7)

when w(zR) = 0. Moreover, for k > −1, we have

RL
zL
Dγz (z + zL)k =

Γ(k + 1)

Γ(k + 1− γ)
(z + zL)k−γ (8.8)

and

RL
zDγzR(zR − z)k =

−Γ(k + 1)

Γ(k + 1− γ)
(zR − z)k−γ, (8.9)

if γ ∈ (0, 1). In addition, let again z = zR+zL
2

+ zR−zR
2

ξ map x ∈ [xL, xR] with

ξ ∈ [−1, 1], known as the standard domain, to [zL, zR]. Then,

RL
zL
Dγzw(z) = (

2

zR − zL
)γ RL

−1Dγξw
(
z(ξ)

)
, (8.10)

moreover,

RL
zDγzRw(z) = (

2

zR − zL
)γ RL

ξDγ1w
(
z(ξ)

)
, (8.11)

which are useful in the derivation of the emerging differentiation matrices in our

method.

The corresponding fractional derivatives of Caputo type, i.e., C
zR
Dγzw(z) and

C
zDγzRw(z), are also defined by interchanging the order of differentiation and inte-

gration in (8.4) and (8.5) as

C
zL
Dγzw(z) =

1

Γ(n− γ)

∫ z

zL

dnw(s)
dsn

(z − s)γ+1−n ds, z ∈ [zL, zR], (8.12)
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and

C
zDγzRw(z) =

(−1)n

Γ(n− γ)

∫ b

z

dnw(s)
dsn

(s− z)γ+1−n ds, z ∈ [zL, zR], (8.13)

which we will employ in FPDEs subject to non-homogeneous initial conditions. From

the definition of the Caputo derivatives, the properties (8.8) and (8.9) become

C
zL
Dγz (z + zL)k =


0, k < γ,

Γ(k+1)
Γ(k+1−γ)

(z + zL)k−γ, 0 < γ ≤ k,

(8.14)

and

C
zDγzR(zR − z)k =


0, k < γ,

−Γ(k+1)
Γ(k+1−γ)

(zR − z)k−γ, 0 < γ ≤ k.

(8.15)

We denote by ∂γu
∂|z|γ the Riesz fractional derivative of order γ, when n − 1 < γ < n,

defined in terms of left- and right-sided Riemann-Liouville fractional derivatives as

dγu

d|z|γ = Cγ

(
RL
zL
Dγzw(z) + RL

zDγzRw(z)
)
, (8.16)

where Cγ = −1
2

sec(γπ/2). It is easy to check that as γ → n, asymptotically dγ(·)
d|z|γ →

dn(·)/dzn.

So far, we note that all the aforementioned fractional derivatives are of a con-

stant order γ and are defined originally for the univariate function w(z). In the

sequel, we introduce a model problem, in which the fractional operators are defined

through generalization of the given definitions to multi-variate functions, in which

the corresponding fractional orders are field variables rather than constants.
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8.3 Problem Definition

Let ζ, σ and ν : R2 → R be continuous functions. We study the following nonlinear

variable-order time- and space-fractional FPDE for all (x, t) ∈ [a, b]× [0, T ] as

RL
0Dζ(x,t)t u+ g(u) ∗Dσ(x,t)

x u = K ∗D1+ν(x,t)
x u+ f(u;x, t), (8.17)

u(a, t) = u(b, t) = 0, (8.18)

u(x, 0) = 0, (8.19)

where K > 0 and f(u;x, t) denotes the forcing- and/or reaction term. Moreover, the

temporal order ζ(x, t) ∈ (0, 1), the spatial advection order σ(x, t),∈ (0, 1), and the

spatial diffusion order 1 + ν(x, t) ∈ (1, 2), i.e., ν(x, t) ∈ (0, 1). We shall discuss the

regularity of the aforementioned field variable orders in section 8.6. Here, RL0Dζ(x,t)t u

represents the ζ(x, t)-th order left-sided partial time derivative of u(x, t) of Riemann-

Liouville type, defined as

RL
0Dζ(x,t)t u(x, t) =

1

Γ[1− ζ(x, t)]

∂

∂t

∫ t

0

u(x, s) ds

(t− s)ζ(x,t) , (8.20)

based on (8.4). We consider the space-fractional derivatives ∗Dx, associated with

the advection and the diffusion terms in (8.17), to be of either (i) Riemann-Liouville

or (ii) Riesz type, when homogeneous initial/boundary conditions are imposed. Al-

ternatively, when inhomogeneous initial conditions are enforced, we consider the

temporal derivative to be of Caputo type.

(I) ∗Dx of Riemann-Liouville type We define the corresponding advection partial

fractional derivative ∗Dσ(x,t)
x u of Riemann-Liouville type according to (8.4) and (8.5)
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and based on the direction of the transport velocity as

∗Dσ(x,t)
x u(x, t) ≡



RL
aDσ(x,t)

x u = 1
Γ[1−σ(x,t)]

∂
∂x

∫ x
a

u(r,t) dr

(x−r)σ(x,t) , g > 0,

RL
xDσ(x,t)

b u = 1
Γ[1−σ(x,t)]

(− ∂
∂x

)
∫ b
x

u(r,t) dr

(r−x)σ(x,t)
, g < 0.

(8.21)

In addition, we define the diffusion partial fractional derivative ∗D1+ν(x,t)
x u of Riemann-

Liouville type either as RLaD1+ν(x,t)
x u ≡ ∂

∂x
[RLaDν(x,t)

x u] or RLxD1+ν(x,t)
b u ≡ ∂

∂x
[RLxDν(x,t)

b u].

(II) ∗Dx of Riesz type We alternatively define the corresponding advection partial

fractional derivative ∗Dσ(x,t)
x u of Riesz type as

∗Dσ(x,t)
x u(x, t) ≡ ∂σ(x,t)u

∂|x|σ(x,t)
= Cσ(x,t)

(
RL
aDσ(x,t)

x u + RL
xDσ(x,t)

b u
)
. (8.22)

Moreover, from (8.6) and (8.7), we define the diffusion partial fractional derivative

∗D1+ν(x,t)
x u to be of Riesz type as

∗D1+ν(x,t)
x u(x, t) = C1+ν(x,t)

∂

∂x

[
RL
aDν(x,t)

x u(x, t) + RL
xDν(x,t)

b u(x, t)
]
. (8.23)

In the following, we develop a fractional spectral collocation method for efficient

solution of (8.17) based on the variable-order fractional differential operators defined

here.
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8.4 Fractional Lagrange Interpolants (FLIs)

We define a set of interpolation points on which the corresponding Lagrange inter-

polants are obtained. Specifically, we employ a new family of left- and right-sided

space-time fractional Lagrange interpolants (FLI) rather than utilizing the standard

algebraic/trigonometric polynomial Lagrange basis functions. We shall demonstrate

that such a construction leads to efficient computation of the corresponding differen-

tiation matrices in addition to efficient approximations. Denoting by uN an approx-

imation of the solution in terms of such interpolators, we formulate our collocation

method by requiring the residual of the problem i.e.,

RN(x, t) = RL
0Dζ(x,t)t uN + g(u) ∗Dσ(x,t)

x uN −K ∗D1+ν(x,t)
x uN − f(uN ;x, t), (8.24)

to vanish on the same set of grid points called collocation points.

Our fractional spectral collocation scheme is inspired by a new spectral theory

developed for fractional Sturm-Liouville eigen-problems (FSLP) in [187]. The idea

is to represent the solution to (8.17) in terms of new fractional (non-polynomial)

basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the

FSLP of first and second kind, explicitly given in (8.2) and (8.3). So, depending

on the choice of the spatial fractional derivative ∗Dx in (8.17), we introduce the

corresponding fractional Lagrange interpolants.
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8.4.1 Construction of FLI when ∗Dx ≡ RLDx

Let α = β = −1 in (8.2) and (8.3), which corresponds to the regular eigenfunctions

of first and second kind, given as

(1)P µ
n (ξ) = (1 + ξ)µP−µ,µn−1 (ξ), ξ ∈ [−1, 1], (8.25)

and

(2)P µ
n (ξ) = (1− ξ)µP µ,−µ

n−1 (ξ), ξ ∈ [−1, 1]. (8.26)

where we recall that µ ∈ (0, 1). From the properties of the eigensolutions in [187],

the left-sided fractional derivatives of (11.16) and (8.26) are given as

RL
−1D µ

ξ

(
(1)P µ

n ( ξ )
)

= RL
ξD µ

1

(
(2)P µ

n ( ξ )
)

=
Γ(n+ µ)

Γ(n)
Pn−1(x ), (8.27)

where Pn−1(x ) denotes a Legendre polynomial of order (n − 1). Hence, in general,

we can employ the univariate eigenfunctions (11.16) and (8.26) to construct the

space-time modal basis functions needed. However, here we alternatively construct

suitable nodal basis functions based on the transport velocity and the corresponding

choice of the spatial derivatives RL
aDx or RL

xDb; see (8.21).

Left-Sided FLIs when∗Dx ≡ RL
aDx

We seek solutions as a nodal expansion

uN(x, t) =
M∑
m=1

N∑
n=1

uN(xm, tn)Lµm(x)T τn (t), (8.28)



256

where Lµm(x) represent the left-sided spatial FLIs and T τn (t) denote the temporal

FLIs, which are defined on some interpolations points a = x1 < x2 < · · · < xM = b

and 0 = t1 < t2 < · · · < tN = T as

Lµm(x) =
( x− x1

xm − x1

)µ M∏
k=1
k 6=m

( x− xk
xm − xk

)
, 2 ≤ m ≤M− 1, (8.29)

all of fractional order (M+ µ− 1), and

T τn (t) =
( t
tn

)τ N∏
q=1
q 6=n

( t− tq
tn − xq

)
, 2 ≤ n ≤ N , (8.30)

of fractional order (N + τ − 1). Here, we call the superscript µ and τ as spatial and

temporal interpolation parameters, respectively. We set these constant fractional

parameters prior to solving (8.17) from the variable orders given, i.e., τ , σ, and

ν. Moreover, we note that the fractional interpolants satisfy the Kronecker delta

property, i.e., Hµ
m(xk) = δkm and Lτn(tq) = δqn, at interpolation points.

Because of the homogeneous Dirichlet boundary/initial condition(s) in (8.17),

we only construct Lµm(x) for m = 2, 3, · · · ,M when the maximum fractional order

1 + ν ∈ (1, 2), where we set uN(x1, t) = uN(xM, t) = 0. Moreover, when τ ∈ (0, 1),

there are only (N −1) fractional Lagrange interpolants T τn (t), n = 2, 3, · · · ,N , since

we impose uN(x, t1) = 0.
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Right-Sided FLIs when ∗Dx ≡ RL
xDb

In this case, we seek the solution as another nodal expansion given by

uN(x, t) =
M∑
m=1

N∑
n=1

uN(xm, tn)Rµ
m(x)T τn (t), (8.31)

where Rµ
m(x) represent the right-sided spatial FLIs, defined on the interpolations

points as

Rµ
m(x) =

( xM − x
xM − xm

)µ M∏
k=1
k 6=m

( x− xk
xm − xk

)
, 2 ≤ m ≤M− 1, (8.32)

which are all again of fractional order (M+ µ− 1).

8.4.2 Central FLIs when ∗Dx ≡ ∂
∂|x| of Riesz Type

When the fractional derivatives in (8.17) are all of Riesz type, we seek the solution

as

uN(x, t) =
M+1∑
m=1

N∑
n=1

uN(xm, tn)hm(x)T τn (t), (8.33)

where hm(x) represent the standard polynomial Lagrange interpolants, defined on

the interpolations points as

hm(x) =
M+1∏
k=1
k 6=m

( x− xk
xm − xk

)
, 2 ≤ m ≤M, (8.34)

which are all of order M. The polynomial choice of hm(x) is mainly due to the

co-existence of the left- and right-sided fractional derivatives in the definition of the

Riesz derivatives in (8.22) and (8.23). Hence, compared to the structure of the FLIs in
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(8.29) and (8.32), we call the FLIs presented in (8.33) central in-space interpolants.

In fact, they can be viewed as the nodal representations of Legendre polynomials

i.e., PM(x), which simultaneously appear to be the regular eigenfucntions (11.16)

and (8.26) asymptotically when µ→ 0 setting n =M+ 1.

When the time-derivative is of Caputo type, which is a proper setting in which we

can enforce the inhomogeneous initial conditions, we also use the standard Legendre

bases in time, i.e.,

uN(x, t) =
M+1∑
m=1

N+1∑
n=1

uN(xm, tn)hm(x)hn(t), (8.35)

where

hn(t) =
N+1∏
k=1
k 6=n

( t− tk
tm − tk

)
, 1 ≤ n ≤ N + 1, (8.36)

which allows us to properly penalize the initial condition to the problem and develop

a stable scheme.

8.5 Fractional Differentiation Matrices

We derive the corresponding spatial and temporal fractional differentiation matrices

assuming that the collocation and interpolation points coincide. We first choose

the suitable expansion among those given in (8.28), (8.31), or (8.33) based on the

choice of the spatial fractional derivative ∗Dx. Then, we derive the corresponding

differentiation matrices.
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8.5.1 ∗Dx of Left-Sided Riemann-Liouville Type

Whether left- or right-sided Riemann-Liouville derivatives are employed in (8.17),

we obtain the corresponding to left- or right-sided fractional differentiation matrices

of order σ(x, t) and 1 + ν(x, t).

Theorem 8.5.1. Let σ = σ(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

that maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, when ∗Dx ≡ RL
aDx in (8.17), the left-sided

spatial differentiation matrix RLDσ
L of Riemann-Liouville type, corresponding to the

nodal FLI expansion (8.28), is a three-dimensional matrix whose entries are given

by

{RLDσ
L}ikm = (

2

b− a)σ(xi,tk)Am

M∑
j=1

βLmj F
L,σ
j

(
xi, tk

)
, (8.37)

where i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , also FL,σ
j

(
x(ξ), t

)
is explicitly given as

FL,σ
j

(
x(ξ), t

)
=

j−1∑
q=0

bµjq (1 + ξ)q+µ−σ, (8.38)

in which Am = ( b−a
2xm−2a

)µ, and finally βLmj and bµjq are the corresponding expansion

coefficients, given a priori by (C.1) and (C.7).

Proof. Given in C.1.

Remark 8.5.2. In standard collocation methods applied to constant/integer-order

operators, the corresponding differentiation matrices are two-dimensional. The extra

dimension appearing in the left-sided differentiation matrix RLDσ
L is due to the field-

variable σ(x, t), which makes the corresponding fractional differential operator vary

across the computational domain. Consequently, by collocating the fractional order
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on each collocation point (xi, tk), we must compute all the entries associated with

the whole set of the spatial points indexed by “ m”. Therefore, it naturally renders

the corresponding differentiation matrix three-dimensional. Interestingly, when σ =

σ(x), we reduce the dimension of RLDσ
L by one, and we obtain the entries of the

two-dimensional differentiation matrix as

{RLDσ
L}im = (

2

b− a)σ(xi)Am

M∑
j=1

βLmj F
L,σ
j

(
xi

)
. (8.39)

Moreover, when σ is constant, the differentiation matrix in (8.39) is further reduced

to

{RLDσ
L}im = (

2

b− a)σAm

M∑
j=1

βLmj
Γ(j + σ)

Γ(j)
Pj−1( ξi ), (8.40)

previously given in [190], where xi = a+b
2

+ b−a
2
ξi.

The next theorem provides the corresponding left-sided differentiation matrix for

the diffusion term in (8.17) when ∗D1+ν
x ≡ RL

aD1+ν
x .

Theorem 8.5.3. Let ν = ν(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

the maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, the left-sided spatial differentiation matrix

RLD1+ν
L of Riemann-Liouville type, corresponding to the nodal FLI expansion (8.28)

when ∗Dx ≡ RL
aDx in (8.17), is a three-dimensional matrix whose entries are given

by

(8.41)

{RLD1+ν
L }ikm = (

2

b− a)1+ν(xi,tk)Am

M∑
j=1

βLmjFL,νj (xi, tk),

in which Am = ( b−a
2xm−2a

)µ, i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , and FL,νj

(
x(ξ), t

)
is
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explicitly given by

FL,νj

(
x(ξ), t

)
= I{j≥1}

j−1∑
q=0

Bµjq · (1 + ξ)q+µ−1−ν(xi,tk) (8.42)

+ I{j≥2}

j−2∑
q=0

Bµ
jq · (1 + ξ)q+µ−ν(xi,tk),

where Bµjq and Bµ
jq are the corresponding expansion coefficients, given a priori by

(C.12) and (C.13).

Proof. Given in C.2.

In analogy with Remark 8.5.2, we also appreciate the appearance of the extra

dimension in the right-sided differentiation matrix RLD1+ν
L . Similarly, when ν =

ν(x), we reduce the dimension of RLD1+ν
L by one and obtain the entries of the two-

dimensional differentiation matrix as

(8.43)

{RLD1+ν
L }im = (

2

b− a)1+ν(xi)Am

M∑
j=1

βLmjFL,νj (xi).

Remark 8.5.4. We note that the coefficients βLmj, shown in (C.1), are obtained only

once and are utilized as many times as needed to construct RLDσ
L and RLD1+ν

L for

any order σ, ν ∈ (0, 1).

8.5.2 ∗Dx of Right-Sided Riemann-Liouville Type

Following similar steps, presented in section 8.5.1, we now construct the correspond-

ing right-sided advection differentiation matrix of order σ(x, t) and the right-sided
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diffusion differentiation matrix of order 1 + ν(x, t) when ∗Dx ≡ RL
xDb in the sequel.

Theorem 8.5.5. Let σ = σ(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

that maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, when ∗Dx ≡ RL
xDb in (8.17), the right-sided

spatial differentiation matrix RLDσ
R of Riemann-Liouville type, corresponding to the

nodal FLI expansion (8.31), is a three-dimensional matrix whose entries are given

by

{RLDσ
R}ikm = (

2

b− a)σ(xi,tk)Am
M∑
j=1

βRmj F
R,σ
j

(
xi, tk

)
(8.44)

in which i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , also FR,σ
j

(
x(ξ), t

)
is explicitly given

as

FR,σ
j

(
x(ξ), t

)
=

j−1∑
q=0

cµjq (1− ξ)q+µ−σ, (8.45)

in which Am = 1/(ξM−ξm)µ, and finally βRmj and cµjq are the corresponding expansion

coefficients, given a priori by (C.14) and (C.19).

Proof. Given in C.3.

The next theorem provides the corresponding right-sided differentiation matrix

for the diffusion term in (8.17) when ∗D1+ν
x ≡ RL

xD1+ν(x,t)
b .

Theorem 8.5.6. Let ν = ν(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

that maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, the right-sided spatial differentiation matrix

RLD1+ν
R of Riemann-Liouville type, corresponding to the nodal FLI expansion (8.31)

when ∗Dx ≡ RL
xDb in (8.17), is a three-dimensional matrix whose entries are given
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by

(8.46)

{RLD1+ν
R }ikm = (

2

b− a)1+ν(xi,tk)Am
M∑
j=1

βRmjFR,νj (xi, tk),

where i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , and FR,νj

(
x(ξ), t

)
is explicitly given by

FR,νj

(
x(ξ), t

)
= I{j≥1}

j−1∑
q=0

Cµ
jq · (1− ξ)q+µ−1−ν(xi,tk) (8.47)

+ I{j≥2}

j−2∑
q=0

Cµ
jq · (1− ξ)q+µ−ν(xi,tk),

in which Cµ
jq and Cµ

jq are the corresponding expansion coefficients, given a priori by

(C.25) and (C.24).

Proof. Given in C.4.

8.5.3 ∗Dx of Riesz Type

The following Lemma is useful in the derivation and construction of the Riesz spatial

differentiation matrices.

Lemma 8.5.7. [5] For µ > 0, α > −1, β > −1, and ∀ξ ∈ [−1, 1]

(1 + ξ)β+µ Pα−µ,β+µ
n (ξ)

Pα−µ,β+µ
n (−1)

=
Γ(β + µ+ 1)

Γ(β + 1)Γ(µ)Pα,β
n (−1)

∫ ξ

−1

(1 + s)β Pα,β
n (s)

(ξ − s)1−µ ds, (8.48)
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and

(1− ξ)α+µ Pα+µ,β−µ
n (ξ)

Pα+µ,β−µ
n (+1)

=
Γ(α + µ+ 1)

Γ(α + 1)Γ(µ)Pα,β
n (+1)

∫ 1

ξ

(1− s)α Pα,β
n (s)

(s− ξ)1−µ ds. (8.49)

By the definition of the left-sided Riemann-Liouville integral RL−1Iµξ and evaluating

the special end-values Pα−µ,β+µ
n (−1) and Pα,β

n (−1), we can re-write (8.48) as

RL
−1Iµξ

{
(1 + ξ)βPα,β

n (ξ)
}

=
Γ(n+ β + 1)

Γ(n+ β + µ+ 1)
(1 + ξ)β+µ Pα−µ,β+µ

n (ξ).

Now, by taking the fractional derivative RL
−1Dµξ on the when β = −µ and α = µ we

obtain

RL
−1Dµξ

{
Pn(ξ)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1 + ξ)−µP µ,,−µ

n (ξ). (8.50)

Similarly, by the definition of the right-sided Riemann-Liouville integral RL
ξIµ1 and

evaluating the special end-values Pα−µ,β+µ
n (+1) and Pα,β

n (+1), we can re-write (8.49)

as

RL
ξIµ1
{

(1− ξ)αPα,β
n (ξ)

}
=

Γ(n+ α + 1)

Γ(n+ α + µ+ 1)
(1− ξ)α+µPα+µ,β−µ

n (ξ).

In a similar fashion, by taking the fractional derivative RL
ξDµ−1 on the both sides

when α = −µ and β = µ we obtain

RL
ξDµ1

{
Pn(ξ)

}
=

Γ(n+ 1)

Γ(n− µ+ 1)
(1− ξ)−µP−µ,µn (ξ). (8.51)

Theorem 8.5.8. Let σ = σ(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

that maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, when ∗Dx ≡ ∂σ(x,t)u/∂|x|σ(x,t) in (8.17), the

right-sided spatial differentiation matrix Dσ
Riesz of Riesz type, corresponding to the

nodal FLI expansion (8.33), is a three-dimensional matrix whose entries are given
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by

{Dσ
Riesz}ikm =

[
(

2

b− a)σ(x,t)Cσ(x,t)

]
(xi,tk)

M∑
j=1

β̃mjZσj (xk, tk), (8.52)

in which i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , ξ = 2x−a
b−a , and β̃mj are the cor-

responding expansion coefficients, given a priori by (C.28). Moreover, Zσj (x, t) is

explicitly given as

Zσj (x, t) =
Γ(j + 1)

Γ(j − σ(xi, tk) + 1)

[
(1 + ξ)−σ(x,t)P σ,−σ

j (ξ) + (1− ξ)−σ(x,t)P−σ,σj (ξ)
]
,

Proof. Given in C.5.

Theorem 8.5.9. Let ν = ν(x, t) ∈ C
(

[a, b]×[0, T ]
)

and consider the affine mapping

that maps ξ ∈ [−1, 1] to x ∈ [a, b]. Then, when ∗Dx ≡ ∂1+ν(x,t)u/∂|x|1+ν(x,t) in (8.17),

the right-sided spatial differentiation matrix D1+ν
Riesz of Riesz type, corresponding to

the nodal FLI expansion (8.33), is a three-dimensional matrix whose entries are given

by

{D1+ν(x,t)
Riesz }ikm =

[
(

2

b− a)1+νC1+ν

]
(xi,tk)

M∑
j=1

β̃mjWσ
j (x, t) (8.53)

in which i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , ξ = 2x−a
b−a , and Wσ

j (x, t) is explicitly

given as

Wν
j = (

j + 1

2
)

j−1∑
q=dνe

Cj
(−1

2
)qΓ(q + 1)

Γ(q + 1− ν(x, t))

[
(−1)j−1(1 + ξ)q−ν(x,t)

−(1− ξ)q−ν(x,t)
]
.

Proof. Given in C.6.



266

8.5.4 Temporal Differentiation Matrix RLDτ
t

We derive the temporal differentiation matrix RLDζ
t by taking RL

0Dζ(x,t)t uN(x, t) and

evaluating it the collocation points considering the fact that the spatial nodal bases

Lµm(x), Rµ
m(x), and hm(x) all satisfy the Kronecker delta property at the collocation

points. Hence, in the derivation of RLDζ
t any of the expansions (8.28), (8.31), or

(8.33) can be used. Following similar steps in section 8.5.1, we obtain the temporal

differentiation matrix corresponding to the following two cases:

Case I-A) Constant ζ = τ ∈ (0, 1). We map the interval t ∈ [0, T ] to the standard

domain ξ ∈ [−1, 1] as usual, and use the property (11.17) to obtain

RL
0Dζt uN(x, t )

∣∣∣
(xi,tk)

=
N∑
n=2

{RLDζ
t}kn uN(xi, tn),

where {RLDζ
t}im are the entries of the (N − 1)× (N − 1) left-sided temporal differ-

entiation matrix RLDζ
L of Riemann-Liouville since, given by

{RLDζ
t}kn = (

2

T
)ζηn

N∑
j=1

βLnj
Γ(j + ζ)

Γ(j)
Pj−1( ξk ), (8.54)

where ηn = T
2tn

and ξk = 2tk
T
− 1.

Case I-B) The general ζ(x, t) ∈ (0, 1). We obtain the corresponding temporal

differentiation matrix of variable order ζ(x, t) ∈ (0, 1), by evaluating RL
0Dζ(x,t)x uN(x, t)
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at the collocation points (xi, tk) also by Lµm(xi) = δim, we obtain

RL
0Dζ(x,t)t uN

∣∣∣
(xi,tk)

= (
2

T
)ζ(xi,tk)

N∑
n=2

uN(xm, tk)ηn

N∑
j=1

βLnj F
L,τ
j

(
xi, tk

)
=

N∑
n=2

{RLDζ
t}kniuN(xi, tn),

where {RLDζ
L}kni are the entries of the (N−1)×(M−1)×(N−1) left-sided temporal

fractional differentiation matrix RLDζ
t of Riemann-Liouville sense, computed as

{RLDζ
t}ikn = (

2

T
)ζ(xi,tk)ηn

N∑
j=1

βLnj F
L,τ
j

(
xi, tk

)
. (8.55)

We note that βLnj are the corresponding coefficients in the following expansion that

are obtained once as

Gn(ξ) =
N∑
j=1

βLnjP
−τ,τ
j−1 (ξ), (8.56)

similar to what we showed in (C.1).

8.5.5 Temporal Differentiation Matrix CDτ
t

We recall that when the time-derivative is of Caputo type we employ the expansion

(8.35).

Theorem 8.5.10. Let ζ = ζ(x, t) ∈ C
(

[a, b]× [0, T ]
)

and consider the affine map-

ping that maps η ∈ [−1, 1] to t ∈ [0, T ]. Then, when ∗Dt ≡ C
0Dt in (8.17), the

left-sided temporal differentiation matrix CDζ of Caputo type, corresponding to the

nodal FLI expansion (8.35), is a three-dimensional matrix whose entries are given
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by

{CDζ}ikm =
[
(

2

T
)ζ(x,t)

]
(xi,tk)

N∑
j=1

β̃mjZζj (xk, tk), (8.57)

when the solution to (8.17) is assumed to be continuous in time, in which i,m =

2, 3, · · · ,M, k = 1, 2, 3, · · · ,N + 1, η = 2t
T
− 1, and β̃mj are the corresponding

(temporal) expansion coefficients, given a priori similarly as in (C.28). Moreover,

Zζj (x, t) is explicitly given as

Zζj (x, t) =
Γ(j + 1)

Γ(j − ζ(xi, tk) + 1)

[
(1 + η)−ζ(x,t)P ζ,−ζ

j (η)
]
.

Proof. See C.5.

8.6 Numerical Tests

After the construction of the variable-order differentiation matrices of Riemann-

Liouville and Riesz type, we now solve a number of FPDEs to investigate the perfor-

mance of our schemes. We divide this section into two main parts. In the first part,

we implement our variable-order collocation method in solving linear FPDEs such

as time- and space-fractional advection equation, diffusion, and advection-diffusion

problems. In the second part, we deal with non-linear FPDEs of field-variable order,

namely the space-fractional nonlinear Burgers equation.

In all the numerical tests, we set collocation and interpolation points to be iden-

tical. Here, we adopt the choice of collocation points in [190], where we showed that

the fractional extrema of (1)P µ
n (ξ) and (2)P µ

n (ξ), i.e., the zeros of Legendre polyno-
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Figure 8.2: Time- and space-fractional linear advection problem with Riemann-Liouville spatial
operators: (left) spatial p-refinement, and (right) temporal p-refinement. The exact solution is the
fractional function uext(x, t) = (1 + x)6+9/17 t6+2/3, where (x, t) ∈ [−1, 1] × [0, 2]; moreover, the
temporal and spatial fractional orders are taken as the following field-variable functions, denoted as
linear ζ(x, t) = σ(x, t) = ( 5+4x

10 ) ( 1+4t
10 ), and hyperbolic tangent ζ(x, t) = σ(x, t) = [1 + tanh(x)][1 +

tanh(t− 1)]/4.

mials, are the best collocation points leading to the fastest rate of convergence. To

demonstrate the accuracy of our methods, we adopt the L∞ norm, normalized by

the essential norm of the exact solution in each case.

8.6.1 Linear FPDEs with ∗Dx ≡ RLDx

We first consider two examples of linear FPDEs, namely advection and advection-

diffusion problems, in which the spatial fractional derivatives are all either of left- or

right-sided Riemann-Liouville type.

Example 8.6.1. Fractional Advection Equation:

RL
0Dζ(x,t)t u+ θ RLDσ(x,t)

x u = f(x, t), (x, t) ∈ [−1, 1]× [0, 2], (8.58)

u(x, 0) = 0. (8.59)

where we replace g(u) in (8.17) with the constant advection velocity θ. Here,
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RLDσx ≡ RL
−1Dσx when θ > 0, hence we set the boundary condition u(−1, t) = 0,

and RLDσx ≡ RL
xDσ1 when θ < 0, and therefore we set u(1, t) = 0. Moreover in

(8.58), ζ, σ : R2 → R are continuous functions. In fact, we deduce the continuity

requirement in ζ and σ from the definition of the corresponding temporal and spatial

differentiation matrices in (8.55) and (C.8), implying that each entry is assumed to

be continuous from above and below. Let θ = 1 and seek the solution of the form

(8.28), where we set the interpolation parameters τ and µ to be the mean-value of

ζ(x, t) and σ(x, t) given by

τ =
1

|Ω|

∫
Ω

ζdΩ, (8.60)

and

µ =
1

|Ω|

∫
Ω

σdΩ, (8.61)

receptively. This is analogous to the algebraic mean-value interpolation parameters in

multi-term FODEs/FPDEs, studied in [190]. We have investigated that such mean-

values also lead to efficient approximation of fractional operators of variable-orders.

Next, by substituting uN(x, t) in (8.58), we require the residual

RN(x, t) = RL
0Dζ(x,t)t uN + RL

−1Dσ(x,t)
x uN − f(x, t), (8.62)

to vanish at the collocation points (xi, tk), which leads to the following linear system:

RLSA~u = ~b, (8.63)

where RLSA is a (M− 1)(N − 1)× (M− 1)(N − 1) matrix, whose entries are given

by

(8.64)

RLSA{Iik , Jmn} = {RLDζ
t}ikn δim + {RLDσ

L}ikmδkn,
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Linear ζ(x,t)=σ(x,t) and ν(t)

Hyperbolic Tangent ζ(x,t)=σ(x,t) and ν(t)

Figure 8.3: Time- and space-fractional linear advection-diffusion equation with Riemann-Liouville
spatial operators: (left) spatial p-refinement, and (right) temporal p-refinement. The exact solution
is given by the fractional uext(x, t) = (1+x)6+9/17 t6+2/3, where (x, t) ∈ [−1, 1]×[0, 2]; moreover, the
temporal and spatial fractional orders are respectively taken as the following field-variable functions,
denoted as linear ζ(x, t) = σ(x, t) = (5+4x

10 ) (1+4t
10 ) and 1 + ν(t) = 1 + 1+4t

10 , also hyperbolic tangent
ζ(x, t) = σ(x, t) = [1 + tanh(x)][1 + tanh(t− 1)]/4 and 1 + ν(t) = [3 + tanh(t− 1)]/2.

where Iik = (i− 2)(N − 1) + k − 1, Jmn = (m− 2)(N − 1) + n− 1, also {RLDζ
t}ikn

and {RLDσ
L}ikm are given in (8.55) and (C.8), respectively. Moreover, ~b represents

the load vector whose components are obtained as

~b{Iik} = f(xi, tk), (8.65)

and finally, the vector of unknown coefficients is defined as

~u{Jmn} = u(xm, tn), (8.66)

where i,m = 2, 3, · · · ,M and k, n = 2, 3, · · · ,N .

In Fig. 8.2, we plot the exponential-like decay of L∞-norm of the error in

corresponding spatial and temporal p-refinement. We set the exact solution to

be the following fractional function uext(x, t) = (1 + x)6+9/17 t6+2/3. Moreover,

the temporal and spatial fractional orders are taken as the following field-variable

functions, denoted as linear ζ(x, t) = σ(x, t) = (5+4x
10

) (1+4t
10

), and hyperbolic tan-



272

gent ζ(x, t) = σ(x, t) = [1 + tanh(x)][1 + tanh(t − 1)]/4. We obtain identical re-

sults when we choose θ = −1, i.e., the wind blows from right to left, and there-

fore right-sided Riemann-Liouville fractional derivatives are employed, considering

uext(x, t) = (1− x)6+9/17 t6+2/3.

Example 8.6.2. Fractional Advection-Diffusion Equation:

(8.67)

RL
0Dζ(x,t)t u+ θ RLDσ(x,t)

x u = RLD1+ν(t)
x u+ f(x, t), (x, t) ∈ [−1, 1]× [0, 2],

u(±1, t) = 0 (8.68)

u(x, 0) = 0. (8.69)

Here, RLDσx ≡ RL
−1Dσx and RLD1+ν

x u ≡ RL
−1D1+ν

x u if θ > 0, i.e., when the wind blows

from left to right. Alternatively, we set RLDσx ≡ RL
xDσ1 and RLD1+ν

x u ≡ RL
xD1+ν

1 u

when θ < 0. We note that in (8.67), ζ : R2 → R and σ : R2 → R are continuous

functions. In addition, ν : R → R suffices to be continuous in order for the entries

of the differentiation matrices to be well-defined. We first set θ = 1 and seek the

solution of the form (8.31), where we set the interpolation parameterµ to be the

mean-value of σ(x, t) given in (8.61). In a similar fashion, we can obtain the total

average temporal interpolation parameter τ by including both ζ(x, t) and ν(t) into

the averaging.

Having set the interpolation parameters, we substitute uN(x, t) in (8.67), and

obtain the corresponding linear system by requiring the residual

RN(x, t) = RL
0Dζ(x,t)t uN + RL

−1Dσ(x,t)
x uN + RL

−1D1+ν(t)
x uN − f(x, t), (8.70)
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to vanish at (xi, tk). It then leads to

RLSAD~u = ~b, (8.71)

where RLSAD is a (M−2)(N −1)× (M−2)(N −1) matrix, whose entries are given

by

(8.72)

RLSAD{Iik , Jmn} = {RLDζ
t}ikn δim +

(
{RLDσ

L}ikm − {RLD1+ν
L }ikm

)
δkn,

in which Iik = (i−2)(N −1)+k−1, Jmn = (m−2)(N −1)+n−1, also {RLD1+ν
L }ikm

is given in (C.10), where i,m = 2, 3, · · · ,M− 1 and k, n = 2, 3, · · · ,N .

In order to examine the temporal and spatial accuracy of our schemes for this

model problem, we plot the L∞-error versus expansion order in each case in Fig.

8.3. We set the exact solution again as uext(x, t) = (1 + x)6+9/17 t6+2/3, where the

temporal and spatial fractional orders are taken as the field-variable functions, de-

noted as linear and hyperbolic tangent. Once again, we observe the exponential-like

decays of error. We found identical convergence results in the case θ = −1, where

the corresponding spatial derivatives are of right-sided Riemann-Liouville type and

uext(x, t) = (1− x)6+9/17 t6+2/3.

8.6.2 Linear FPDEs with Riesz Derivatives

We consider two linear FPDEs with Riesz space-fractional derivatives of field-variable

orders, namely as space- and time- fractional diffusion and advection-diffusion prob-

lems.
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Figure 8.4: Time- and space-fractional linear diffusion equation with Riesz spatial operators:
(left) spatial p-refinement, and (right) temporal p-refinement. The exact solution is given by the
fractional uext(x, t) = sin(πx) t6+2/3, where (x, t) ∈ [−1, 1] × [0, 2]; moreover, the temporal and
spatial fractional orders are respectively taken as the following field-variable functions, denoted
as linear ζ(x, t) = ( 5+4x

10 ) (1+4t
10 ) and 1 + ν(t) = 1 + 1+4t

10 , also hyperbolic tangent ζ(x, t) = [1 +
tanh(x)][1 + tanh(t− 1)]/4 and 1 + ν(t) = [3 + tanh(t− 1)]/2.

Example 8.6.3. Fractional Diffusion Equation:

RL
0Dζ(x,t)t u =

∂1+ν(t)

∂|x|1+ν(t)
u+ f(x, t), (x, t) ∈ [−1, 1]× [0, T ], (8.73)

u(±1, t) = 0, (8.74)

u(x, 0) = 0. (8.75)

Here, we examine the same linear and hyperbolic tangent ζ(x, t) and ν(t) as

in previous section. Hence, by setting τ = µ = 1/2 as the average values for the

aforementioned field-variable order, we seek the solution to (8.73) to be of the form

(8.33). Next, we substitute uN(x, t) in (8.4), and require again the corresponding

residual to vanish at (xi, tk) to construct

RieszSD~u = ~b, (8.76)

where RieszSD is a (M−1)(N −1)× (M−1)(N −1) matrix, whose entries are given
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Figure 8.5: Time- and space-fractional linear advection-diffusion equation with Riesz spatial
operators: (left) spatial p-refinement, and (right) temporal p-refinement. The exact solution is
given by the fractional uext(x, t) = sin(πx) t6+2/3, where (x, t) ∈ [−1, 1] × [0, 2]; moreover, the
temporal and spatial fractional orders are respectively taken as the following field-variable functions,
denoted as linear ζ(x, t) = σ(x, t) = (5+4x

10 ) (1+4t
10 ) and 1 + ν(t) = 1 + 1+4t

10 , also hyperbolic tangent
ζ(x, t) = σ(x, t) = [1 + tanh(x)][1 + tanh(t− 1)]/4 and 1 + ν(t) = [3 + tanh(t− 1)]/2.

by

(8.77)

RieszSD{Iik , Jmn} = {RLDζ
t}ikn δim − {D1+ν

Riesz}ikmδkn,

where {D1+ν
Riesz}ikm is given in (C.35), in which i,m = 2, 3, · · · ,M and k, n =

2, 3, · · · ,N . We note that in the nodal expansion (8.33), we considerM+ 1, rather

than M in the FLI (8.33), collocation points in the spatial dimension.

In a similar fashion, we plot the corresponding spatial and temporal p-refinement

in Fig. 8.4, where we consider the exact solution this time to be uext(x, t) =

sin(πx) t6+2/3, where we observe the exponential-like decay of the error versus the

expansion order in each case.
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Example 8.6.4. Fractional Advection-Diffusion Equation:

(8.78)

RL
0Dζ(x,t)t u+

∂σ(x,t)

∂|x|σ(x,t)
u =

∂1+ν(t)

∂|x|1+ν(t)
u+ f(x, t), (x, t) ∈ [−1, 1]× [0, 2],

u(±1, t) = 0, (8.79)

u(x, 0) = 0. (8.80)

We seek the solution to (8.78) to be of the form (8.33) and substitute it in (8.78).

Then, we require the corresponding residual to vanish at (xi, tk) to obtain

RieszSAD~u = ~b, (8.81)

where the entries of RieszSAD are given by

(8.82)

RieszSAD{Iik , Jmn} = {RLDζ
t}ikn δim +

(
{Dσ

Riesz}ikm − {D1+ν
Riesz}ikm

)
δkn,

where {Dσ
Riesz}ikm is given in (C.30), in which i,m = 2, 3, · · · ,M and k, n =

2, 3, · · · ,N . Now, given the linear and hyperbolic tangent ζ(x, t) and ν(t) as in

previous case, we set τ = µ = 1/2 as the average values for the aforementioned

field-variable order.

In Fig. 8.5, we present the exponential-like decay of L∞-error in the correspond-

ing spatial and temporal p-refinement. The exact solution is again given by the

fractional in-time function uext(x, t) = sin(πx) t6+2/3. As before, the temporal and

spatial fractional orders are respectively taken as the following field-variable func-

tions, denoted as linear ζ(x, t) = σ(x, t) = (5+4x
10

) (1+4t
10

) and 1 + ν(t) = 1 + 1+4t
10

,
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also hyperbolic tangent ζ(x, t) = σ(x, t) = [1 + tanh(x)][1 + tanh(t − 1)]/4 and

1 + ν(t) = [3 + tanh(t− 1)]/2.

8.6.3 A Penalty Method for FPDEs

We consider the following variable-order in time and space diffusion equation subject

to the initial condition u(x, 0) = g(x) and in absence of the any external forcing term.

Example 8.6.5.

C
0Dζ(x,t)t u =

∂1+ν(x,t)

∂|x|1+ν(x,t)
u, ∀(x, t) ∈ [−1, 1]× [0, T ], (8.83)

u(±1, t) = 0, (8.84)

u(x, 0) = g(x), (8.85)

In this example, u(x, t) is assumed to be continuous, and we employ the time-

derivative in (8.83) to be of Caputo type and the the spatial derivative of Riesz

type. To enforce the inhomogeneous initial condition u(x, 0) = g(x), we present the

following penalty method as follows: find uN(x, t) ≈ u(x, t) such that

C
0Dζ(x,t)t uN =

∂1+ν(x,t)

∂|x|1+ν(x,t)
uN − ΞQ−(t)

[
uN(x, 0)− g(x)

]
, (8.86)

u(±1, t) = 0, (8.87)

where Q−(0) = 1 and it vanishes at the rest of temporal collocation points t ∈ (0, T ].

Next, we seek the solution uN of the form

uN(x, t) =
M∑
m=2

N+1∑
n=1

uN(xm, tn)hm(x)hn(t), (8.88)
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Figure 8.6: Variable-order diffusion problem: the initial condition is u(x, 0) = (1 − x2)4 and
the solutions are obtained at t = 1

2 , where the space-fractional order is (1 + ν(x)) ∈ (1, 2) and the
time-fractional order is ζ(x) ∈ (0, 1), defined as spatial functions, where the ratio ζ(x)/(1 +ν(x)) is
greater than 1/2 (left), and is smaller than 1/2 (right). In these test-cases, the fractional orders ζ(x)
and ν(x) are given as constant when x ∈ [−1/2, 1/2] and they vary linearly towards the boundaries,
such that they keep the ratio invariant.

where hn(t) are the standard Legendre polynomials defined in [0, T ]. This scheme

is consistent since as uN → u the penalty term vanishes asymptotically. Moreover,

the global (spectral) treatment of the fractional time-derivative results in the penalty

method in (8.86) to be unconditionally stable when Ξ > 0, confirmed by our extensive

numerical experiments. In fact, the bigger the penalty coefficient Ξ, the stronger

enforcement of the initial condition is achieved. Hence, we set Ξ = 1015, which

enforces the initial condition up to the machine precision. The dimension of the

problem then becomes (M− 1)× (N + 1) since uN(±1, tn) = 0.

By substituting (8.88) in (8.83) and require the residual to vanish at the colloca-

tion points we obtain the following linear system

CRSD~u = ~b, (8.89)
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in which

(8.90)

CRSD{Iik , Jmn} = {CDζ
t}ikn δim − {D1+ν

Riesz}ikm δkn + Ξδmnδ1k,

and

~b{Iik} = −Ξg(xi)δ1k, (8.91)

where {CDζ
t}ikn is given in (8.57), in which i,m = 2, 3, · · · ,M and k, n = 1, 2, · · · ,N+

1. Here, the prescript CR recalls the Caputo and Riesz derivatives employed in the

temporal and spatial dimensions, respectively.

In Fig. 8.6, we solve (8.86) subject to the initial condition is u(x, 0) = (1− x2)4

and we plot the results at t = 1
2
, where the space-fractional order is (1+ν(x)) ∈ (1, 2)

and the time-fractional order is ζ(x) ∈ (0, 1), defined as spatial functions, where the

ratio ζ(x)/(1 + ν(x)) is greater than 1/2 (left), and is smaller than 1/2 (right).

Here, we keep the fractional orders ζ(x) and ν(x) constant when x ∈ [−1/2, 1/2]

and allow them to decay linearly towards the boundaries, such that they keep the

ratio invariant. The left plot reveals the sub-diffusion decay of the initial solution

as expected. However, the right plot exhibits some local super-diffusive effects near

the boundaries unexpectedly, which translates into faster decay compared to the

standard diffusion. It is in contrast to the sub-diffusive nature of the problem when

ζ ∈ (0, 1). Such a local effect can be associated with the way we define ζ(x) and ν(x),

which is only x-dependent when x ∈ [−1,−1/2] and x ∈ [1/2, 1] and is constant in

the middle domain. The polynomial order in time i.e., N and in spaceM are set to

18 is all simulations.
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8.6.4 Nonlinear FPDEs

Here, we consider the nonlinear inviscid and viscous Burgers equation with field-

variable orders in space.

Example 8.6.6. Inviscid and Viscous Burgers’ Equation:

∂u

∂t
+ u ∗Dσ(x,t)

x u = K ∗D1+ν(x,t)
x u+ f(u;x, t), (8.92)

u(±1, t) = 0, (8.93)

u(x, 0) = 0, (8.94)

Depending on the type of the fractional derivatives ∗Dx, either of left-sided

Riemann-Liouville or Riesz type, we seek the solution to (8.92) to be of the form

uN(x, tk) =
M−1∑
m=2

uN(xm, tk)L
µ
m(x), (8.95)

when ∗Dx ≡ RLDx, given the homogeneous boundary conditions. Alternatively, we

seek the solution to (8.92) to be of the form

uN(x, tk) =
M∑
m=2

uN(xm, tk)hm(x), (8.96)

when ∗Dx is of Riesz type. In this case, we employ a third-order Adams-Bashforth

scheme to carry out the time-integration of (8.92), where we partition the time

interval [0, T ] into equidistant points such that ∆t = T/Ng, in which Ng denotes the

number of time-grid-points. Denoting by ~ujN the vector of solution at time tj = j ·∆t,
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we obtain the following fully discrete form

~uk+1
N − ~ukN

∆t
=

J∑
q=1

αq

([
− diag(~uk+1−q

N ) · Dσ +K D1+ν
]
· ~uk+1−q

N + ~fk+1−q
)
, (8.97)

where ~fk+1−q = f(~x, tk+1−q), J represents the order of the method and αq are the

coefficients of the J -th order Adams-Bashforth method.

Remark 8.6.7. The differentiation matrices Dσ and D1+ν are now two-dimensional

matrices. However, we note that the entries of these matrices must be updated in

each iteration due to the temporal variability in the fractional orders σ(x, t) and

ν(x, t). To this end, we use (8.37) and (8.41) when ∗Dx ≡ RLDx, where we substitute

tk by (k + 1 − q)∆t. In addition, when ∗Dx is of Riesz type, we construct the two-

dimensional matrices Dσ and D1+ν using (8.52) and (8.53) similarly by substituting

tk by (k + 1− q)∆t in each iteration.

In Table 8.1, we demonstrate the exponential decay of L∞-norm error of the

numerical solution to (8.92) with M, where left-sided Riemann-Liouville and Riesz

fractional derivatives are employed. Here we examine field-variable fractional orders

σ(x, t) = ν(x, t) = (5+4x
10

) (1+4t
10

). When Riemann-Liouville derivatives are utilized,

we set the exact solution to uext(x, t) = t3 (1+x)6+2/3 and ∆t = 1/200, and in the case

of the Riesz fractional derivatives we set the exact solution uext(x, t) = t3 sin(πx)

while ∆t = 1/600. For both cases, the simulation time T = 1 and we employ a

third-order Adams-Bashforth time-integration scheme.
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Table 8.1: L∞-norm error of the numerical solution to (8.92) with M, corresponding to the
fractional orders σ(x, t) = ν(x, t) = ( 5+4x

10 ) ( 1+4t
10 ), hence, we set µ = 1/2, the mean-value. The top

table corresponds to the case where left-sided Riemann-Liouville fractional derivatives are employed.
In this case, the exact solution is uext(x, t) = t3 (1 + x)6+2/3, x ∈ [−1, 1] and we set ∆t = 1/200.
The bottom table corresponds to the case where Riesz fractional derivatives are used and the exact
solution is uext(x, t) = t3 sin(πx), x ∈ [−1, 1] and we set ∆t = 1/600. In both cases, the simulation
time T = 1, where in the third-order Adams-Bashforth time-integration scheme.

Left-Sided Riemann-Liouville ∗Dx ≡ RLDx
M Inviscid Burgres (K = 0) Viscous Burgres (K = 1)
5 1.88×10−1 2.73 ×10−1

7 8.12 ×10−4 8.82 ×10−3

9 1.44×10−5 1.38 ×10−5

Riesz Fractional Derivative ∗Dx ≡ ∂
∂|x|

M Inviscid Burgres (K = 0) Viscous Burgres (K = 1)
5 3.40 ×10−2 1.42 ×10−1

7 3.93 ×10−3 9.68 ×10−3

9 3.65 ×10−4 6.32 ×10−4



Chapter Nine

A Unified Petrov-Galerkin

Spectral Method for FPDEs
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Existing numerical methods for fractional PDEs suffer from low accuracy and inef-

ficiency in dealing with three-dimensional problems or with long-time integrations.

We develop a unified and spectrally accurate Petrov-Galerkin (PG) spectral method

for a weak formulation of the general linear Fractional Partial Differential Equations

(FPDEs) of the form 0D2τ
t u+

∑d
j=1 cj[ ajD

2µj
xj u ] + γ u = f , where 2τ , µj ∈ (0, 1), in

a (1 + d)-dimensional space-time domain subject to Dirichlet initial and boundary

conditions. We perform the stability analysis (in 1-D) and the corresponding con-

vergence study of the scheme (in multi-D). The unified PG spectral method applies

to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We

develop the PG method based on a new spectral theory for fractional Sturm-Liouville

problems (FSLPs), recently introduced in [187]. Specifically, we employ the eigen-

functions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as

temporal/spatial bases. Next, we construct a different space for test functions from

poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the

high-order spatial accuracy of the PG method, we demonstrate its efficiency and

spectral accuracy in time-integration schemes for solving time-dependent FPDEs as

well, rather than employing algebraically accurate traditional methods, especially

when 2τ = 1. Finally, we formulate a general fast linear solver based on the eigen-

pairs of the corresponding temporal and spatial mass matrices with respect to the

stiffness matrices, which reduces the computational cost drastically. We demon-

strate that this framework can reduce to hyperbolic FPDEs such as time- and space-

fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional

diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson

equations with the same ease and cost. Several numerical tests confirm the efficiency

and spectral convergence of the unified PG spectral method for the aforementioned

families of FPDEs. Moreover, we demonstrate the computational efficiency of the

new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional prob-
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lems.

9.1 Background

Existing numerical schemes for FPDEs suffer mainly from low accuracy and compu-

tational inefficiency in dealing with three-dimensional problems or with long-time

integrations. Recently, a variety of numerical methods, originally developed for

integer-order PDEs (see e.g., [64, 68, 195, 76]), have been extended to FPDEs. Such

an extension is neither trivial nor straightforward. For instance, there is a lot of work

done in developing Finite-Difference Methods (FDM) for FPDEs. Lubich [113, 114]

introduced the idea of discretized fractional calculus and later Sanz-Serna [154] pre-

sented a first-order FDM algorithm for partial integro-differential equations. Since

then, many works have aimed at improving the convergence rates of FDM schemes

e.g., in time to (∆t)2−α or (∆t)3+α, α ∈ (0, 1) (see e.g.[104, 166, 111, 30]). The

implementation of such FDM approaches is relatively easy. However, the bottle-

neck in the FDM approach is that the convergence is algebraic and the accuracy

is limited. Moreover, we observe that the heavy cost and memory storage in com-

puting the long-range history in two- and three-dimensional problems makes FDM

schemes computationally inefficient. In fact, FDM is essentially a local approach

which has been employed to approximate non-local fractional derivatives. This fact

would suggest that global schemes, such as spectral methods (SM), are more consis-

tent/adapted to the nature of FPDEs.

Sugimoto [163] employed Fourier SM in fractional Burgers’ equation, and later

Blank [25] adopted a spline-based collocation method for a class of FODEs. This

approach was later employed by Rawashdeh [147] for solving fractional integro-
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differential equations. Li and Xu [108, 109] developed a space-time spectral method

for a time-fractional diffusion equation with spectral convergence, which was based

on the early work of Fix and Roop [60]. Later on, Khader [86] proposed a Cheby-

shev collocation method for a space-fractional diffusion equation; also Piret and

Hanert developed a radial basis function method for fractional diffusion equations

[140]. Moreover, a Chebyshev spectral method [54], a Legendre spectral method [23],

and an adaptive pseudospectral method [119] were proposed for solving fractional

boundary value problems. In addition, generalized Laguerre spectral algorithms and

Legendre spectral Galerkin method were developed by Baleanu et al. [13] and by

Bhrawy and Alghamdi [22] for fractional initial value problems, respectively. The

main challenge in these spectral methods is that the corresponding stiffness and mass

matrices are non-symmetric, dense and they gradually become ill-conditioned when

the fractional order tends to small values. Hence, carrying out long-time and/or

adaptive integration using such SM schemes becomes intractable. To this end, Xu

and Hesthaven [180] developed a stable multi-domain spectral penalty method for

fractional partial differential equations. In all the aforementioned studies, the stan-

dard integer-ordered (polynomial) basis functions have been utilized.

Recently, Zayernouri and Karniadakis [189, 184] developed spectrally accurate

Petrov-Galerkin spectral and spectral element methods for non-delay and delay frac-

tional differential equations, where they employed a new family of fractional bases,

called Jacobi poly-fractonomials. They introduced these poly-fractonomials as the

eigenfunctions of fractional Sturm-Liouville problems in [187], explicitly given as

(1)Pα,β,µn (ξ) = (1 + ξ)−β+µ−1Pα−µ+1,−β+µ−1
n−1 (ξ), ξ ∈ [−1, 1], (9.1)

with µ ∈ (0, 1), −1 ≤ α < 2 − µ, and −1 ≤ β < µ − 1, which are representing the
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eigenfunctions of the singular FSLP of first kind (SFSLP-I), and

(2)Pα,β,µn (ξ) = (1− ξ)−α+µ−1P−α+µ−1 , β−µ+1
n−1 (ξ), ξ ∈ [−1, 1], (9.2)

where −1 < α < µ − 1 and −1 < β < 2 − µ, and µ ∈ (0, 1), denoting the eigen-

functions of the singular FSLP of second kind (SFSLP-II). Moreover, Zayernouri

and Karniadakis developed a space-time discontinuous Petrov-Galerkin (DPG) and

a discontinuous Galerkin (DG) method for the hyperbolic time- and space-fractional

advection equation in [188]. This approach was shown to be also applicable to prob-

lems of integer order time derivatives. In addition, they employed the aforementioned

Jacobi poly-fractonomial bases to introduce a new class of fractional Lagrange in-

terpolants for developing an efficient and spectrally accurate Fractional Spectral

Collocation Method (FSCM) in [190] for a variety of FODEs and FPDEs including

multi-term FPDEs and the nonlinear space-fractional Burgers’ equation. Recently,

the FSCM scheme has been further generalized to FPDEs of variable order in [185],

in where the associate fractional order(s) can vary in the computational domain

Ω. However, like all previous spectral methods, applying these schemes to higher-

dimensional problems remains a great challenge.

In this paper, we develop a unified and spectrally accurate Petrov-Galerkin (PG)

spectral method for the general FPDEs of the following weak form

(0Dτt u, tDτT v)Ω +
d∑
j=1

cj(ajDµjxj u, xjD
µj
bj
v)Ω + γ(u, v)Ω = (f, v)Ω,

where 2τ , µj ∈ (0, 1), in a (1 + d)-dimensional space-time domain subject to Dirich-

let initial and boundary conditions. Such a weak form is equivalent to the strong

form 0D2τ
t u +

∑d
j=1 cxj ajD

2µj
xj u + γ u = f , when u possesses enough smoothness.

This method applies equally-well to the entire family of linear fractional hyperbolic,
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parabolic and elliptic equations with the same ease. The main feature of this PG

spectral methods is the global discretization of the temporal term, in addition to

the spatial derivatives, rather than utilizing traditional low-order time-integration

methods. Regarding the strong form, we note that there is a much larger and richer

set of fractional derivative operators in d > 1 dimensions (see e.g., p.157 in [123])

to be considered in our future work. We essentially develop our PG method based

on a new spectral theory for fractional Sturm-Liouville problems (FSLPs) [187].

Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called

Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a differ-

ent space for test functions from poly-fractonomial eigenfunctions of the FSLP of

second kind (FSLP-II). We show that this choice of basis and test functions leads

to a stable bilinear form; moreover, we perform the corresponding error analysis.

In the present method, all the aforementioned matrices are constructed exactly and

efficiently. Moreover, we formulate a new general fast linear solver based on the

eigen-pairs of the corresponding temporal and spatial mass matrices with respect to

the stiffness matrices, which significantly reduces the computational cost in higher-

dimensional problems e.g., (1+3), (1+5) and (1+9)-dimensional FPDEs.

9.2 Preliminaries on Fractional Calculus

We first provide some definitions from fractional calculus. Following [142], for a

univariate function g(x) ∈ Cn[a, b], we denote by aDνxg(x) the left-sided Reimann-

Liouville fractional derivative of order ν, when n− 1 ≤ ν < n, defined as

aDνxg(x) =
1

Γ(n− ν)

dn

dxn

∫ x

a

g(s)

(x− s)ν+1−n ds, x ∈ [a, b], (9.3)
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where Γ represents the Euler gamma function, and as ν → n, the global operator

aDνx → dn/dxn, recovering the local n-th order derivative with respect to x. We

also denote by xDνb g(x) the corresponding right-sided Reimann-Liouville fractional

derivative of order ν, defined as

bDνxg(x) =
1

Γ(n− ν)
(−1)n

dn

dxn

∫ b

x

g(s)

(s− x)ν+1−n ds, x ∈ [a, b]. (9.4)

Similarly, as ν → n, the right-sided fractional derivative tends to the standard n-th

local one. The corresponding left- and right-sided fractional derivative of Caputo

type can be also defined as (9.3) and (9.4), but with the order of integration and

differentiation exchanged. However, these two sets of Riemann-Liouville and Ca-

puto definitions are closely linked. By virtue of (9.3) and (9.4), we can define the

corresponding partial fractional-derivative of a bivariate function.

Finally, we recall a useful property of the Riemann-Liouville fractional deriva-

tives. Assume that 0 < p < 1 and 0 < q < 1 and g(xL) = 0 x > xL, then

xL
Dp+qx g(x) =

(
xL
Dpx
) (

xL
Dqx
)
g(x) =

(
xL
Dqx
) (

xL
Dpx
)
g(x). (9.5)

9.3 Mathematical Formulation of Petrov-Galerkin

Spectral Method

Let u : Rd+1 → R, for some positive integer d. For u ∈ U (see e.g., (9.10)), we

consider the following general weak form in Ω = [0, T ]× [a1, b1]× [a2, b2]×· · ·× [ad, bd]
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as

(0Dτt u, tDτT v)Ω +
d∑
j=1

cj(ajDµjxj u, xjD
µj
bj
v)Ω + γ(u, v)Ω = (f, v)Ω, ∀v ∈ V, (9.6)

where γ, cj are constant, 2τ ,µj ∈ (0, 1), j = 1, 2, · · · , d, subject to the following

homogeneous Dirichlet initial and boundary conditions

u|t=0 = 0, τ ∈ (0, 1/2), (9.7)

u|xj=aj = 0, µj ∈ (0, 1/2), j = 1, 2, · · · , d

u|xj=aj = u|xj=bj = 0, µj ∈ (1/2, 1), j = 1, 2, · · · , d.

We note that the variational form (9.6) is equivalent to the following linear FPDE

of order 2τ in time and 2µj in the j-th spatial dimension, j = 1, 2, · · · , d,

0D2τ
t u(t, x1, x2, · · · , xd) +

d∑
j=1

cj[ ajD2µj
xj
u(t, x1, x2, · · · , xd) ] (9.8)

+ γ u(t, x1, x2, · · · , xd) = f(t, x1, x2, · · · , xd),

when solution u is smooth enough.

We define the solution space U as

(9.9)

U :=
{
u : Ω→ R |u ∈ C(Ω), ‖u‖U <∞, and u|t=0 = u|xj=aj = 0

}
,

if µj ∈ (0, 1/2) and

(9.10)

U :=
{
u : Ω→ R |u ∈ C(Ω), ‖u‖U <∞, s.t. u|t=0 = u|xj=aj = u|xj=bj = 0

}
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when µj ∈ (1/2, 1), in which

‖u‖U =
{
‖ 0Dτt u‖2 +

d∑
j=1

‖ ajDµjxj u‖2 + ‖u‖2
}1/2

. (9.11)

Correspondingly, we define the test space V as

V :=
{
v : Ω→ R | ‖v‖V <∞, s.t. v|t=T = v|xj=bj = 0

}
, (9.12)

when µj ∈ (0, 1), in which

‖v‖V =
{
‖ tDτTv‖2 +

d∑
j=1

‖ xjD
µj
bj
v‖2 + ‖v‖2

}1/2

, (9.13)

where by [60, 150], we can show that U and V are Hilbert spaces, moreover, the

associated norms ‖ · ‖U and ‖ · ‖V are equivalent. Now, let a : U × V → R be a

bilinear form, defined as

a(u, v) = (0Dτt u, tDτT v)Ω +
d∑
j=1

cj(ajDµjxj u, xjD
µj
bj
v)Ω + γ(u, v)Ω. (9.14)

Moreover, let L ∈ V ∗, the dual space of V , be a continuous linear functional defined

as

L(v) = (f, v), ∀v ∈ V. (9.15)

Now, the problem is to find u ∈ U such that

a(u, v) = L(v), ∀v ∈ V. (9.16)

Next, we define UN ⊂ U and VN ⊂ V to be finite dimensional subspaces of U and

V with dim(UN) = dim(VN) = N . Now, our PG spectral method reads as: find
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uN ∈ UN such that

a(uN , vN) = L(vN), ∀vN ∈ VN . (9.17)

By representing uN as a linear combination of points/elements in UN i.e., the cor-

responding (1 + d)-dimensional space-time basis functions, the finite-dimensional

problem (9.17) leads to a linear system known as Lyapunov matrix equation. For

instance, if d = 1, i.e., 1-D in time and 1-D space, we obtain the corresponding

Lyapunov equation in the space-time domain [0, T ]× [a1, b1] as

Sτ UMT
µ1

+Mτ U STµ1 = F, (9.18)

in which U is the matrix of unknown coefficients, Sτ and Mτ denote, respectively, the

temporal stiffness and mass matrices; similarly, Sµ1 and Mµ1 , represent the spatial

stiffness and mass matrices, and F is the corresponding load matrix.

In general, numerical solutions to such a linear system, originating from a frac-

tional differential operator, become excessively expensive since the corresponding

mass and stiffness matrices usually turn out to be full and non-symmetric. More-

over, we note that the size of the above linear system grows as the product of the

degrees of freedom in each dimension. To address this problem in this paper, we

present a new class of basis and test functions yielding stiffness matrices, which are

either diagonal or tridiagonal. Similarly, by introducing proper quadrature rules, we

compute exactly the corresponding mass matrices, which are symmetric. Such use-

ful properties allow us to subsequently develop a general fast linear solver for (9.18)

with a substantially reduced computational cost. To this end, we first introduce the

corresponding finite-dimensional spaces of basis UN and test functions VN in our PG

framework.
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9.3.1 Space of Basis Functions (UN)

We develop a PG spectral method for (9.8), subject to homogeneous Dirichlet initial

and boundary conditions. We construct the basis function space as the space of some

temporal and spatial functions to globally treat the time-dimension in addition to

the spatial-dimensions. To this end, the new eigensolutions, introduced in [187],

yield new sets of basis and test functions, properly suited for our Petrov-Galerkin

framework. We represent the solution in the entire space-time computational domain

Ω in terms of specially chosen basis functions, constructed as the tensor product of

the the eigenfunctions in the following manner. Let

(1)P µ
n (ξ) = (1 + ξ)µ P−µ , µn−1 (ξ), n = 1, 2, · · · x ∈ [−1, 1], (9.19)

denote the eigenfunctions of the regular FSLP of first kind (RFSLP-I), corresponding

to the case where α = β = −1. We construct our basis for the spatial discretization

using the univariate poly-fractonomials defined by

φµm( ξ ) = σm



(1)P µ
m ( ξ ), m = 1, 2, · · · , µ ∈ (0, 1/2],

(1)P µ
m ( ξ ) − εµm

(1)P µ
m−1( ξ ), m = 2, 3, · · · µ ∈ (1/2, 1),

(9.20)

where σm = 2+(−1)m and the µ-dependent coefficient εµmj = (m−1−µ)/(m−1). The

definition reflects the fact that if µ ≤ 1/2 then only one boundary condition needs

to be presented, whereas if µ > 1/2 then two endpoint conditions are prescribed.

Naturally, for the temporal basis functions only initial conditions are prescribed and

as a consequence the basis functions for the temporal discretization are constructed



294

using the univariate poly-fractonomials

ψ τ
n (η) = σn

(1)P τ
n ( η ), τ ∈ (0, 1), (9.21)

for n ≥ d2τe. With these notations established, we define the space-time trial space

to be

UN = span
{(
ψ τ
n ◦ η

)
(t)

d∏
j=1

(
φ
µxj
mj ◦ ξj

)
(xj) : n = 1, . . . ,N , mj = dσje, . . . ,Mj

}
,

(9.22)

where η(t) = 2t/T − 1 and ξj(s) = 2
s−aj
bj−aj − 1. The construction of the univariate

functions ensures that UN ⊂ U , since φµm(−1) = 0, for all µ ∈ (0, 1), also φµm(1) = 0,

for all µ ∈ (1/2, 1). Then, we shall approximate the solution to (9.8) in terms of a

linear combination of elements in UN , whose bases satisfy exactly the homogeneous

initial and boundary condition in Ω.

9.3.2 Space of Test Functions (VN)

Let the poly-fractonomials

(2)P µ
k (ξ) = (1− ξ)µ P µ ,−µ

k−1 (ξ), k = 1, 2, · · · , ξ ∈ [−1, 1], (9.23)

denote the eigenfunctions of the regular FSLP of second kind (RFSLP-II), corre-

sponding to the case α = β = −1 in (9.2). Next, we construct our spatial test
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functions using the univariate poly-fractonomials defined by

Φµ
k (ξ) = σ̃k



(2)P µ
k ( ξ ), k = 1, 2, · · · µ ∈ (0, 1/2],

(2)P µ
k (ξ) + εµk

(2)P µ
k−1(ξ), k = 2, 3, · · · µ ∈ (1/2, 1),

(9.24)

where σ̃k = 2 (−1)k + 1. Next, we define the temporal test functions using the

univariate poly-fractonomials

Ψ τ
r (η) = σ̃r

(2)P τ
r ( η ), τ ∈ (0, 1), (9.25)

for all r ≥ d2τe. With these notations established, we define the space-time test

space to be

VN = span
{(

Ψ τ
r ◦ η

)
(t)

d∏
j=1

(
Φ
µj
kj
◦ ξj
)

(xj) : r = 1, . . . ,N , kj = dσje, . . . ,Mj

}
.

(9.26)

Having defined the space of trial and test functions, we can now define the corre-

sponding temporal/spatial stiffness and mass matrices.

Remark 9.3.1. We show later that the choice of σm in (9.20) and (9.21), also σ̃k in

(9.24) and (9.25), leads to the construction of symmetric spatial/temporal mass and

stiffness matrices. We will exploit this property to formulate a general fast linear

solver for the resulting linear system.
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9.3.3 Stability and Convergence Analysis

The following theorems provide the stability analysis of the scheme when the pair

of UN ⊂ U and VN ⊂ V are given as in (9.22) and (9.26), respectively. We first

consider the discrete stability of the method for one-dimensional case.

Theorem 9.3.2. The Petrov-Gelerkin spectral method for the problem

−1D2µ
x u(x) = f(x), ∀x ∈ [−1, 1], (9.27)

u(−1) = 0, if 0 < µ < 1/2,

u(±1) = 0, if 1/2 < µ < 1.

is stable, i.e., the discrete inf-sup condition

sup
vN∈VN

a(uN , vN)

‖vN‖V
≥ β‖uN‖U , ∀uN ∈ UN ⊂ U, (9.28)

holds with β = 1.

Proof. We note that in the absence of the time-derivative and since γ = 0, the corre-

sponding norm defined on U (see Eq. 9.11) just reduces to ‖u‖U = ‖ −1Dµxu‖. While

‖ −1Dµxu‖ has been traditionally treated as a semi-norm in the literature (e.g., see

[151, 108]), one can easily show that it satisfies all the properties of a norm since the

Riemann-Liouville fractional derivative of a constant is non-zero. Correspondingly,

in this one-dimensional setting, ‖v‖V = ‖ xDµ1v‖.

Case I) 0 < µ < 1/2: we represent uN as

uN(x) =
N∑
n=1

ûn(1 + x)µP−µ,µn−1 (x), (9.29)
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and choose vN to be the following linear combination of elements in VN as

vN(x) =
N∑
k=1

ûk(1− x)µP µ,−µ
k−1 (x), (9.30)

in which we employ the same coefficients ûk as in (9.29). Hence, we obtain

a(uN , vN) =

∫ 1

−1
−1DµxuN xDµ1vN dt (9.31)

=
N∑
n=1

ûn

N∑
k=1

ûk

∫ 1

−1
−1Dµx [(1 + x)µP−µ,µn−1 (x)], xDµ1 [(1− x)µP µ,−µ

k−1 (x)] dt

=
N∑
n=1

ûn
Γ(n+ µ)

Γ(n)

N∑
k=1

ûk
Γ(k + µ)

Γ(k)

∫ 1

−1

Pn−1(x)Pk−1(x) dt

=
N∑
n=1

û2
n

(Γ(n+ µ)

Γ(n)

)2 2n+ 1

2

= ‖ xDµ1vN‖2
L2([−1,1]) = ‖vN‖2

V ,

sup
vN∈VN

a(uN , vN)

‖vN‖V
= ‖uN‖U , ∀uN ∈ UN , (9.32)

which means that the stability is guaranteed for β = 1.

Case II) 1/2 < µ < 1: we expand uN this time as

uN(x) =
N∑
n=1

ûn

[
(1 + x)µP−µ,µn−1 (x)− εµn(1 + x)µP−µ,µn−2 (x)

]
, (9.33)

and choose vN to be the following linear combination of elements in VN as

vN(x) =
N∑
k=1

ûk

[
(1− x)µP µ,−µ

k−1 (x) + εµk(1− x)µP µ,−µ
k−2 (x)

]
, (9.34)

where the coefficients ûk are the same as the ones in (9.33). Hence, it is easy to
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again show that

a(uN , vN) =
N∑
n=1

û2
n

(Γ(n+ µ)

Γ(n)

)2 2n+ 1

2
(1− εµnI{1≤n≤N−1}) (9.35)

= ‖ xDµ1vN‖2
L2([−1,1]) = ‖vN‖2

V .

Remark 9.3.3. We performed the discrete stability analysis for the 1-D case. The

multi-D case is more involved and we will address it in a separate paper in future.

Theorem 9.3.4. (Projection Error) In the weak form (9.17), let ‖ 0Dr+τt u‖L2(Ω) <∞

and ‖ −1D
r+µj
xj u‖L2(Ω) <∞ for all j = 1, 2, · · · , d, for some integer r ≥ 1. Moreover,

let uN denote the projection of the exact solution u. Then,

‖u− uN‖2
U ≤ C N−2r

(
‖ 0Dr+τt u‖2

L2(Ω) +
d∑
j=1

‖ −1Dr+µjxj
u‖2

L2(Ω)

)
.

Proof. We first consider the one-dimensional problem (9.27). We expand the exact

solution u, when 2µ ∈ (0, 1), in terms of the following infinite series of Jacobi poly-

fractonomials

u(x) =
∞∑
n=1

ûn(1 + x)µP−µ,µn−1 (x). (9.36)

Here, we would like to bound ‖u− uN‖U in terms of higher-order derivative We first

note that

−1Dr+µx u(x) =
dr

dxr
[−1Dµxu(x)] =

∞∑
n=1

ûn
Γ(n+ µ)

Γ(n)

dr

dxr
[Pn−1(x)],
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where

dr

dxr
[Pn−1(x)] =


(n−1+r)!
2r(n−1)!

P r,r
n−1−r(x), r ≤ n,

0, r > n.

Hence,

−1Dr+µx u(x) =
∞∑
n=r

ûn
Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!
P r,r
n−1−r(x).

Therefore,

‖(1− x)r/2(1 + x)r/2 −1Dr+µx u(x)‖2 =∫ 1

−1

(1− x)r(1 + x)r
( ∞∑
n=r

ûn
Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!
P r,r
n−1−r(x)

)2

=

∞∑
n=r

(
ûn

Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!

)2
∫ 1

−1

(1− x)r(1 + x)rP r,r
n−1−r(x)P r,r

n−1−r(x)dx =

∞∑
n=r

[
ûn

Γ(n+ µ)

Γ(n)

(n− 1 + r)!

2r(n− 1)!

]2 22r+1 ((n− 1)!)2

(n− 1− r)!(n− 1 + r)!
=

∞∑
n=r

[
ûn

Γ(n+ µ)

Γ(n)

]2 2

2n+ 1

(n− 1 + r)!

(n− 1− r)! .
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We also note that (n−1+r)!
(n−1−r)! is minimized when n = N + 1. Hence,

‖u− uN‖2
U =

∞∑
n=N+1

[
ûn

Γ(n+ µ)

Γ(n)

]2

≤
∞∑

n=N+1

[
ûn

Γ(n+ µ)

Γ(n)

]2 (n− 1 + r)!

(n− 1− r)!
(N − r)!
(N + r)!

=
(N − r)!
(N + r)!

∞∑
n=N+1

[
ûn

Γ(n+ µ)

Γ(n)

]2 (n− 1 + r)!

(n− 1− r)! ,

=
(N − r)!
(N + r)!

‖(1− x)r/2(1 + x)r/2 −1Dr+µx u(x)‖2

≤ (N − r)!
(N + r)!

‖ −1Dr+µx u(x)‖2

≤ cN−2r‖ −1Dr+µx u(x)‖2, (9.37)

where r ≥ 1 and 2µ ∈ (0, 1). Similar steps are done for the case 2µ ∈ (1, 2) to obtain

(9.37) noting that in either case, µ remains between 0 and 1.

Next, we consider the following two-dimensional problem in Ω = [−1, 1]× [−1, 1]:

−1D2µx
x u(x, y) + −1D2µy

y u(x, y) = f(x, y), ∀(x, y) ∈ Ω, (9.38)

u(−1, y) = u(x,−1) = 0, if 0 < µx, µy < 1/2,

whose corresponding weak form is given by

(−1Dµxx u , xDµx1 v)Ω + (−1Dµyy u , yDµy1 v)Ω = (f, v)Ω. (9.39)

We represent the exact solution u when 2µx, 2µy ∈ (0, 1), in terms of the following

infinite series of tensor product Jacobi poly-fractonomials as

u(x, y) =
∞∑
n=1

∞∑
m=1

ûnm(1 + x)µxP−µx,µxn−1 (x) (1 + y)µyP
−µy ,µy
m−1 (y). (9.40)
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Hence,

(9.41)

−1Dr+µxx u =
∞∑
n=1

∞∑
m=1

ûnm
Γ(n+ µx)

Γ(n)

(n− 1 + r)!

2r(n− 1)!
P r,r
n−1−r(x) (1 + y)µyP

−µy ,µy
m−1 (y)

(9.42)

−1Dr+µyy u =
∞∑
n=1

∞∑
m=1

ûnm(1 + x)µxP−µx,µxn−1 (x)
Γ(m+ µy)

Γ(m)

(m− 1 + r)!

2r(m− 1)!
P r,r
m−1−r(y).

Moreover, taking w1(x) = (1− x)r/2(1 + x)r/2 and w2(y) = (1− y)−µy/2(1 + y)−µy/2,

we have

‖w1(x)w2(y) −1Dr+µxx u‖2
L2(Ω) =

∞∑
n=1

∞∑
m=1

[
ûnm

Γ(n+ µx)

Γ(n)

(n− 1 + r)!

2r(n− 1)!

]2

.

∫ +1

−1

(1− x)r(1 + x)r[P r,r
n−1−r(x)]2dx

.

∫ +1

−1

(1− y)−µy(1 + y)µy [P
−µy ,µy
m−1 (y)]2dy

=
∞∑
n=1

∞∑
m=1

[
ûnm

Γ(n+ µx)

Γ(n)

]2 2

2n+ 1
.
(n− 1 + r)!

(n− 1− r)!
2

2m− 1

Γ(m− µy)Γ(m+ µy)

(m− 1)!Γ(m)
.

Similarly,

‖w1(y)w2(x) −1Dr+µyy u‖2
L2(Ω) =

∞∑
n=1

∞∑
m=1

[
ûnm

Γ(m+ µx)

Γ(m)

]2 2

2n− 1

Γ(n− µx)Γ(n+ µx)

(n− 1)!Γ(n)

2

2m+ 1

(m− 1 + r)!

(m− 1− r)! .

We note that u(x, y) can be decomposed into four contributions as

u =
( N∑
n=1

N∑
m=1

+
N∑
n=1

∞∑
m=N+1

+
∞∑

n=N+1

N∑
m=1

+
∞∑

n=N+1

∞∑
m=N+1

)
ûnmPµxn (x)Pµym (y),
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or equivalently,

u− uN =
( N∑
n=1

∞∑
m=N+1

+
∞∑

n=N+1

N∑
m=1

+
∞∑

n=N+1

∞∑
m=N+1

)
ûnmPµxn (x)Pµym (y).

Next, we aim to bound ‖u− uN‖U in terms of higher-order derivative as

‖u− uN‖2
U ≤ ‖

N∑
n=1

∞∑
m=N+1

ûnmPµxn (x)Pµym (y)‖2
U (9.43)

+ ‖
∞∑

n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)‖2
U

+ ‖
∞∑

n=N+1

∞∑
m=N+1

ûnmPµxn (x)Pµym (y)‖2
U ,

in which we note the symmetry between the first two terms on the right-hand side.

Let us consider the second term first:

‖
∞∑

n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)‖2
U = (9.44)

‖ −1Dµxx
( ∞∑
n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)
)
‖2
L2(Ω) +

‖ −1Dµyy
( ∞∑
n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)
)
‖2
L2(Ω),
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where

‖ −1Dµxx
( ∞∑
n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)
)
‖2
L2(Ω) =

≤
∫ 1

−1

∫ 1

−1

w2(y)
( ∞∑
n=N+1

N∑
m=1

ûnm
Γ(n+ µx)

Γ(n)
Pn−1(x)Pµym (y)

)2

≤
∞∑

n=N+1

N∑
m=1

[
ûnm

Γ(n+ µx)

Γ(n)

]2 2

2n+ 1

2

2m− 1

Γ(m− µy)Γ(m+ µy)

(m− 1)!Γ(m)

≤ (N − r)!
(N + r)!

∞∑
n=N+1

N∑
m=1

[
ûnm

Γ(n+ µx)

Γ(n)

]2 2

2n+ 1

(n− 1 + r)!

(n− 1− r)!
2

2m− 1

Γ(m− µy)Γ(m+ µy)

(m− 1)!Γ(m)

≤ (N − r)!
(N + r)!

‖ −1D1+µx
x u‖2

L2(Ω)

≤ cN−2r‖ −1D1+µx
x u‖2

L2(Ω).

Following similar steps, we obtain

‖ −1Dµyy
( ∞∑
n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)
)
‖2
L2(Ω) ≤ cN−2r‖ −1Dr+µyy u‖2

L2(Ω).

Therefore, we obtain the following estimate for the second term on the right-hand

side of (9.43)

‖
∞∑

n=N+1

N∑
m=1

ûnmPµxn (x)Pµym (y)‖2
U ≤ c̃N−2r

(
‖ −1Dr+µxx u‖2

L2(Ω) + ‖ −1Dr+µyy u‖2
L2(Ω)

)
(9.45)

Moreover, by symmetry, we have the following results for the first term on the right-

hand side of (9.43):

‖
N∑
n=1

∞∑
m=N+1

ûnmPµxn (x)Pµym (y)‖2
U ≤ C̃N−2r

(
‖ −1Dr+µxx u‖2

L2(Ω) + ‖ −1Dr+µyy u‖2
L2(Ω)

)
(9.46)

It is easy to check that ‖∑∞n=N+1

∑∞
m=N+1 ûnmPµxn (x)Pµym (y)‖2

U can be bounded by

the first two terms on the right-hand side, hence, by substituting (9.45) and (9.46)
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into (9.43), we finally obtain the following estimate

‖u− uN‖2
U ≤ CN−2r

(
‖ −1Dr+µxx u‖2

L2(Ω) + ‖ −1Dr+µyy u‖2
L2(Ω)

)
. (9.47)

Such an error estimate can be isotropically tensor producted up for higher-dimensional

problems to get the following estimate

‖u− uN‖2
U ≤ C N−2r

(
‖ 0Dr+τt u‖2

L2(Ω) +
d∑
j=1

‖ −1Dr+µjxj
u‖2

L2(Ω)

)
, (9.48)

in whichN denotes the number of terms in the expansion in all (d+1) dimensions.

Remark 9.3.5. Since the inf-sup condition holds (see Theorem 9.3.2), by the Banach-

Nečas-Babuška theorem [56], the error in the numerical scheme is less than or equal

to a constant times the projection error. Choosing the projection uN in Theorem

9.3.4, we conclude the spectral accuracy of the scheme.

9.3.4 Implementation of PG Spectral Method

We now seek the solution to (9.8) in terms of a linear combination of elements in the

space UN of the form

uN(x, t) =
N∑

n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

ûn,m1,··· ,md

[
ψ τ
n (t)

d∏
j=1

φµjmj(xj)
]

(9.49)

in Ω. Next, we require the corresponding residual

RN(t, x1, · · · , xd) = 0D2τ
t

(
uN

)
+

d∑
j=1

cj aj
D2µj
xj

(
uN

)
+ γ uN − f (9.50)
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to be L2-orthogonal to the elements in vN ∈ VN , which leads to the finite-dimensional

variational form given in (9.17). Specifically, by choosing vN = Ψµt
r (t)

∏d
j=1 Φ

µxj
kj

(xj),

when r = d2τe, . . . ,N and kj = d2µje, . . . ,Mj, we obtain

N∑
n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

ûn,m1,··· ,md

(
{Sτ}r,n {Mµ1}k1,m1 · · · {Mµd}kd,md (9.51)

+
d∑
j=1

cj [ {Mτ}r,n {Mµ1}k1,m1 · · · {Sµj}kj ,mj · · · {Mµd}kd,md ]

+γ {Mτ}r,n {Mµ1}k1,m1 · · · {Mµd}kd,md
)

= Fr,k1,··· ,kd ,

where Sτ and Mτ denote, respectively, the temporal stiffness and mass matrices,

whose entries are defined as

{Sτ}r,n =

∫ T

0
0Dτt

(
ψτn ◦ η

)
(t) tDτT

(
Ψτ
r ◦ η

)
(t) dt,

and

{Mτ}r,n =

∫ T

0

(
Ψτ
r ◦ η

)
(t)
(
ψτn ◦ η

)
(t) dt.

Moreover, Sµj and Mµj , j = 1, 2, · · · , d, are the corresponding spatial stiffness and

mass matrices

{Sµj}kj ,mj =

∫ bj

aj
aj
Dµjxj

(
φµjmj ◦ ξj

)
(xj) xj

Dµjbj
(

Φ
µj
kj
◦ ξj
)

(xj) dxj,

and

{Mµj}kj ,mj =

∫ bj

aj

(
Φ
µj
kj
◦ ξj
)

(xj)
(
φµjmj ◦ ξj

)
(xj) dxj,
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respectively, to be exactly computed in the Appendix. Moreover, Fr,k1,··· ,kd is

∫
Ω

f(t, x1, · · · , xd)
(

Ψ τ
r ◦ η

)
(t)

d∏
j=1

(
Φ
µj
kj
◦ ξj
)

(xj) dΩ. (9.52)

Assuming that all the aforementioned stiffness and mass matrices are symmetric, we

can render the linear system (9.51) as the following general Lyapunov equation

(
Sτ ⊗Mµ1 ⊗Mµ2 · · · ⊗Mµd (9.53)

+
d∑
j=1

cj [ Mτ ⊗Mµ1 ⊗ · · · ⊗Mµj−1
⊗ Sµj ⊗Mµj+1

· · · ⊗Mµd ]

+γ Mτ ⊗Mµ1 ⊗Mµ2 · · · ⊗Mµd

)
U = F,

in which ⊗ represents the Kronecker product, F denotes the multi-dimensional load

matrix whose entries given in (9.52), and U is the corresponding multi-dimensional

matrix of unknown coefficients whose entries are ûn,m1,··· ,md .

In the Appendix, we investigate the properties of the aforementioned matrices in

addition to presenting efficient ways of deriving the stiffness matrices explicitly and

computing the mass matrices exactly through proper quadrature rules.

9.3.5 A New Fast FPDE Solver

So far, we have formulated a suitable Petrov-Galerkin variational framework for the

general (1 + d)-dimensional FPDE, given in (9.8), by choosing proper basis and test

functions. The main advantage of such framework is that we can explicitly obtain the

corresponding stiffness matrices to be symmetric diagonal/tridiagonal, and moreover,

to exactly compute the mass matrices, which we showed to be symmetric. The
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following result better highlights the benefit of this scheme, where we formulate

a closed-form solution for the Lyapunov system (9.53) in terms of the generalised

eigensolutions that can be computed very efficiently.

Theorem 9.3.6. Let {~e µjmj , λµjmj }Mj

mj=d2µje be the set of general eigen-solutions of the

spatial mass matrix Mµj with respect to the stiffness matrix Sµj . Moreover, let us

assume that {~e τn , λτn }Nn=d2τe are the set of general eigen-solutions of the temporal

mass matrix Mτ with respect to the stiffness matrix Sτ . (I) if d > 1, then the multi-

dimensional matrix of unknown solution U is explicitly obtained as

U =
N∑

n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κn,m1,··· ,md ~e
τ
n ⊗ ~e µ1m1

⊗ · · · ⊗ ~e µdmd , (9.54)

where the unknown κn,m1,··· ,md are given by

κn,m1,··· ,md =
(~e τn ~e

µ1
m1
· · · ~e µdmd )F[

(~e τTn Sτ~e τn )
∏d

j=1(~e
µTj
mj Sµj~e

µj
mj)
]
Λn,m1,··· ,md

. (9.55)

in which the numerator represents the standard multi-dimensional inner product, and

Λn,m1,··· ,md are obtained in terms of the eigenvalues of all mass matrices as

Λn,m1,··· ,md =
[
(1 + γ λτn)

d∏
j=1

λµjmj + λτn

d∑
j=1

cj (
d∏

s=1,s 6=j

λµsms)
]
.

(II) If d = 1, then the two-dimensional matrix of the unknown solution U is obtained

as

U =
N∑

n=d2τe

M1∑
m1=d2µ1e

κn,m1 ~e
τ
n ~e µ

T
1

m1
,

where κn,m1 is explicitly obtained as

κn,m1 =
~e τ

T

n F ~e µ1m1

(~e τTn Sτ~e τn )(~e µ1
T

m1 Sµ1~e
µ1
m1)
[
λµ1m1−1 + c1 λτn + γ λτnλ

µ1
m1

] .
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Proof. Let us consider the following generalised eigenvalue problems

Mµj ~e
µj
mj

= λµjmj Sµj ~e
µj
mj
, mj = d2µje, · · · ,Mj, j = 1, 2, · · · , d, (9.56)

Mτ ~e
τ
n = λτn Sτ ~e

τ
n , n = d2τe, 2, · · · ,N . (9.57)

We aim to represent the unknown coefficient matrix U in the expansion (9.49) in

terms of the spatial and temporal eigenvectors as

U =
N∑

n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κn,m1,··· ,md ~e
τ
n ⊗ ~e µ1m1

⊗ · · · ⊗ ~e µdmd , (9.58)

where the unknown κn,m1,··· ,md are obtained as follows. We first take the multi-

dimensional inner product of ~e τq ~e
µ1
p1
· · · ~e µdpd on both sides of the Lyapunov equation

(9.53) to obtain

(~e τq ~e
µ1
p1
~e µ2p2
· · · ~e µdpd )

[
Sτ ⊗Mµ1 ⊗ · · · ⊗Mµd

+
d∑
j=1

cj [Mτ ⊗Mµ1 ⊗ · · · ⊗Mµj−1
⊗ Sµj ⊗Mµj+1

· · · ⊗Mµd ]

+γ Mτ ⊗Mµ1 ⊗ · · · ⊗Mµd

]
U = (~e τq ~e

µ1
p1
· · · ~e µdpd )F.
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Next, we substitute (9.58) and re-arrange the terms to obtain

N∑
n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κn,m1,··· ,md(
~e τ

T

q Sτ~e
τ
n ~e

µTj
p1 Mµ1~e

µj
m1

· · · ~e
µTj
pd Mµd~e

µj
md

+
d∑
j=1

cj ~e
τT

q Mτ~e
τ
n ~e

µTj
p1 Mµ1~e

µj
m1

· · · ~e
µTj
pj Sµj~e

µj
mj

~e
µTj+1
pj+1 Mµj+1

~e µj+1
mj+1

~e
µTj
pd Mµd~e

µj
md

+γ ~e τ
T

q Mτ~e
τ
n ~e

µTj
p1 Mµ1~e

µj
m1

~e
µTj
p2 Mµ2~e

µj
m2

· · · ~e
µTj
pd Mµd~e

µj
md

)

= (~e τq ~e
µ1
p1
~e µ2p2
· · · ~e µdpd )F,

where we recall that Mµj~e
µj
mj = (λ

µj
mjSµj~e

µj
mj) and Mτ ~e

τ
n = (λτn Sτ ~e

τ
n ). Hence,

N∑
n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κn,m1,··· ,md(
~e τ

T

q Sτ~e
τ
n ~e

µTj
p1 (λµ1m1

Sµ1~e
µ1
m1

) ~e
µTj
p2 (λµ2m2

Sµ2~e
µ2
m2

) · · · (λµdmdSµd~e
µd
md

)

+
d∑
j=1

cj ~e
τT

q (λτn Sτ ~e
τ
n ) ~e

µTj
p1 (λµ1m1

Sµ1~e
µ1
m1

)

· · · ~e
µTj
pj Sµj~e

µj
mj

~e
µTj+1
pj+1 (λµj+1

mj+1
Sµj+1

~eµj+1
mj+1

) · · ·~e µ
T
j

pd (λµdmdSµd~e
µd
md

)

+ γ ~e τ
T

q (λτn Sτ ~e
τ
n ) ~e

µTj
p1 (λµ1m1

Sµ1~e
µ1
m1

) ~e
µTj
p2 (λµ2m2

Sµ2~e
µ2
m2

) · · · (λµdmdSµd~e
µd
md

)
)

= (~e τq ~e
µ1
p1
~e µ2p2
· · · ~e µdpd )F.

or alternatively,

N∑
n=d2τe

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κn,m1,··· ,md (~e τ
T

q Sτ~e
τ
n )(~e

µTj
p1 Sµ1~e

µ1
m1

) · · · (~e µ
T
d

pd Sµd~e
µd
md

)

×
[
(1 + γ λτn)

d∏
j=1

λµjmj + λτn

d∑
j=1

cj (
d∏

s=1,s 6=j

λµsms )
]

= (~e τq ~e
µ1
p1
~e µ2p2
· · · ~e µdpd )F,

and since the spatial and temporal stiffness matrices Sµj and Sτ are diagonal (see Ap-
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pendix), then (~e τ
T

q Sτ~e
τ
n ) = 0 if q 6= n, also (~e

µTj
pj Sµj~e

µj
mj) = 0, if pj 6= mj, which com-

pletes the proof for the case d > 1. Following similar steps for the two-dimensional

problem in the t-µ1 domain, it is easy to see that if d = 1, the relationship for κ can

be derived as

κq,p1 =
~e τ

T

q F ~e µ1p1

(~e τTq Sτ~e τq )(~e µ1
T

p1 Sµ1~e
µ1
p1 )
[
λµ1p + cµ1 λ

τ
q + γ λτqλ

µ1
p

] . (9.59)

Remark 9.3.7. If µj = µ 6= τ and Mj =M, j = 1, 2, · · · , d, then the complexity of

the calculations of (9.56) and (9.57) reduces to two linear generalised eigen-problems

for space and time. Moreover, if µ = τ and M = N , then we only need to solve a

single one-dimensional eigen-problem Mµ~eq = λqSµ~eq once.

Remark 9.3.8. For time-independent (steady-state) problems, where the time-fractional

derivative vanishes in (9.8), the same general framework holds. For such problems,

the time-dependent basis and test functions in UN and VN consequently vanish, and

we construct the d-dimensional basis space UN in Ω = [a1, b1]× · · · × [ad, bd] as

UN = span
{ d∏
j=1

(
φµjmj ◦ ξj

)
(xj) : mj = d2µje, . . . ,Mj

}
, (9.60)

where we seek the solution in terms of elements in the space UN of the form

uN(µ1, · · · , µd) =

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

ûm1,··· ,md

d∏
j=1

(
φµjmj ◦ ξj

)
(xj) (9.61)

and test the problem against the elements in

VN = span
{ d∏
j=1

(
Φ
µj
kj
◦ ξj
)

(xj) : kj = d2µje, . . . ,Mj

}
. (9.62)
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Subsequently, we obtain a similar Lyapunov equation as in (9.53) where Mτ no longer

appears, however, Mµj and Sµj possess all the properties presented in Theorems

(C.7.1) and (C.7.3) in Appendix.

Lemma 9.3.9. If d > 1, in the absence of the fractional time-derivative in (9.8),

i.e., when Sτ vanishes, we obtain the matrix of unknown solution U in (9.61) as

U =

M1∑
m1=d2µ1e

· · ·
Md∑

md=d2µde

κm1,··· ,md ~e
µ1
m1
⊗ · · · ⊗ ~e µdmd ,

where the unknown κm1,··· ,md is given by

κm1,··· ,md =
(~e µ1m1

· · · ~e µdmd )F[∏d
j=1(~e

µTj
mj Sµj~e

µj
mj)
][
γ
∏d

j=1 λ
µj
mj +

∑d
j=1 cj (

∏d
s=1,s 6=j λ

µs
ms )

] . (9.63)

Proof. It follows the proof in Theorem 9.3.6.

9.3.6 Computational Considerations

In Theorem 9.3.6, we assume that the eigenvectors and eigenvalues of each mass

matrix with respect to the corresponding stiffness matrices are known. Therefore,

employing the PG spectral method in a (1 + d)-dimensional problem when (1 +

d) ≥ 2 leads to efficient computations. Otherwise, the computational cost of the

eigensolver, which isO(N3) in practice, becomes dominant. As we shall demonstrate,

this approach appears to be even more beneficial as (1 + d) increases. In fact, the

cost of the fast FPDE solver is associated with the following two steps: (i) the

computation of κn,m1,··· ,md in (9.55), and (ii) the cost of representing U in (9.54). In

what follows, we show that the computational complexity of mathematical operations

in our PG spectral method is O(N2+d), the dimension of the space-time domain Ω,
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and if we assume N =M1 = · · · =Md.

Step (i): In order to compute the (1 + d)-dimensional array κ in (9.55), we need to

first calculate the numerator

(~e τq ~e
µ1
p1
· · · ~e µdpd )F =

N∑
i=d2τe

M1∑
s1=d2µ1e

· · ·
Md∑

sd=d2µde

{~e τq }i {~e µ1p1
}s1 · · · {~e µdpd }sd{F}i,s1,··· ,sd ,(9.64)

for which naive computations for all the entries leads to a computational complexity

O(N2(1+d)) that can be intractable when d increases. Alternatively, by performing

sum-factorization (see [76]), the operation counts can be reduced to O(N2+d), in-

cluding the time-dimension in our calculations. Following this technique we re-write

the inner-product as

(~e τq ~e
µ1
p1
· · · ~e µdpd )F = (9.65)

N∑
i=d2τe

{~e τq }i
M1∑

s1=d2µ1e

{~e µ1p1
}s1 · · ·

Md−1∑
sd−1=d2µd−1e

{~e µd−1
pd−1
}sd−1

Md∑
sd=d2µde

{~e µdpd }sd{F}i,s1,··· ,sd ,

in which we separately obtain the inner-most sum as

Fdi,s1,··· ,sd−1,pd
=

Md∑
sd=d2µde

{~e µdpd }sd{F}i,s1,··· ,sd , (9.66)

and similarly we write the second inner-most sum as

Fd−1
i,s1,··· ,sd−2,pd−1,pd

=

Md−1∑
sd−1=d2µd−1e

{~e µd−1
pd−1
}sd−1

Fdi,s1,··· ,sd−1,pd
. (9.67)

Finally, we recursively obtain

F1
i,p1,··· ,pd =

M1∑
s1=d2µ1e

{~e µ1p1
}s1F2

i,p1,p2,··· ,pd . (9.68)
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We note that the operation count in computing the entries of F ji,s1,··· ,sj−1,pj ,··· ,pd in

each recursion is O(N2+d). Now, by substituting (9.68) back into (9.65), we obtain

the whole inner-product as

(~e τq ~e
µ1
p1
· · · ~e µdpd )F =

N∑
i=d2τe

{~e τq }iF1
i,p1,··· ,pd , (9.69)

which is again of complexity O(N2+d). We observe that the total computational

complexity of evaluating the inner product is O(N2+d). Moreover, the operation

count for computing the denumerator in (9.55) and for each entry of κn,m1,··· ,md is

O(N). This is true since the stiffness matrix is either diagonal or tridiagonal due to

the choice of our poly-fractonomial bases. Hence, the total complexity for computing

the denumerator is againO(N2+d). We recall that we have already included the time-

dimension into account, i.e., the space-time domain Ω ⊂ R1+d. Hence, κ in (9.55) is

obtained with cost O(N2+d).

Step (ii): In the computation of (9.54), we observe that sum-factorization technique

helps to reduce the complexity to O(N2+d).

9.4 Special FPDEs and Numerical Tests

In section 9.3, we introduced general (1+d)-dimensional linear FPDEs, for which we

developed a general Petrov-Galerkin spectral method in addition to the general fast

solver. Here, we reduce this general framework to the special well-known (i) hyper-

bolic FPDEs such as the fractional advection equation, (ii) parabolic FPDEs such as

the fractional sub-diffusion problems, and (iii) elliptic FPDEs such as the fractional

Helmholtz/Poisson equations. In the following numerical examples, we carry out the
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Figure 9.1: TSFA, temporal/spatial p-refinement : log-log L2-error versus temporal and spatial
expansion orders N , M. In the temporal p-refinement τ = 1/20 and 9/20 while µ = 1/4, also
in the spatial p-refinement, the spatial orders µ = 1/20 and 9/20 while τ = 1/4. Here, the exact
solution is uext(x, t) = t6+2/7 (1 + x)6+3/4.

spatial/temporal p-refinement test via fixing correspondingly the temporal/spatial

expansion order fixed at 15.

9.4.1 Hyperbolic FPDEs

We consider the following hyperbolic FPDE

0D2τ
t u(t, x) + cx [−1D2µ

x u(t, x) ] = f(t, x), (t, x) ∈ [0, T ]× [−1, 1], (9.70)

subject to u(x, 0) = 0 and u(−1, t) = 0 when τ, µ ∈ (0, 1/2]. In this case, the FPDE

(9.70) appears as Time- and Space-Fractional Advection (TSFA) equation, where we

set cx = 1. We then seek the solution to (9.70) in terms of a linear combination of

elements in UN , now consisting of only two dimensions, i.e., time t and space x, of

the form

uN(t, x) =
N∑

n=d2τe

M∑
m=d2µe

ûn,m

(
ψ τ
n ◦ η

)
(t)
(
φµm ◦ ξ

)
(x). (9.71)
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Next, we obtain the corresponding linear system of the Lyapunov equation after

carrying out the Kronecker product as

Sτ UMµ +Mτ U Sµ = F, (9.72)

where we represent the unknown coefficient matrix U in terms of the spatial and

temporal eigenvectors as

U =
N∑

q=d2τe

M∑
p=d2µe

κq,p ~e
τ
q ~e

µT

p , (9.73)

for which κq,p is followed by (9.59) setting γ = 0 as

κq,p =
~e τ

T

q F ~eµp

(~e τTq Sτ ~e τq ) · (~eµTp Sµ ~e
µ
p ) · (c1 λτq + λµp)

. (9.74)

In Fig. 9.1, we examine the TSFA problem (9.70) and study the p-refinement

in both the temporal (left) and the spatial (right) dimensions. To demonstrate the

spectral convergence of the PG spectral method, we plot the log-log L2-error versus

temporal and spatial expansion ordersN ,M. In the temporal p-refinement τ = 1/20

and 9/20 while µ = 1/4; also in the spatial p-refinement, the spatial orders µ = 1/20

and 9/20 while τ = 1/4. In this test, we set the simulation time to T = 1, while the

exact solution is uext(x, t) = t6+2/7 (1 + x)6+3/4.
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Figure 9.2: TSFD, spatial p-refinement : log-log L2-error versus spatial expansion orders M .
Here, the spatial orders µ = 11/20 and 19/20 while τ = 1/4, and the exact solution is uext(x, t) =
t6+2/7 [ (1 + x)6+3/4 − 238/35 (1 + x)5+1/2].

9.4.2 Parabolic FPDEs

First, we consider the following parabolic Time- and Space- Fractional Diffusion

(TAFD) equation

0D2τ
t u(x, t) = K −1D2µ

x u(x, t) + f(x, t), (x, t) ∈ [0, T ]× [−1, 1], (9.75)

u(x, 0) = 0,

u(±1, t) = 0,

where τ ∈ (0, 1/2], µ ∈ (1/2, 1), K > 0, which is a well-known model for anomalous

sub-diffusion process. In this case, we seek the solution also of the form (9.71), and

obtain a similar linear system as in (9.72), and hence we obtain

κq,p =
~e τ

T

q F ~eµp

(~e τTq Sτ ~e τq ) · (~eµTp Sµ ~exp ) · (λµp − K λτq )
. (9.76)

for p = d2τe, · · · ,N and q = d2µe, · · · ,M. In Fig. 9.2, we solve the TSFD problem

(9.75) and study the p-refinement in the spacial dimension. We plot the log-log L2-
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error versus the spatial expansion order M. Similarly, in the spatial p-refinement,

the spatial orders µ = 11/20 and 19/20 while τ = 1/4. In both cases, the spectral

convergence of the solution is achieved. Since, the exact solution is fixed in each

case, the convergence rate corresponding to µ = 11/20 appears to be larger than

the case where µ = 19/20 as expected. It is naturally due to the higher regularity

requirement in the weak form corresponding to the second test-case. In the temporal

p-refinement similar results were observed as in Fig.9.1 (left).

9.4.3 Elliptic FPDEs

We examine the well-known elliptic Helmholtz/Poisson equations, rendered frac-

tional in two-dimensional (in space) domains. We choose the spatial computational

domain as Ω = [−1, 1]× [−1, 1], and consider the following problem

−1D2µ1
x1
u(x1, x2) + −1D2µ2

x2
u(x1, x2) + γ u(x1, x2) = f(x1, x2), in Ω, (9.77)

u(x1, x2) = 0, on ∂Ω

where γ > 0, µ1, µ2 ∈ (1/2, 1), which reduces to the Space-Fractional Poisson equa-

tion when γ = 0. Here, we present a general scheme in addition to a linear fast

solver for both problems.

We then seek the solution to (9.77) in terms of a linear combination of elements

in UN in absence of the time-basis, consisting of only two dimensions of the form

uN(x1, x2) =

M1∑
m1=2

M2∑
m2=2

ûm1,m2

(
φµ1m1
◦ ξ1

)
(x1)

(
φµ2m2
◦ ξ2

)
(x2), (9.78)

for which we represent the unknown coefficient matrix U in terms of the spatial
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Figure 9.3: Space-fractional Helmholtz problem with γ = 1, spatial p-refinement in x-dimension:
log-log L2-error versus spatial expansion orders Mx1 . Here, the spatial orders are µ1 = 11/20 and
19/20 while µ2 = 15/20, is kept constant. The exact solution is uext(x1, x2) = [ (1 + x1)6+3/4 −
25/4 (1 + x1)5+1/2][ (1 + x2)6+4/9 − 273/63 (1 + x2)5+2/7]. A similar convergence curve is achieved
in the p-refinement performed in the y-dimension, also for the case of γ = 0.

eigenvectors as

U =

M1∑
p1=2

M2∑
p2=2

κp1,p2 ~e
µ1
p1
~eµ2

T

p2
, (9.79)

where

κp1,p2 =
~eµ1

T

p1
G~eµ2p2

(~eµ1
T

p1 Sµ1 ~e
µ1
p1 ) · (~eµ2Tp2 Sµ2 ~e

µ2
p2 ) · (λµ1p1 + λµ2p2 + γ λµ1p1 λ

x2
p2 )

. (9.80)

In Fig. 9.3, we solve the fractional Helmholzt problem (9.77) and study the p-

refinement in the spacial x1-dimension. To demonstrate the spectral convergence of

the fast FPDE solver, we plot the log-log L2-error versus the spatial expansion order

Mx1 . The spatial orders µ1 = 11/20 and 19/20 while µ2 = 15/20. Similar to the

spatial p-convergence in Fig.9.2, the convergence rate corresponding to µ1 = 11/20

appears to be larger than the case where µ2 = 19/20. We observe a similar p-

refinement in the x2-dimension as well.
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9.4.4 Higher-Dimensional FPDEs

Next, we employ our PG method and the fast solver in even higher dimensional

problems to exhibit the generality and efficiency of the scheme. In Table 9.1, the

convergence results and CPU time of the unified PG spectral method in higher-

dimensional problems are examined. Particularly, we employ this scheme to solve

the time- and space- fractional advection equation (TSFA)

0D2τ
t u+ −1D2µ1

x1
u+ −1D2µ2

x2
u+ · · ·+ −1D2µd

xd
u = f,

where 2τ = 2µj = 1/2, subject to homogeneous Dirichlet boundary conditions in

a four-dimensional (4-D), six-dimensional (6-D), and ten-dimensional (10-D) space-

time hypercube domains. The error is measured by the essential norm ‖ε‖L∞ =

‖u − uext‖L∞/‖uext‖L∞ , which is stronger than the L2-norm and is normalized by

the essential norm of the exact solution uext(t, ~x) = [t
∏d

j=1(1 +xj)]
2+2/5 for the sake

of consistency. The CPU time (seconds) is measured on a single core Intel (Xeon

X5550) 2.67GHz processor. In each step of the p-refinement, we uniformly increase

the bases order by one in all dimensions. All the computations are performed in

Mathematica 8. These simulations highlight that the unified PG spectral method is

efficient even for a 10-D problem run on a PC in less than an hour!

9.4.5 Time-integration when 2τ = 1

We recall that our unified PG spectral method works equally well when the temporal

time-derivative order 2τ = 1. In general, a first-order in time PDE/FPDE reads

∂u

∂t
= F (u; t, x1, · · · , xd), (9.81)
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Table 9.1: Convergence study and CPU time of the unified PG spectral method employed
in the time- and space- fractional advection equation (TSFA) 0D2τ

t u +
∑d
j=1 [−1D

2µj
xj u] = f ,

where 2τ = 2µj = 1/2, j = 1, 2, · · · , d , subject to homogeneous Dirichlet boundary condi-
tions in four-dimensional (4-D), six-dimensional (6-D), and ten-dimensional (10-D) space-time hy-
percube domains, where D = 1 + d. The error is measured by the essential norm ‖ε‖L∞ =
‖u−uext‖L∞/‖uext‖L∞ , which is normalized by the essential norm of the exact solution uext(t, ~x) =

[t
∏d
j=1(1 + xj)]

2+2/5, where t ∈ [0, 1] and x ∈ [−1, 1]d. The CPU time (seconds) is obtained on a
Intel (Xeon X5550) 2.67GHz processor. In each step, we uniformly increase the bases order by one
in all dimensions.

4-D TSFA

N =M1 = · · · =Md ‖ε‖L∞ CPU Time (seconds)

2 0.576869 0.006333
3 0.034706 0.015997
4 0.003990 0.041994
5 0.0009071 0.105984

6-D TSFA

N =M1 = · · · =Md ‖ε‖L∞ CPU Time (seconds)

2 0.741056 0.014748
3 0.055171 0.134313
4 0.006578 0.821208
5 0.001525 3.546791

10-D TSFA

N =M1 = · · · =Md ‖ε‖L∞ CPU Time (seconds)

2 0.903357 0.288956
3 0.095305 18.45320
4 0.0119229 370.1 (≈ 6 min)
5 0.0028102 3332.4 (≈ 55 min)
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where the operator F (u; t, x1, · · · , xd) is given as

F (u; t, x1, · · · , xd) = f(t, x1, · · · , xd)−
d∑
j=1

cj[ ajD2µj
xj
u ] + γ u,

in view of (9.8). Here, we regard the PG method as an alternative scheme for

spectrally accurate time-integration for a general F (u; t, x1, · · · , xd), rather than uti-

lizing existing algebraically accurate methods, including multi-step methods such as

the Adams family and stiffly-stable schemes, also multi-stage approaches such as the

Runge-Kutta method.

The idea of employing the PG spectral method when 2τ = 1 is simply based on

the useful property (9.5) by which a full first-order derivative d/dt can be decomposed

into a product of the sequential (1
2
)-th order derivatives 0D1/2

t 0D1/2
t , a result that is

not valid in the standard (integer-order) calculus. Hence, by virtue of the fractional

integration-by-parts, such a decomposition artificially induces non-locality to the

temporal term in the corresponding weak form. Therefore, it provides an appropriate

framework for global (spectral) treatment of the temporal term using our unified PG

spectral method. To this end, we carry out the time-integration when 2τ = 1 in the

following FPDE

∂u/∂t+
3∑
j=1

−1D2µj
xj
u = f

in Ω ⊂ R1+3, where in general µj ∈ (0, 1). Here, we set µj = 1/2 for simplicity,

which recovers the standard time-dependent advection equation in three-dimensional

spatial domain.

In Table 9.2, we again measure the error by the normalized essential norm, where

the exact solution is uext(t, ~x) = [t
∏3

j=1(1+xj)]
6+2/5, where t ∈ [0, 1] and xj ∈ [−1, 1],

j = 1, 2, 3. Similar to the previous case, the CPU time (seconds) is obtained on a
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Table 9.2: Time-Integration when 2τ = 1: ∂u/∂t +
∑3
j=1 [−1D

2µj
xj u] = f in Ω ⊂ R1+3, where

t ∈ [0, 1] and xj ∈ [−1, 1], j = 1, 2, 3. Here, we set µj = 1/2 to fully recover the standard time-
dependent advection equation in three-dimensional spatial domain. However, in general µj ∈ (0, 1).
The error is measured by the essential norm ‖ε‖L∞ = ‖u−uext‖L∞/‖uext‖L∞ , which is normalized

by the essential norm of the exact solution is uext(t, ~x) = [t
∏3
j=1(1 + xj)]

6+2/5. The CPU time
(seconds) is obtained on a Intel (Xeon X5550) 2.67GHz processor. In each step, we uniformly
increase the bases order by one in all dimensions.

Integer-Order Time-Integration

N =M1 =M2 =M3 ‖ε‖L∞ CPU Time (seconds)

3 0.6225970 0.051992
5 0.0336570 0.352947
7 1.34 ×10−5 1.9737
9 1.06 ×10−7 3.7894
11 3.52 ×10−9 9.7365
13 2.54 ×10−10 21.472

single-core Intel (Xeon X5550) 2.67GHz processor, where we uniformly increase the

bases order by one in all dimensions in each step. In these simulations, we globally

treat the time-axis in addition to other spatial dimensions. The CPU time and the

spectral convergence strongly highlights the efficiency of our approach, where a 4-D

problem (i.e., 1-D in time and 3-D in space) can be highly accurately solved in a

fraction of minute!

9.5 Discussion

In practice, the enforcement of periodic boundary conditions to FPDEs is not possible

since it is not clear how to define history (memory) for a periodic function. Moreover,

we note that Riemann-Liouville fractional derivatives in time/space only allow us to

impose homogeneous initial/boundary conditions to the corresponding FPDEs to

be wellposed. However, we note that our PG spectral method is also applicable in
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such problems in the following manner. When inhomogeneous Dirichlet conditions

are enforced, the corresponding derivatives are usually replaced by Caputo fractional

derivatives. We illustrate such a treatment in the following model problem posed

subject to an inhomogeneous initial condition:

C
0D2τ

t u = −1D2µ
x u+ f(x, t), (9.82)

u(x, 0) = g(x),

u(±1, t) = 0,

in which 2µ ∈ (1, 2), g(x) ∈ C0([−1, 1]), and C
0D2τ

t (·) denotes the Caputo fractional

derivative of order 2τ ∈ (0, 1), which is defined via interchanging the order of differen-

tiation and integration in (9.3), see e.g., [142]. Now, we define U(x, t) = u(x, t)−g(x),

and taking into account that C
0D2τ

t g(x) ≡ 0. Then, by substituting u = U + g into

(9.82) and noting that C0D2τ
t U = 0D2τ

t U due to the homogeneity of U(x, 0), we obtain

the transformed problem as

0D2τ
t U = −1D2µ

x U + f̃(x, t), (9.83)

U(x, 0) = 0,

U(±1, t) = 0,

in which f̃(x, t) = f(x, t) + −1D2µ
x g(x). Therefore, we can treat such inhomogeneous

conditions by our unified PG spectral method through homogenizing the problem

and modifying the forcing term on the right-hand side. The same approach applies

to inhomogeneous boundary conditions.



Chapter Ten

Distributed-Order Fractional

Differential Equation
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10.1 Background

Distributed-order fractional operators offer a rigorous tool for mathematical mod-

elling of multi-physics phenomenon, in which the differential orders is distributed

over a range of values rather than being just a fixed integer as it is in standard

ODEs/PDEs [12, 35, 34]. There is a rapidly growing interest in the use of fractional

derivatives in the construction of mathematical models which contain distributed

order terms of the form

∫ σ2

σ1

φ(σ) ∗aDσt u(t)dσ = f(t), t > a,

in papers [118, 52, 7, 8, 162], which show the range of potential applications of dis-

tributed order differential equations. Almost all of the numerical schemes developed

for such models are of finite-difference methods. While the treatment of fractional

differential equation with a fixed fractional order could be memory demanding due

to the locality of these methods and their low-accuracy, the main challenge remains

as the additional effect of distributive character of the differential order. This may

lead to exceedingly growing cost (memory and CPU time) in simulation of such

mathematical models.

We develop a spectrally-accurate fractional spectral collocation method for dis-

tributed fractional differential equations. This scheme is developed based on the

recent spectral theory for fractional Sturm-Liouville problems (FSLPs), which has

been recently developed in [187]. In the collocation scheme, We employ fractional La-

grange interpolants, which satisfy the Kronecker delta property at collocation points.

Subsequently, we obtain the corresponding fractional differentiation matrices.
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10.2 Definitions

We consider the standard domain ξ ∈ [−1, 1]. Then, the left-sided and right-sided

Riemann-Liouville integrals of order σ, n− 1 < σ ≤ n, n ∈ N, are defined (see e.g.,

[128, 142]), respectively, as

(RL−1Iσξ )u(ξ) =
1

Γ(n− σ)

∫ ξ

−1

u(s)ds

(ξ − s)1−σ , ξ > −1. (10.1)

The corresponding left-sided fractional derivatives of order σ are then defined, re-

spectively, as

(RL−1Dσξ )u(ξ) =
dn

dξn
(RL−1In−σξ u)(ξ) =

1

Γ(n− σ)

dn

dxn

∫ ξ

−1

u(s)ds

(ξ − s)σ+1−n , ξ > −1,

(10.2)

We recall a useful property of the Riemann-Liouville fractional derivatives. Assume

that 0 < p < 1 and 0 < q < 1 and g(xL) = 0 x > xL, then

xL
Dp+qx g(x) =

(
xL
Dpx
) (

xL
Dqx
)
g(x) =

(
xL
Dqx
) (

xL
Dpx
)
g(x). (10.3)

An alternative approach in defining the tempered fractional derivatives is to begin

with the left-sided Caputo derivatives of order σ, n − 1 < σ ≤ n, n ∈ N, defined

respectively, as

( C
−1Dσξ u)(ξ) = (−1In−σξ

dnu

dξn
)(ξ) =

1

Γ(n− µ)

∫ ξ

−1

u(n)(s)ds

(ξ − s)σ+1−n , ξ > −1. (10.4)

By performing an affine mapping from the standard domain [−1, 1] to the interval
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t ∈ [a, b], we obtain

RL
aDσt u = (

2

b− a)σ(RL−1Dσξ )u(ξ), (10.5)

C
aDσt u = (

2

b− a)σ( C
−1Dσξ )u(ξ), (10.6)

which help perform the operations in the standard domain only once for any given

σ and efficiently utilize them on any arbitrary interval without resorting to repeat

the calculations. Moreover, the corresponding relationships between the Riemann-

Liouville and Caputo fractional derivatives in [a, b] for any σ ∈ (0, 1) are given by

(RLaDσt )u(t) =
u(a)

Γ(1− σ)(t− a)σ
+ (CaDσt )u(t). (10.7)

Next, following [6], we define the distributed fractional derivative. Let f ∈

AC2
loc([xL,∞)). Then, the two forms of the distributed order fractional derivatives

are defined.

(i) Let σ 7→ φ(σ) be a continuous mapping in [σ1, σ2], then we define the distributed-

order fractional derivative as

DDφu(t) =

∫ σ2

σ1

φ(σ) ∗aDσt u(t)dσ, t > a, (10.8)

where ∗aDσt can be either of Riemann-Liouville or Caputo sense.

(ii) Let σ = {σj}kj=0, σj ∈ [σ1, σ2], be a continuous mapping in [σ1, σ2], j =

0, 1, · · · , k, then we define the distributed-order fractional derivative as

DDφu(t) =
k∑
j=0

∗
aD

σj
t u(t) t > a, (10.9)



328

which corresponds to the case (i) in which φ = δ(σ − σj), j = 0, 1, · · · , k, a Dirac

delta function.

Next, we aim to solve the following differential equation of distributional order:

DDφu(t) = f(t;u), ∀t ∈ (0, T ], (10.10)

u(0) = 0, max(σ) ∈ (0, 1], (10.11)

u(0) =
du

dt
|t=0 = 0, max(σ) ∈ (1, 2], (10.12)

where max(σ) = σ2, the upper limit of the integral in (10.8). In the sequel, we

present different approaches to discretize the aforementioned differential operator.

Remark 10.2.1. Due to (10.7), the Caputo and Riemann-Liouville fractional deriva-

tives of order σ ∈ (0, 1) coincide with each other when u(a) = 0. Therefore, in this

study, we employ the definition of the distributed fractional derivatives (10.8) and

(10.9), represented in terms of Riemann-Liouville derivatives.

10.3 Distributional Discretization

We denote by distributional discretization the following two-stage discretization;

stage-I: in which we reduce the distributed order operator (10.8) to a sum (addi-

tive multi-term) form, and stage-II: where we represent the solution u in each term

RL
aD

αj
t u in the N -dimensional space by either a projection operator RL

aD
αj
t (PNu) or

an interpolation operator RL
aD

αj
t (INu).

Specifically, by employing a proper Gauss (or Gauss-Lobatto) quadrature rule,

the first stage renders the distributed-order operator a multi-term linear fractional
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differential operator of set-order {αj} as

DDφu(t) =

∫ α2

α1

φ(α) RLaDαt u(t)dα ≈
Q−1∑
j=0

qj
RL
aD

αj
t u(t), (10.13)

where qj = ωjφ(αj), moreover, {ωj}Q−1
j=0 and {αj}Q−1

j=0 are the corresponding quadra-

ture weights and points.

We perform the stage-II of discretization trough the spectral approximation of

solution u(t) in a finite-dimensional space. To this end, following the recent theory

of fractional Sturm-Liouville eigen-problems (FSLP) in [187], we employ the corre-

sponding eigenfunctions, known as Jacobi Poly-fractonomials (of first kind) given in

the standard domain [−1, 1] by

(1)P µ1
n (ξ) = (1 + ξ)µ1P−µ1,µ1n−1 (ξ), ξ ∈ [−1, 1], (10.14)

as non-polynomial basis functions consisting of a fractional term multiplied by the

Jacobi polynomial P−µ1,µ1n−1 (ξ). However, we employ (11.16) in the corresponding

nodal expansion. In the construction of the collocation method, the following lemma

is useful.

Lemma 10.3.1. Let σ, µ > 0. The fractional derivative of the Jacobi poly-fractonomials

of first (i = 1) and second kind (i = 2) are given by

RLDσ
{

(i)Pµn (ξ)
}

=
Γ(n+ µ)

Γ(n+ µ− σ)
(i)Pηn(ξ), (10.15)

are also of Jacobi poly-fractonomial type, where RLDσ ≡ RL
−1Dσx when i = 1, RLDσ ≡

RL
xDσ1 when i = 1, and η = µ− σ.
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Proof. Following [5] and for σ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1] we have

(1 + ξ)β+σ Pα−σ,β+σ
n (ξ)

Pα−σ,β+σ
n (−1)

=
Γ(β + σ + 1)

Γ(β + 1)Γ(σ)Pα,β
n (−1)

∫ ξ

−1

(1 + s)β Pα,β
n (s)

(x− s)1−σ ds, (10.16)

and

(1− x)α+σ Pα+σ,β−σ
n (x)

Pα+σ,β−σ
n (+1)

=
Γ(α + σ + 1)

Γ(α + 1)Γ(σ)Pα,β
n (+1)

∫ 1

x

(1− s)α Pα,β
n (s)

(s− x)1−σ ds. (10.17)

By the definition of the left-sided Riemann-Liouville integral RL
−1Iσx and evaluating

the special end-values Pα−σ,β+σ
n (−1) and Pα,β

n (−1), we can re-write (10.16) as

RL
−1Iσx

{
(1 + x)βPα,β

n (x)
}

=
Γ(n+ β + 1)

Γ(n+ β + σ + 1)
(1 + x)β+σ Pα−σ,β+σ

n (x),

where, by taking the fractional derivative RL
−1Dσx on the both sides, we obtain

RL
−1Dσx

{
(1 + x)β+σPα−σ,β+σ

n (x)
}

=
Γ(n+ β + σ + 1)

Γ(n+ β + 1)
(1 + x)βPα,β

n (x). (10.18)

Hence, taking β + σ = µ, α − σ = −µ in (10.18), and shifting from n to n − 1, we

obtain

RL
−1Dσx

{
(1)Pµn (ξ)

}
=

Γ(n+ µ)

Γ(n+ µ− σ)
(1 + x)µ−σP σ−µ,µ−σ

n−1 (x), (10.19)

=
Γ(n+ µ)

Γ(n+ µ− σ)
(1 + x)ηP−η,ηn−1 (x),

=
Γ(n+ µ)

Γ(n+ µ− σ)
(1)Pηn(ξ),

where η = µ − σ. Moreover, by the definition of the right-sided Riemann-Liouville

integral RLxIσ1 and evaluating the special end-values Pα−σ,β+σ
n (+1) and Pα,β

n (+1), we
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can re-write (10.17) as

RL
xIσ1
{

(1− x)αPα,β
n (x)

}
=

Γ(n+ α + 1)

Γ(n+ α + σ + 1)
(1− x)α+σPα+σ,β−σ

n (x).

In a similar fashion, by taking the fractional derivative RL
xDσ−1 on the both sides, we

obtain

RL
xDσ1

{
(1− x)α+σPα+σ,β−σ

n (x)
}

=
Γ(n+ α + σ + 1)

Γ(n+ α + 1)
(1− x)αPα,β

n (x). (10.20)

Next, by taking α+σ = µ, β−σ = −µ in (10.20), and again shifting from n to n−1

we have

RL
xDσ1

{
(2)Pµn (ξ)

}
=

Γ(n+ µ)

Γ(n+ µ− σ)
(1− x)µ−σP µ−σ,σ−µ

n−1 (x). (10.21)

=
Γ(n+ µ)

Γ(n+ µ− σ)
(1− x)ηP η,−η

n−1 (x),

=
Γ(n+ µ)

Γ(n+ µ− σ)
(2)Pηn(ξ),

and that completes the proof.

Remark 10.3.2. Lemma 10.3.1 highlights that the structure of Jacobi poly-fractonomials

is preserved under the action of fractional derivatives. Moreover, we note that when

σ = µ in Lemma 10.3.1, the fractional derivative of Jacobi poly-fractonomials are ob-

tained in terms of Legendre polynomials, which has been reported in [187]. Moreover,

the importance of Lemma 10.3.1 lies in the construction the differentiation matrices

with N less arithmetic operations. Employing this lemma, all the procedure ob ob-

taining the matrices go through without resorting to expand the polyfractonomials

in order to calculate their fractional derivatives.
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Table 10.1: Convergence study in L∞-norm when the simulation time T = 2; (top) uext =
t5, φ(α) = Γ(4 − α)/120, and f(t) = (t5 − t3)/ log(t) and (bottom) uext = t3, φ(α) = Γ(4 −
α) sinh(α)/120, and 6t(t2 − cosh(2) log(t))/(log(t2)− 1).

uext = t5, φ(α) = Γ(6− α)/120

N L∞-Error (µ = 1− 10−10) L∞-Error (µ = 7/10) L∞-Error (µ = 1/10)

2 2.59× 10+1 3.0× 10+1 4.3× 10+1

4 6.81× 10−1 1.10× 10+1 2.51× 10+1

6 3.87× 10−13 1.43× 10−3 3.48× 10−3

8 1.10× 10−14 3.10× 10−5 8.38× 10−5

10 8.75× 10−15 2.12× 10−6 1.0× 10−5

uext = t3, φ(α) = Γ(4− α) sinh(α)/120

N L∞-Error (µ = 1− 10−10) L∞-Error (µ = 7/10) L∞-Error (µ = 1/10)

2 5.74 8.84 19.91
4 5.30× 10−12 2.58× 10−1 1.01× 10−1

6 2.15× 10−13 1.52× 10−3 8.03× 10−3

8 2.68× 10−14 3.34× 10−4 1.83× 10−3

10 7.01× 10−15 1.12× 10−4 6.25× 10−4

10.4 Fractional Nodal Expansion

In our FSCM spatial discretization, we represent the solution via the following poly-

fractonomial nodal expansion as

uN(ξ) =
N∑
j=1

uN(ξj)h
µ
j (ξ), (10.22)

where hµj (ξ) represent fractional Lagrange interpolants, which are all of fractional

order (N + µ − 1) and constructed using the aforementioned interpolations points

−1 = ξ1 < ξ2 < · · · < ξN = 1 as:

hµj (ξ) =
( ξ − x1

xj − x1

)µ N∏
k=1
k 6=j

( ξ − xk
xj − xk

)
, 2 ≤ j ≤ N. (10.23)

Associated with the aforementioned FLIs, the corresponding fractional differentiation

matrices Dα and D1+α, α ∈ (0, 1) are obtained in Chap 7.
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In order to examine the convergence of the scheme, we consider two test cases:

uext = t5, φ(α) = Γ(4−α)/120, and f(t) = (t5−t3)/ log(t). By taking the simulation

time T = 2, we provide the convergence study in L∞-norm in Table 10.1 (top). It is

observed that the choice of µ has an important effect on the convergence behaviour

of the scheme. For instance, since the exact solution is a polynomial, as µ → 1,

we recover the exponential convergence capturing the exact solution. A similar

observation is made when a different distribution φ(α) = Γ(4 − α) sinh(α)/120 is

employed. In this case, uext = t3 and the forcing term is given be f(t)6t(t2 −

cosh(2) log(t))/(log(t2) − 1). The corresponding results are shown in Table 10.1

(bottom).

Since the exact solution is not always known and in contrast to the standard

fractional ODEs where the forcing term gives some regularity information about the

exact solution, in distributed-order problems such a prediction is rather difficult to

make. Hence, the fractional parameter µ can play the role of a fine-tuning knob

giving the possibility of searching for the best/optimal case, where the highest rate

can be achieved with minimal degrees of freedom.



Chapter Eleven

Application to Keller-Segel

Chemotaxis Equations
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We develop an implicit-explicit (IMEX) splitting scheme for a one-dimensional space-

fractional with integer-order time-derivative, in addition to time- and space-fractional

Keller-Segel chemotaxis system. The fractional temporal derivative is of Caputo

sense and the spatial derivatives are of Riemann-Liouville type. In this method, the

diffusion term is treated implicitly while the nonlinear chemotaxis reaction term is

evaluated explicitly. We carry out the time-integration in the prediction step em-

ploying a fractional finite difference scheme of observable order ∆2. The spatial dis-

cretization is performed by employing an efficient and spectrally-accurate fractional

spectral collocation method, in which the Lagrange interpolants are non-polynomials

(fractional).

11.1 Background

The directed movement of cells and microorganisms in response to a diffusible chemi-

cal signal is referred to as chemotaxis [73]. Historically, the first mathematical model

of chemotaxis was proposed by Evelyn Keller and Lee Segel in order to investigate

the aggregation dynamics of the social amoeba Dictyostelium discoideum [80]. The

model consisted of a nonlinear parabolic system of partial differential equations and

is commonly referred to as the Keller-Segel model.

The Keller-Segel model has been analyzed extensively in the last three decades.

A comprehensive review of mathematical results on dynamics, existence of solutions,

and regularity can be found in the two articles by Horstmann [82, 83]. It is well known

that in one dimension the Keller-Segel model is well-posed globally in time [81, 134,

169]. However, several results that appeared in the 1990’s have demonstrated that

in higher dimensions, the Keller-Segel model is well-posed only for “small” initial
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data [138, 170, 173]. In the presence of “large” initial data, the solutions blow up;

in other words, they do not remain bounded [45, 46, 81, 171]. Corrias and Perthame

[100] showed that in d dimensions, the Keller-Segel model is critical in Ld/2, which is

to say that the “smallness” or “largeness” of the initial data is determined in terms

of the Ld/2 norm. Similar conditions were derived in [101] for a parabolic-elliptic

variation of the Keller-Segel model.

Recent literature has also investigated the influence of substrate heterogeneity

on the dynamics of the model. Specifically, Matzavinos and Ptashnyk [121] have

investigated the one-dimensional Keller-Segel model in the context of a random het-

erogeneous domain. In [121], the diffusion and chemotaxis coefficients were assumed

to be given by stationary ergodic random fields, and the authors applied stochastic

two-scale convergence methods to derive the homogenized macroscopic equations.

Matzavinos and Ptashnyk [121] also present numerical algorithms for approximating

the homogenized asymptotic coefficients.

The influence of substrate heterogeneity was also investigated in [27, 103] by

means of fractional calculus [128, 142]. Interestingly, Bournaveas and Calvez [27]

have shown that the fractional one-dimensional Keller-Segel model exhibits dynamics

similar to the classical two-dimensional model. In particular, Bournaveas and Calvez

[27] have shown that the solutions of the fractional Keller-Segel model may blow up

in finite time, even in the one-dimensional case. In view of these results, the need to

develop accurate numerical methods for the fractional Keller-Segel model is apparent.

The use of spectral methods in FPDEs has been precipitated recently. Various

approaches for solving fractional boundary value problems have been proposed, in-

cluding a Chebyshev spectral method [54], a Legendre spectral method [23], and

an adaptive pseudospectral method [119]. Similarly, spectral methods for fractional
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initial value problems have been proposed, including generalized Laguerre spectral

algorithms [13] and Legendre spectral Galerkin methods [22]. It is well known that

long-time (and/or adaptive) integration using such spectral schemes becomes com-

putationally intractable. To address this issue, Xu and Hesthaven [180] developed a

stable multi-domain spectral penalty method for FPDEs.

A characteristic of these spectral approaches has been the use of standard integer-

order (polynomial) basis functions. Recently, Zayernouri and Karniadakis [189, 184]

developed spectrally accurate Petrov-Galerkin schemes for both non-delay and de-

lay fractional differential equations. These schemes are based on fractional ba-

sis functions (i.e., basis functions of non-integer order), which are termed Jacobi

poly-fractonomials and were introduced in [187] as the eigenfunctions of certain

fractional Sturm-Liouville operators. A space-time discontinuous Petrov-Galerkin

(DPG) method and a discontinuous Galerkin (DG) method for the time-space frac-

tional advection equation were also introduced in [188]. In [190], Jacobi poly-

fractonomials were used to define a new class of fractional Lagrange interpolants.

These were subsequently employed to numerically solve various FODE and FPDE

problems, including multi-term FPDEs and the space-fractional Burgers equation

[190].

11.2 Definitions

Before defining the problem, we provide some preliminary definitions of fractional

calculus following [128, 142]. The left-sided and right-sided Riemann-Liouville inte-
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grals of order µ ∈ (0, 1) are defined, respectively, as

(xLIµx )f(x) =
1

Γ(µ)

∫ x

xL

f(s)ds

(x− s)1−µ , x > xL, (11.1)

and

The corresponding inverse operators of (11.1), i.e., the left-sided fractional deriva-

tives of order µ are then defined, respectively, as

(xLDµx)f(x) =
d

dx
(xLI1−µ

x f)(x) =
1

Γ(1− µ)

d

dx

∫ x

xL

f(s)ds

(x− s)µ , x > xL, (11.2)

An alternative approach in defining the tempered fractional derivatives is to begin

with the left-sided Caputo derivatives of order µ ∈ (0, 1), defined respectively, as

( C
xL
Dµxf)(x) = (xLI1−µ

x

df

dx
)(x) =

1

Γ(1− µ)

∫ x

xL

f ′(s)ds

(x− s)µ , x > xL, (11.3)

11.2.1 Problem Definitions

Let the time-derivative order τ ∈ (0, 1]. We consider the following nonlinear system

of time- and space-fractional Keller-Segel chemotaxis equations in the interval [−1, 1]

as

0Dτt u(x, t) = Lσ,γ,βx u(x, t) (11.4)

u(x, 0) = 0,

u(±1, t) = 0,
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where

Lσ,γ,βx (·) ≡ K −1D1+σ
x (·)− −1Dγx

[
(·) −1DβxC(x, t)

]
+ f(x, t;u), (11.5)

as coupled to the following elliptic fractional (in space) equation:

−1D2β
x C(x, t) = −u(x, t) (11.6)

C(−1, t) = 0

∂C
∂x
|x=−1 = 0

where the spatial orders β ∈ (1/2, 1), and σ, λ ∈ (0, 1), which leads to a (1+σ)-th or-

der space-fractional FPDE. We note that we employ different temporal discretization

methods depending on τ = 1 or τ ∈ (0, 1).

11.3 Temporal Discretization

We consider a general fractional (in time and space) problem of the form

C
0Dτt u(x, t) = g(t;u), τ ∈ (0, 1), t ∈ (0, T ], (11.7)

u(x, 0) = u0,

where g(t;u) could in general be involved with the spatial operator. By the definition

of the Caputo fractional derivative, we have

C
0Dτt u =

1

Γ(1− τ)

∫ t

0

∂u
∂s
ds

(t− s)τ = Hk(t) + C
tk
Dτt u (11.8)
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where Hk(t) = 1
Γ(1−τ)

∫ tk
0

∂u
∂s
ds

(t−s)τ . Moreover,

C
tk
Dτt u = C

tk
Dτt (u− uk + uk) = C

tk
Dτt (u− uk) = RL

tk
Dτt (u− uk), (11.9)

since (u−uk) vanishes at t = tk. Next, by substituting (11.9) and (11.8) into (11.7),

we obtain

RL
tk
Dτt u(x, t) = g(t;u)−Hk(t), τ ∈ (0, 1), t ∈ (0, T ]. (11.10)

Applying the inverse operator RL
tk
Iτt (·) to (11.10) and evaluating at t = tk+1, we

obtain:

uk+1 − uk = RL
tk
Iτt g(t;u)−Hk, τ ∈ (0, 1), t ∈ (0, T ], (11.11)

where Hk = RL
tk
Iτt (Hk), denoted as history load. Next, depending on how we extrap-

olate (in the explicit case) of interpolate (in the implicit case) the term RL
tk
Iτt g(t;u),

we obtain the following explicit method

uk+1 − uk
(∆t)τ

=
J∑
j=0

βjg(tk−j;uk−j)−
1

(∆t)τ
Hk (11.12)

with β0 = 1/Γ(1 + τ) when J = 0 (1st-order extrapolation) and β0 = 1/Γ(1 + τ) +

2/Γ(2 + τ) and β1 = −2/Γ(2 + τ) (2nd-order extrapolation). Moreover, we obtain

the following implicit method

uk+1 − uk
(∆t)τ

=
J∑
j=0

βjg(tk+1−j;uk+1−j)−
1

(∆t)τ
Hk (11.13)

with β0 = 1/Γ(1 + τ) when J = 0 (1st-order interpolation) and β0 = 2/Γ(2 + τ) and

β1 = 1/Γ(1 + τ)− 1/Γ(2 + τ) (2nd-order interpolation). We note that when τ = 1,
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we recover the standard coefficients in the Adams-Bashforth and -Moulton methods.

Finally, the history load Hk in each scheme is obtained as

Hk =
1

Γ(τ)Γ(2 + τ)

k−1∑
j=1

(
uj+1 − uj

∆t
)Gj, (11.14)

in which Gj is given by

Gj =

Nq∑
q=1

wqGj(zq), (11.15)

where {wq, zq}Nqq=1 represent the Gauss-Lobatto-Jacobi weights and zeros correspond-

ing to the weight function (tk+1−t)1−τ , in addition, Gj(t) = (t−tj)1−τ−(t−tj+1)1−τ .

In Table 11.1, we examine the performance of our schemes carrying out the

time-integration of the C
0Dτt u(t) = f(t;u) subject to homogeneous initial conditions

is performed. We examine both linear problem, in which f(t;u) = u + [Γ(6 +

1/10)/Γ(6 + 1/10 − τ)]t5+1/10−τ − t5+1/10 and a nonlinear case, in which f(t;u) =

sin(u2) + [Γ(6 + 1/10)/Γ(6 + 1/10− τ)]t5+1/10−τ − sin( t2(5+1/10) ). We consider the

exact solution uext = t5+1/10.

11.4 Spatial Discretization via Fractional Spectral

Collocation Method

In order to efficiently discretize the spatial terms, we employ a fractional spectral

collocation method (FSCM), recently developed in [190], which is based on a new

spectral theory developed for fractional Sturm-Liouville eigen-problems (FSLP) in

[187]. To this end, we define a set of interpolation points {xi}Ni=1 on which the corre-
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Table 11.1: Time-integration of the C
0Dτt u(t) = f(t;u) subject to homogeneous initial conditions:

(upper table) linear problem, in which f(t;u) = u+[Γ(6+1/10)/Γ(6+1/10−τ)]t5+1/10−τ−t5+1/10;
(lower table) nonlinear problem, in which f(t;u) = sin(u2)+[Γ(6+1/10)/Γ(6+1/10−τ)]t5+1/10−τ−
sin( t2(5+1/10) ). The exact solution uext = t5+1/10.

(Linear Problem)

∆t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.557552 1.21 0.237339 1.74 0.146352 1.89

1/16 0.240203 1.70 0.070809 1.98 0.039317 2.18

1/32 0.074064 1.90 0.017855 2.15 0.008697 2.69

1/64 0.019872 1.97 0.004016 2.36 0.001349 4.14

1/128 0.005063 - 0.000784 - 0.000077 -

(Nonlinear Problem)

∆t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.368188 0.83 0.1996298 1.60 0.131686 1.86

1/16 0.206252 1.15 0.065989 1.96 0.036314 2.18

1/32 0.093031 1.63 0.016960 2.18 0.007975 2.74

1/64 0.029901 2.06 0.0037392 2.39 0.0011907 3.57

1/128 0.007163 - 0.000713 - 0.0000998 -



343

sponding Lagrange interpolants are constructed. Moreover, we require the residual

to vanish on the same set of grid points called collocation points {yi}Ni=1.

11.4.1 Fractional Lagrange interpolants (FLIs)

We represent the solution at the time tk in terms of new non-polynomial fractional

basis functions, known as Jacobi poly-fractonomials, which are the explicit eigen-

functions of the FSLP of first kind, given as

(1)P µ
n (x) = (1 + x)µP−µ,µn−1 (x), x ∈ [−1, 1]. (11.16)

where the left-sided fractional derivative of (11.16) is given analytically as

−1D µ
x

(
(1)P µ

n (x )
)

=
Γ(n+ µ)

Γ(n)
Pn−1(x ), (11.17)

where Pn−1(x ) denotes a Legendre polynomial of order (n − 1). In our FSCM

spatial discretization, we represent the solution at the time tk via the following poly-

fractonomial nodal expansion as

uN(x, tk) =
N∑
j=1

uN(xj, tk)h
µ
j (x), (11.18)

where hµj (x) represent fractional Lagrange interpolants, which are all of fractional

order (N + µ − 1) and constructed using the aforementioned interpolations points

−1 = x1 < x2 < · · · < xN = 1 as:

hµj (x) =
( x− x1

xj − x1

)µ N∏
k=1
k 6=j

( x− xk
xj − xk

)
, 2 ≤ j ≤ N − 1. (11.19)
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11.4.2 Spatial Differentiation Matrices Dσ and D1+σ, σ ∈

(0, 1)

We note that FLIs satisfy the Kronecker delta property, i.e., hµj (xk) = δjk, at inter-

polation points, however they vary as a poly-fractonomial between xk’s. Moreover,

associated with the aforementioned FLIs, the corresponding fractional differentiation

matrices Dσ and D1+σ, σ ∈ (0, 1) are obtained as

Dσ
ij =

1

(xj + 1)µ

N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq (xi + 1)q+µ−σ. (11.20)

and

D1+σ
ij =

1

(xj + 1)µ

[ N∑
n=1

βjn

n−1∑
q=dσ−µe

bnq(q + µ− σ) (xi + 1)q+µ−σ−1
]
, (11.21)

in which dσ − µe denotes the ceiling of σ − µ and

bnq = (−1)n+q−1(
1

2
)q

n− 1 + q

q


n− 1 + µ

n− 1− q

 Γ(q + µ+ 1)

Γ(q + µ− σ + 1)
. (11.22)

and the coefficients are obtained only once through the following poly-fractonomial

expansion

N∏
k=1
k 6=j

( x− xk
xj − xk

)
=

N∑
n=1

βjnP
−µ,µ
n−1 (x). (11.23)

and can be computed efficiently since the Jacoi poly-fractonomials P−µ,µn−1 (x) are or-

thogonal with respect to the weight function w(x) = (1 − x)−µ(1 + x)−µ. Hence,

taking the polynomial pj(x) =
∏N

k=1
k 6=j

(
x−xk
xj−xk

)
, the βjn are given exactly by the follow-
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ing Guass-Lobatto-Jacobi quadrature rule:

βjn =
1

λn

∫ 1

−1

w(x)pj(x)P−µ,µn−1 (x)dx (11.24)

=
1

λn

Q∑
q=1

ωqpj(xq)P
−µ,µ
n−1 (xq),

where {xq}Qq=1 and {ωq}Qq=1 are the associate quadrature points and weights corre-

sponding to the Jacobi weight w(x); moreover, λn denotes the orthogonality constant

of the Jacobi poly-fractonomials given by λn = 2
2k−1

Γ(n−µ)Γ(n+µ)
(n−1)!Γ(n)

.

Remark 11.4.1. When σ = µ (the interpolation parameter), the above differentiation

matrices are simply obtained as

Dµ
ij =

1

(xj + 1)µ

N∑
n=1

Γ(n+ µ)

Γ(n)
βjn Pn−1(xi ). (11.25)

and

D1+µ
ij =

1

(xj + 1)µ

N∑
n=2

βjn

[Γ(n+ µ)

Γ(n)

n

2
P 1,1
n−2(xi )

]
. (11.26)

The right choice of the collocation/interpolation points is the key to obtaining

efficient schemes resulting in well-conditioned linear systems. In [190], five differ-

ent sets of collocation/interpolation points for the construction have been exam-

ined: (i) equidistant points, (ii) roots of the underlying poly-fractonomial bases

(1)P̃ µ
M(x ) = (1 + x)µP−µ,µM−1 (x), (iii) roots of −1D µ

x [ (1)P µ
M(x ) ], or equivalently roots

of Legendre polynomial PM−1(x), (iv) Chebyshev roots − cos( (2j+1)
M

π
2
), (v) Roots of

dTN+1(x)/dx, i.e., − cos( jπ
N−1

), known as the extrema points of the Chebyshev poly-

nomial TN+1(x) roots. It turns out that roots of −1D µ
x [ (1)P µ

M(x ) ] that represents

the (fractional) extrema of the Jacobi poly-fractonomial functions lead to the fasted
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Table 11.2: Convergence study of the spatial operators. Here, uext(x) = (21/6(1 +x)4+1/3− (1 +
x)4+1/2).

µ = 1/10

N RL
−1Iµxu(x) = f(x) RL

−1Dµxu(x) = f(x) RL
−1D1+µ

x u(x) = f(x) RL
−1D1+µ

x u(x)− u(x) = f(x)

3 0.0143673 0.0175926 3.88583 0.368123

7 0.0000103311 0.0000106009 0.0000947525 0.000594943

11 2.31× 10−8 2.306× 10−8 4.18× 10−7 2.27× 10−6

µ = 1/2

N RL
−1Iµxu(x) = f(x) RL

−1Dµxu(x) = f(x) RL
−1D1+µ

x u(x) = f(x) RL
−1D1+µ

x u(x)− u(x) = f(x)

3 0.043334 0.102084 0.866727 0.346067

7 0.00009786 0.0000794 0.0002552 0.00141853

11 1.54× 10−6 9.1× 10−7 5.8× 10−6 0.00002033

µ = 9/10

N RL
−1Iµxu(x) = f(x) RL

−1Dµxu(x) = f(x) RL
−1D1+µ

x u(x) = f(x) RL
−1D1+µ

x u(x)− u(x) = f(x)

3 0.0528279 0.209984 0.423576 0.263411

7 0.000078243 0.0000256864 0.000969232 0.00179444

11 3.81× 10−6 7.43× 10−7 0.0000430498 0.0000925764

rate of convergence and minimal condition number of the resulting system.
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11.4.3 Fractional-Order Time-Splitting Scheme

We propose the following splitting scheme as the following. In the prediction step,

we split the original equation at tk as:

up(x, tk+1)− u(x, tk)

(∆t)τ
=

J∑
j=1

βj

(
− −1Dγx

[
up(x, t) −1DβxCp(x, t)

]
+ f(x, tk;up)

)
−Hk,

(11.27)

subject to the homogeneous initial and boundary conditions. In the correction step

we solve

u(x, tk+1)− up(x, tk+1)

(∆t)τ
= K

J∑
j=0

βj

(
−1D1+σ

x u(x, tk+1−j)
)
, (11.28)

In order to de-couple (11.27), using (11.6) we obtain

−1D2β
x C(x, t) = −u(x, t) = −

N∑
j=1

u(xj, tk)h
µ
j (x)

= −
N∑
j=1

u(xj, tk)
1

(xj + 1)µ

N∑
n=1

βjn(1 + x)µP−µ,µn−1 (x)

= −
N∑
j=1

(
u(xj, tk)

(xj + 1)µ

N∑
n=1

βjn
(1)P µ

n (x).

Since (1)P µ
n (−1) = 0, we can analytically obtain

−1DβxC(x, t) = −
N∑
j=1

(
u(xj, tk)

(xj + 1)µ

N∑
n=1

βjn −1Iβx
[

(1)P µ
n (x).

]

where −1Iβx
[

(1)P µ
n (x).

]
is obtained exactly as

−1Iβx
[

(1)P µ
n (x)

]
=

1 + 1

1
(1 + x)α+µP−β−µ,β+µ

n−1 (x), (11.29)
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Hence, by plugging (11.29) into (11.29), we obtain the term −1DβxC(x, tn) at an

arbitrary time step n as

−1DβxC(x, t) = −
N∑
j=1

(
u(xj, tn)

(xj + 1)µ

N∑
n=1

βjn
1 + 1

1
(1 + x)α+µP−β−µ,β+µ

n−1 (x). (11.30)

By evaluating −1DβxC(x, t) at the spatial collocation points {xk}Nk=1 at any given time

tn, we obtain the following operational integration matrix

−1DβxC(xj, tn) =
N∑
k=1

{Iβ}kju(xj, tn), (11.31)

in which Iβ represents the fractional integration matrix whose entries are obtained

as

{Iβ}kj = −
N∑
j=1

(
u(xj, tn)

(xj + 1)µ

N∑
n=1

βjn
1 + 1

1
(1 + xk)

α+µP−β−µ,β+µ
n−1 (xk). (11.32)

In order to examine the accuracy of the spatial operators in this application, in

Table 11.2, we solve a collection of fractional integral and differential equation in

space.

In Table 11.3, we perform both fully explicit in addition to the IMEX time-

integration of the Keller-Segel chemotaxis equation subject to homogeneous ini-

tial/boundary conditions. Here, σ = β = 5/9, γ = 3/2, K = 1/300. Here, the

exact solution is uext(t, x) = t5+1/2(21/6(1+x)4+1/3− (1+x)4+1/2) and the simulation

time T = 1; (top) the full explicit scheme, and (bottom) the implicit-explicit (IMEX)

splitting scheme. As expected, we observe at least a second order accuracy.
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Table 11.3: IMEX time-integration of the Keller-Segel chemotaxis equation subject to homo-
geneous initial/boundary conditions. Here, σ = β = 5/9, γ = 3/2, K = 1/300. Here, the exact
solution is uext(t, x) = t5+1/2(21/6(1 +x)4+1/3− (1 +x)4+1/2) and the simulation time T = 1; (top)
the full explicit scheme, and (bottom) the implicit-explicit (IMEX) splitting scheme.

Keller-Segel chemotaxis Eq. (Full Explicit)

∆t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.080613 1.46 0.049351 1.78 0.035820 1.90

1/16 0.029303 1.80 0.014393 1.99 0.009619 2.13

1/32 0.008408 1.97 0.003604 2.17 0.002193 2.51

1/64 0.002148 1.95 0.000801 2.39 0.000385 4.29

1/128 0.000555 - 0.000153 - 0.000019 -

Keller-Segel chemotaxis Eq. (IMEX)

∆t τ = 1/10 Order τ = 1/2 Order τ = 9/10 Order

1/8 0.080213 1.43 0.0492818 1.78 0.035854 1.89

1/16 0.029787 1.68 0.0143615 1.99 0.009652 2.11

1/32 0.009284 1.85 0.003608 2.16 0.002230 2.40

1/64 0.00257 1.94 0.000808 2.36 0.000421 2.99

1/128 0.000669 - 0.000157 - 0.000053 -



Chapter Twelve

Galerkin Projection in

Triangular/Tetrahedral Elements
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In this chapter, we begin extending the concept of projection problem in one-

dimensional cases, studied in chapter 2, to non-tensorial regions of multiple dimen-

sions. Here, we examine triangle and tetrahedral in the standard domain. To this

end, we construct the corresponding fractional modal basis function in terms of Ja-

cobi polyfractonomials, introduced in chapter 2. This study is the first attempt

in employing non-polynomial (fractional) basis functions in non-tensorial domains,

which can lead to the formulation of FPDEs in complex geometries.

12.1 Background

An orthogonal, generalised tensor product, two-dimensional basis has been proposed

by several authors, the first of which we believe to be Proriol in 1957 [143]. This basis

has also been independently proposed by Karlin and McGregor [74] and Koornwinder

[95] also by Dubiner [55]. These expansions are also known to be solutions to a

singular Sturm Liouville problem [28, 96, 135, 178]. Moreover, Dubiner’s paper also

suggested a modified basis for C0-continuous expansions and discussed the three-

dimensional extension of the orthogonal expansion to a tetrahedral region. The

derivation of a (C0-continuous expansion in a tetrahedral region based on Dubiner’s

orthogonal expansion was first presented by Sherwin and Karniadakis [159, 77]. Very

recently, Qiu et.al. have developed a nodal discontinuous Galerkin methods for

fractional diffusion equations on 2-D domain with triangular meshes in [145].

We discuss non-tensorial expansions for simplex regions. An interesting charac-

teristic of these expansions is that the individual expansion modes are not rotation-

ally symmetric in the standard regions. Rotational symmetry has historically been

an important consideration when constructing unstructured polynomial expansion
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bases. The desire for rotational symmetry naturally motivates the use of rotationally-

invariant barycentric coordinate systems. However, the use of the barycentric co-

ordinate system can destroy much of the numerical efficiency associated with the

standard tensor product expansion bases. One way to recover this efficiency is to

design a coordinate system based on the mapping of a square to a triangle generating

a collapsed coordinate system.

12.2 Non-Tensorial Expansions

The use of a collapsed coordinate system regains some of this efficiency but inher-

ently destroys the rotational symmetry of each mode of the expansion. Nevertheless,

these expansions span an identical polynomial space as the traditional unstructured

expansions using barycentric coordinates. Therefore, in the absence of any integra-

tion error, they are equivalent to any other polynomial expansion bases used in a

Galerkin approximation. The lack of rotational symmetry does not affect the multi-

domain construction of the triangular expansion, although for tetrahedral domains

it does impose a restriction on orientation of the elemental regions which can be

trivially satisfied.

12.2.1 Collapsed 2-D Coordinate System

We provide the definition of a new collapsed coordinate system. Using the collapsed

coordinate system we can then construct orthogonal expansions within simplex re-

gions. Finally, since the orthogonal expansions cannot easily be tessellated into

C0-expansions, we discuss a set of modified expansions which have an interior and
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Figure 12.1: Standard regions for the (a) quadrilateral, and (b) triangular expansion in terms of
the Cartesian coordinates (ξ1, ξ2).

boundary decomposition making them suitable for use in a global C0-continuous

expansion.

A suitable coordinate system, which describes the triangular region between con-

stant independent limits, is defined by the transformation

η1 = 2
1 + ξ1

1− ξ1

− 1, (12.1)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1− η2)

2
, (12.2)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1}. (12.3)

The definition of the triangular region in terms of the coordinate system (η1, η2)
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is identical to the definition of the standard quadrilateral region in terms of the

Cartesian coordinates (ξ1, ξ2). This suggests that we can interpret the transformation

(12.1) as a mapping from the triangular region to a rectangular one.

12.2.2 Collapsed 3-D Coordinate System

If we consider the local coordinates (12.2) as independent axes then the coordinate

system spans a rectangular region. Therefore, if we start with a hexahedral region

and apply the inverse transformation(12.2) then we can derive a new local coordinate

system in the tetrahedral region T 3 in three dimensions, where T 3 is defined as

T 3 = {(η1, η2)| − 1 ≤ η1, η2, η3, η1 + η2 + η3 ≤ 1}. (12.4)

To reduce the hexahedron to a tetrahedron requires repeated application of the

transformation (12.2), as illustrated in Fig. 12.2. Initially, we consider a hexahedral

domain defined in terms of the local coordinate system (η1, η2, η3), where all three

coordinates are bounded by constant limits, that is, −1 ≤ η1, η2, η3 ≤ 1. Applying

the rectangle-to-triangle transformation (12.2) as illustrated in Fig. 12.2.

12.2.3 Barycentric Coordinate Systems

Barycentric coordinate systems have historically been used in unstructured domains

because of their rotational symmetry. Unlike the quadrilateral or hexahedral regions,

in a simplex region such as the triangle and tetrahedron, maintaining symmetry

requires an extra (dependent) coordinate. This makes the tensor process construction
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Figure 12.2: Hexahedron-to-tetrahedron transformation by repeatedly applying the rectangle-
to-triangle mapping.

Figure 12.3: (a) The area coordinate system in the standard triangular region with coordinates
L1, L2, and L3; (b) The standard tetrahedral region for the definition of volume coordinates.
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of expansions very difficult if not impossible. Barycentric coordinates will however

be useful in defining the rotationally-symmetric non-tensorial expansions discussed

in this section. We also define the relationship between the barycentric coordinates

and volume coordinates and the collapsed coordinate systems. The area coordinate

system is illustrated in Fig. 12.3 (a) for the standard triangle. Any point in the

triangle is described by three coordinates L1, L2, and L3, which can be interpreted

as the ratio of the areas A1, A2, and A3 over the total area A = A1 + A2 + A3.

12.3 Fractional Modal Basis Functions

In this section, we construct a new class of fractional basis functions for non-tensorial

domain based on Jacobi polyfractonomials. A similar approach can be found in

the recent book of Bittencourt [24], where we now aim to employ non-polynomial

functions in the construction of the bases along each direction Li, i = 1, 2, 3, and 4

as

φ(e)
p (Li) =


1, p = 0,

Li, p = Pi,

(1)P µi
n (2Li − 1) 1 < p < Pi,

(12.5)

where (1)P µ
n (ξ) = (1 + ξ)µ P−µ , µn−1 (ξ), denote the Jacobi polyfractonomial function

introduced in Chap. 2.
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12.3.1 Fractional Bases for Triangle Elements

Hence, the modal basis functions for triangles can be defined as the following; the

vertex modes are given by

Φ
(e)
P100(L1, L2, L3) = φ

(e)
P1

(L1)φ
(e)
0 (L2)φ

(e)
0 (L3) = L1, (12.6)

Φ
(e)
0P20(L1, L2, L3) = φ

(e)
0 (L1)φ

(e)
P2

(L2)φ
(e)
0 (L3) = L2,

Φ
(e)
00P3

(L1, L2, L3) = φ
(e)
0 (L1)φ

(e)
0 (L2)φ

(e)
P3

(L3) = L3,

moreover, the edge modes for P ≥ 2 and 0 < p, q, r < P are given by

Φ
(e)
pq0(L1, L2, L3) = φ(e)

p (L1)φ(e)
q (L2)φ

(e)
0 (L3) (12.7)

= Lµ11 L
µ2
2 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1), (p+ q = P )

Φ
(e)
p0r(L1, L2, L3) = φ(e)

p (L1)φ
(e)
0 (L2)φ(e)

r (L3)

= Lµ11 L
µ2
3 P

−µ1,µ1
p−1 (2L1− 1)P−µ3,µ3r−1 (2L3− 1), (p+ r = P )

Φ
(e)
0qr(L1, L2, L3) = φ

(e)
0 (L1)φ(e)

q (L2)φ(e)
r (L3)

= Lµ22 L
µ3
3 P

−µ2,µ2
q−1 (2L2− 1)P−µ3,µ3r−1 (2L3− 1), (q + r = P ).

Finally, the face modes for P ≥ 3, p + q + r = P , and 0 < p, q, r < P − 1 are given

by

Φ(e)
pqr(L1, L2, L3) = φ(e)

p (L1)φ(e)
q (L2)φ(e)

q (L3) (12.8)

= Lµ11 L
µ2
2 L

µ3
3 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1)P−µ3,µ3r−1 (2L3− 1).
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12.3.2 Fractional Bases for Tetrahedral Elements

The same tensorization procedure of triangle is applied to tetrahedral. For this pur-

pose, the barycentric or volume coordinates presented in Fig. 12.3 (b) are employed.

Given any interior point, we have four tetrahedrals with volumes V1, V2, V3, and V4,

where the total volume V = V1 + V2 + V3 + V4. In order to obtain the fractional

modal basis function in tetrahedral elements we employ (12.5) as the following; the

vertex modes are obtained as

Φ
(e)
P1000(L1, L2, L3, L4) = φ

(e)
P1

(L1)φ
(e)
0 (L2)φ

(e)
0 (L4)φ

(e)
0 (L4) = L1, (12.9)

Φ
(e)
0P200(L1, L2, L3, L4) = φ

(e)
0 (L1)φ

(e)
P2

(L2)φ
(e)
0 (L3)φ

(e)
0 (L4) = L2,

Φ
(e)
00P30(L1, L2, L3, L4) = φ

(e)
0 (L1)φ

(e)
0 (L2)φ

(e)
P3

(L3)φ
(e)
0 (L4) = L3,

Φ
(e)
000P4

(L1, L2, L3, L4) = φ
(e)
0 (L1)φ

(e)
0 (L2)φ

(e)
0 (L3)φ

(e)
P4

(L4) = L4.
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In addition, the edge modes are constructed for P ≥ 2 and 0 < p, q, r, s < P as

Φ
(e)
pq00(L1, L2, L3, L4) = φ(e)

p (L1)φ(e)
q (L2)φ

(e)
0 (L3)φ

(e)
0 (L4) (12.10)

= Lµ11 L
µ2
2 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1), (p+ q = P ),

Φ
(e)
p0r0(L1, L2, L3, L4) = φ(e)

p (L1)φ
(e)
0 (L2)φ(e)

r (L3)φ
(e)
0 (L4)

= Lµ11 L
µ2
3 P

−µ1,µ1
p−1 (2L1− 1)P−µ3,µ3r−1 (2L3− 1), (p+ r = P ),

Φ
(e)
0qr0(L1, L2, L3, L4) = φ

(e)
0 (L1)φ(e)

q (L2)φ(e)
r (L3)φ

(e)
0 (L4)

= Lµ22 L
µ3
3 P

−µ2,µ2
q−1 (2L2− 1)P−µ3,µ3r−1 (2L3− 1), (q + r = P ),

Φ
(e)
p00s(L1, L2, L3, L4) = φ(e)

p (L1)φ
(e)
0 (L2)φ

(e)
0 (L3)φ(e)

s (L4)

= Lµ11 L
µ4
4 P

−µ1,µ1
p−1 (2L1− 1)P−µ4,µ4s−1 (2L4− 1), (p+ s = P ),

Φ
(e)
00rs(L1, L2, L3, L4) = φ

(e)
0 (L1)φ

(e)
0 (L2)φ(e)

r (L3)φ(e)
s (L4)

= Lµ33 L
µ4
4 P

−µ3,µ3
p−1 (2L3− 1)P−µ4,µ4s−1 (2L4− 1), (r + s = P ),

Φ
(e)
0q0s(L1, L2, L3, L4) = φ

(e)
0 (L1)φ(e)

q (L2)φ
(e)
0 (L3)φ(e)

s (L4)

= Lµ22 L
µ4
4 P

−µ2,µ2
p−1 (2L2− 1)P−µ4,µ4s−1 (2L4− 1), (q + s = P ),
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moreover the face modes for P ≥ 3, 0 < p, q, r, s < P − 1 are obtained as

Φ
(e)
pqr0(L1, L2, L3, L4) = φ(e)

p (L1)φ(e)
q (L2)φ(e)

q (L3)φ
(e)
0 (L4) (12.11)

= Lµ11 L
µ2
2 L

µ3
3 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1)P−µ3,µ3r−1 (2L3− 1),

Φ
(e)
pq0s(L1, L2, L3, L4) = φ(e)

p (L1)φ(e)
q (L2)φ

(e)
0 (L3)φ(e)

s (L4)

= Lµ11 L
µ2
2 L

µ4
4 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1)P−µ4,µ4r−1 (2L4− 1),

Φ
(e)
p0rs(L1, L2, L3, L4) = φ(e)

p (L1)φ
(e)
0 (L2)φ(e)

r (L3)φ(e)
s (L4)

= Lµ11 L
µ2
3 L

µ4
4 P

−µ1,µ1
p−1 (2L1− 1)P−µ3,µ3q−1 (2L3− 1)P−µ4,µ4r−1 (2L4− 1),

Φ
(e)
0qrs(L1, L2, L3, L4) = φ

(e)
0 (L1)φ(e)

q (L2)φ(e)
r (L3)φ(e)

s (L4)

= Lµ12 L
µ2
3 L

µ4
4 P

−µ2,µ2
p−1 (2L2− 1)P−µ3,µ3q−1 (2L3− 1)P−µ4,µ4r−1 (2L4− 1).

Finally, the body (volume) modes for P ≥ 4, p+q+r+s = P , and < p, q, r, s < P−2

are given by the general expression

Φ(e)
pqrs(L1, L2, L3, L4) = φ(e)

p (L1)φ(e)
q (L2)φ(e)

q (L3)φ(e)
s (L4) (12.12)

= Lµ11 L
µ2
2 L

µ3
3 L

µ4
4 P

−µ1,µ1
p−1 (2L1− 1)P−µ2,µ2q−1 (2L2− 1)P−µ3,µ3r−1 (2L3− 1)P−µ4,µ4s−1 (2L4− 1).

12.4 Galerkin Projection

Now, we aim to examine the fractional basis functions in the Galerkin projection

in triangular and tetrahedral elements. In addition, we carry out a multi-element

projection operation in a L-shaped domain. The construction of the corresponding

mass matrix is followed by [77].

To this end, we examine the Galerkin projection of two fractional functions uext =

(xy)2.5(1−x−y) and uext = sin(x2.5) sin(y2.5)(1−x−y) in a triangle element (single-
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Table 12.1: Triangle Element; Galerkin projection (top): uext = (xy)2.5(1−x−y), and (bottom):
uext = sin(x2.5) sin(y2.5)(1− x− y).

uext = (xy)2.5(1− x− y)

P L2-Error (µ = 1/10) L2-Error (µ = 9/10)

3 1.85× 10−1 9.02× 10−2

5 4.56× 10−2 1.12× 10−3

7 3.94× 10−4 4.13× 10−5

9 1.04× 10−5 7× 10−6

11 1.45× 10−6 2× 10−6

uext = sin(x2.5) sin(y2.5)(1− x− y)

P L2-Error (µ = 1/10) L2-Error (µ = 9/10)

3 1.86× 10−1 9.1× 10−2

5 4.64× 10−2 1.25× 10−3

7 4.12× 10−4 3.90× 10−5

9 1.03× 10−5 6.70× 10−6

11 1.4× 10−6 1.94× 10−6

Table 12.2: Tetrahedral Element; Galerkin projection (top): uext = (xyz)2.5(1− x− y − z), and
(bottom): uext = sin(x2.5) sin(y2.5)(1− x− y − z).

uext = (xyz)2.5(1− x− y − z)

P L2-Error (µ = 1/10) L2-Error (µ = 9/10)

3 1.04× 10−1 4.63× 10−2

5 1.18× 10−2 2.66× 10−2

7 1.54× 10−3 5.44× 10−4

9 2.6× 10−4 1.22× 10−5

11 2.54× 10−6 3.90× 10−7

uext = sin(x2.5) sin(y2.5) sin(z2.5)(1− x− y − z)

P L2-Error (µ = 1/10) L2-Error (µ = 9/10)

3 1.04× 10−1 4.67× 10−2

5 1.20× 10−2 2.68× 10−3

7 1.55× 10−3 5.54× 10−4

9 2.62× 10−4 1.18× 10−5

11 2.6× 10−6 3.88× 10−7
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u(x, y) = sin(x2.5)y

P µ = 1/2

3 2.085 ×10−2

5 2.666 ×10−3

7 6.505×10−4

9 1.943×10−4

Figure 12.4: Multi-element Galerkin projection in a L-shaped domain.

domain) in Table 12.1. We observe a spectral convergence in the standard L2-norm.

Moreover, we examine three-dimensional functions uext = (xyz)2.5(1−x−y− z) and

uext = sin(x2.5) sin(y2.5)(1−x−y−z) for projection onto a tetrahedral single-element

in Table 12.2, we we achieve a similar spectral accuracy.

Finally, in Table 12.4, we perform the Galerkin projection of function u(x, y) =

sin(x2.5)y in the L-shaped domain Ω = [0, 8] × [0, 8]/[2, 8] × [2, 8], partitioned to

14 triangle elements. The usefulness of domain decomposition (in capturing such

a slightly more complicated domain in addition to the rate of convergence) can be

observed in the left panel of Table 12.4.



Chapter Thirteen

Summary and Future Works
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Fractional PDEs are the right mathematical models for many physical processes

exhibiting self-similar structures, nonlocal interactions, and anomalous diffusion.

However, the biggest challenge of employing these models is their global nature

and memory-dependent characteristics. That is one important reason that over

the past decades these global models have not been much utilized in science and

engineering, and instead, simplifying Newtonian, Gaussian, and Brownian assump-

tions have been adopted at the cost of weakening the fidelity of resulting models.

In fact, the inherent bottleneck of non-locality in fractional PDEs leads to exces-

sive computer-memory storage requirements and insufficient computational accuracy.

Utilization of local numerical methods, such as finite difference, can easily take days

on a standard desktop computer, even for problems with a single dimension. More-

over, this challenge becomes even more severe when fractional PDEs are involved

with multi-fractional order terms, nonlinear differential operators, or variable- and

distributed-order derivatives in time and space, for which there existed no high-order

numerical methods prior to our work. Given the aforementioned challenges in cases

with low dimensionality, fractional PDEs in higher dimensions were computationally

intractable, making real-world applications nearly impossible.

To overcome such barriers, in chapter 2, we introduced a regular fractional Sturm-

Liouville problem of two kinds RFSLP-I and RFSLP-II of order ν ∈ (0, 2) with

the fractional differential operators both of Riemann-Liouville and Caputo type,

of the same fractional order µ = ν/2 ∈ (0, 1). This choice, in turn, motivated a

proper fractional integration-by-parts. In the first part of this chapter, we obtained

the analytical eigensolutions to RFSLP-I &-II as non-polynomial functions, which

we defined as Jacobi poly-fractonomials. These eigenfunctions were shown to be

orthogonal with respect to the weight function, associated with the RFSLP-I &-II.

In addition, these eigenfunctions were shown to be hierarchical, and a useful recursive
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relation was obtained for each type of the eigenfunctions. Moreover, a detailed list

of other important properties of such poly-fractonomials was presented at the end

of the first part of this chapter.

Moreover, we extended the fractional operators to a new family of singular frac-

tional Sturm-Liouville problems of two kinds, SFSLP-I and SFSLP-II, in the second

part of the chapter. We showed that the regular boundary-value problems RFSLP-

I&-II are indeed asymptotic cases for the singular counterparts SFSLP-I&-II. We

also proved that the eigenvalues of the singular problems are real-valued and the

eigenfunctions corresponding to distinct eigenvalues are orthogonal. Subsequently,

we obtained the eigen-solutions to SFSLP-I &-II analytically, also as non-polynomial

functions, which completed the whole family of the Jacobi poly-fractonomials. In

a similar fashion, a number of useful properties of such eigensolutions was intro-

duced. Finally in chapter 2, we analyzed the numerical approximation properties of

the eigensolutions to RFSLP-I&-II and SFSLP-I&-II in a unified fashion. The expo-

nential convergence in approximating fractal functions such as poly-fractonomials in

addition to some other fractal functions such as fractional trigonometric functions

highlighted the efficiency of the new fractal basis functions compared to Legendre

polynomials.

In chapter 3, we first presented a regular tempered fractional Sturm-Liouville

(TFSLP) problem of two kinds, regular TFSLP-I and regular TFSLP-II of order

ν ∈ (0, 2) employing both tempered Riemann-Liouville and tempered Caputo frac-

tional derivatives of order µ = ν/2 ∈ (0, 1). We formulated the boundary-value prob-

lem by establishing the wellposedness of that, and then, proving that the eigenvalues

of the regular tempered problems are real-valued and the corresponding eigenfunc-

tions are orthogonal. Next, we excplicitly obtained the eigensolutions to the regular

TFSLP-I & -II defined as tempered Jacobi poly-fractonomials. These eigenfunctions
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were shown to be orthogonal with respect to the weight function associated with the

regular TFSLP-I & -II. We also showed that when the tempering parameter τ = 0,

such eigenfunctions reduce to the regular Jacobi poly-fractonomials introduced in

[187]. We demonstrated that such tempered eigensolutions enjoy many other attrac-

tive properties such as recurrence structure and having exact fractional derivatives

and integrals. In addition, we extended the fractional operators to a new family

of singular TFSLPs of two kinds, singular TFSLP-I and singular TFSLP-II. Subse-

quently, we obtained the eigensolutions to the singular TFSLP-I & -II analytically,

also as non-polynomial functions, hence completing the whole family of the tempered

Jacobi poly-fractonomials. Finally, we introduced the approximation properties of

such eigenfunctions by introducing them as new basis (and test) functions. Moreover

in chapter 3, we developed a Petrov-Galerkin spectral method for solving tempered

fractional ODEs (TFODEs), for which the corresponding stability and convergence

analysis were carried out. This work has been submitted [182].

In chapter 4, we developed spectrally accurate spectral methods of Petrov-Galerkin

(PG) type for the fractional initial-value problems 0Dνt u(t) = f(t) and the fractional

final-value problem tDνTu(t) = g(t), ν ∈ (0, 1), subject to Dirichlet initial/final con-

ditions. We employed the recently developed spectral theory in [187] for fractional

Sturm-Liouville problems, which provided the corresponding basis and test func-

tions utilized in our schemes. We introduced the corresponding fractional basis

functions, called Jacobi-polyfractonomials, as the eigenfunctions of the FSLP of first

kind (FSLP-I). Moreover in chapter 3, we employed another space of test functions as

the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II).

In the aforementioned PG spectral methods, the basis functions satisfy the initial-

/final-conditions exactly. Subsequently, we developed a Petrov-Gaerking discontin-

uous spectral method (DSM) for the aforementioned FIVPs and FFVPs, and finally
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extended DSM to a discontinuous spectral element method (DSEM) for carrying out

efficient longer time-integrations, but also performing possible discontinuity captur-

ing and adaptive refinement. In both discontinuous schemes, we employed the basis

and test functions which were asymptotic eigensolutions to FSLP-I&-II, belonging

to the Jacobi family polynomials. We presented a variety of numerical tests for each

case in chapter 4 to exhibit the exponential convergence of PG, DSM, and DSEM

using p-refinement; we also investigated the algebraic convergence in DSEM when

h-refinement is performed. In these numerical tests, we considered the exact so-

lution to the FIVPs/FFVPs to be monomials tp, smooth functions tq sin(πt), and

fractional functions tp/q sin(πtr/s), where p, q, r and s were integers, or any combina-

tion of them. In DSEM, we furthermore highlighted the flexibility of the scheme in

long-time/adaptive integration. We have also analyzed the computational complex-

ity of these methods. For example, in Fig. 4.5 we present the condition number of

the stiffness matrix in DSM and DSEM, which seems to grow roughly as N3−ν . For

the case of PG spectral method, we recall that the stiffness matrix is diagonal due

to the orthogonality property of the fractional bases.

In chapter 5, we developed spectrally accurate Petrov-Galerkin (PG) spectral

and discontinuous spectral element methods for Fractional Differential Delay Equa-

tions (FDDEs) of form 0Dνt u(t) = h(t)−A(t)u(t)−B(t)u(gτ (t)). We demonstrated

that the corresponding stiffness matrix is diagonal, also the corresponding mass and

delay mass matrices are obtained exactly by employing proper quadrature rules.

Hence, the total linear system becomes full in general, for which GMRES or GM-

RES(k) algorithms can be employed to solve the system. Moreover, we studied

the wellposedness of the problem, also carried out the corresponding stability and

convergence study of our PG spectral method. Subsequently, we developed a dis-

continuous Galerkin spectral method (DSM) along with exact quadrature rules for
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the aforementioned matrices. We then extended DSM to a discontinuous spectral

element method (DSEM) for efficient longer time-integrations and adaptive discon-

tinuity capturing. We developed these schemes based on a new spectral theory for

fractional Sturm-Liouville problems (FSLPs), recently presented in [187]. We exam-

ine a wide range of exact solutions with constant and time-dependent coefficients

A(t) and B(t). We also considered the delay term u(gτ (t)) to be of u(t − τ), pan-

tograph type u(qt) and harmonic delay form u(q sin(πt)). Consistently, in all the

aforementioned test cases and schemes, spectral convergence of the L2-norm error is

achieved independent of the time-delay τ .

In chapter 6, we developed high-order methods for time- and space- Fractional

Advection Equation (TSFAE) of the form (6.1), subject to Dirichlet initial/boundary

conditions. We presented two highly accurate spectral element methods. We first

developed the SM-DSEM scheme for carrying out the time-integration using a single

time-domain spectral method (SM), and performing the spatial discretization using

Discontinuous Spectral/hp Element Method (DSEM), when τ ∈ (0, 1], ν ∈ (0, 1). We

accomplished this based on the new spectral theory for fractional Sturm-Liouville

problems (FSLPs), presented in [187], which provides proper spaces of basis and

test functions. For the particular case τ = 1, we presented this PG-DG method as

an exponentially accurate time-integration method, which outperforms the existing

algebraically accurate backward and forward multi-step methods in terms of cost

and accuracy. We subsequently extended the SM-DSEM to another method, DSEM-

DSEM, in which both time-integration and spatial discretization are performed in

an hp-element fashion, when τ ∈ (0, 1), ν ∈ (0, 1). We presented numerical tests in

each case to demonstrate the exponential-like convergence of our methods employing

p-refinement, in addition to the algebraic convergence in DSEM when h-refinement

is performed.
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In chapter 7, we developed an spectrally accurate fractional spectral colloca-

tion method (FSCM) for solving steady-state and time-dependent Fractional PDEs

(FPDEs). First, we introduced fractional Lagrange interpolants, which satisfy the

Kronecker delta property at collocation points. We performed such a construc-

tion following a spectral theory developed in [187] for fractional Sturm-Liouville

eigen-problems. Moreover, we obtained the corresponding fractional differentiation

matrices and solved a number of linear and nonlinear FPDEs to investigate the nu-

merical performance of the fractional collocation method. To this end, we introduced

new candidate choices for collocation/interpolation points, namely roots of Jacobi-

polyfractonomial (1)P µ
M(x ) and roots of −1D µ

x [ (1)P µ
M(x ) ], denoted as (fractional)

extrema of the Jacobi polyfractonomial. We compared these new sets of residual-

vanishing points with other existing standard interpolation/collocation points such

as roots of Chebyshev polynomials, extrema of Chebyshev polynomials, and equidis-

tant points. We numerically demonstrated that the roots of −1D µ
x [ (1)P µ

M(x ) ] are

the best among others leading to minimal condition number in the corresponding

linear system and fastest decay of L2-norm error.

We considered steady-state problems such as space-fractional advection-diffusion

problem and generalized space-fractional multi-term problems; also time-dependent

FPDEs such as time- and space-fractional advection-diffusion equation, time- and

space- fractional multi-term FPDEs, and finally the space-fractional Burgers’ equa-

tion. Our numerical results confirmed the exponential convergence of the fractional

collocation method. We shall discuss the performance of FSCM in comparison with

other approaches. In fact, among other high-order Galerkin spectral methods, also

finite difference schemes developed for FPDEs, our FSCM scheme has a number of

advantages including (i) ease of implementation, (ii) lower computational cost, and

(iii) exponential accuracy. In the following we further elaborate on each of these
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features.

In terms of computational cost, the computational complexity of mathematical

operations in the construction of Dσ and D1+σ can be shown to be of O(N2). More-

over, the computational cost of the presented method for steady-state linear FODEs

can be shown to be mainly associated with: (i) the construction of the differentiation

matrices, and (ii) the linear system solver. Then, the computational cost of the pre-

sented scheme is asymptotically O( (Ma +Md)N
2 +N3) for such FODEs, where Ma

and Md represent the number of advection- and diffusion-looking terms, respectively.

For time-dependent multi-term FPDEs presented, the cost of the scheme grows as

O( (Ma +Md)N
2 + (MN)3), when a direct solver is employed.

In contrast to the standard Galerkin projection schemes, there is no quadrature

performed in our FSCM. Moreover, the treatment of nonlinear terms in FSCM can

be done with the same ease as in linear problems. This is significant because solving

nonlinear FPDEs remains a challenge in Galerkin methods. In addition, although

the employment of Galerkin methods in linear FPDEs becomes conceptually similar

to FSCM, Galerkin spectral methods with the traditional (polynomial) basis func-

tions do not always lead to exponential convergence as it does in our FSCM; such

schemes. Another important barrier in Galerkin projection schemes is the difficulty

of treating multi-term FPDEs, where no straightforward variational form can be

efficiently obtained for such problems. In contrast, we have clearly shown that our

FSCM requires no extra effort to solve such multi-term FPDEs. Despite the afore-

mentioned advantages of FSCM, the drawback of FSCM is that there is no rigorous

theoretical framework for collocation schemes in general.

In chapter 8, we developed a highly-accurate fractional spectral collocation method

for solving linear and nonlinear FPDEs with field-variable temporal and/or spatial
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fractional orders. To this end and corresponding to the type of spatial derivatives

(either Riemann-Liouville or Riesz), we introduced a new family of interpolants,

called left-/right-sided and central fractional Lagrange interpolants, which satisfy the

Kronecker delta property at collocation points. We constructed such interpolators

to approximate the aforementioned fractional operators of both (left-/right-sided)

Riemann-Liouville and Riesz type. We obtained the corresponding fractional dif-

ferentiation matrices exactly. We solved several variable-order FPDEs including

time- and space-fractional advection-equation, time- and space- fractional advection-

diffusion equation, and finally the space-fractional Burgers’ equation. We also devel-

oped an unconditionally stable penalty method that efficiently treats FPDEs subject

to inhomogeneous initial conditions. In our numerical examples, we demonstrated

the exponential decay of L∞-error in the aforementioned model problems.

In addition to the accuracy, the key idea to the efficiency in our approach was

to collocate the fied-variable orders, as well as the resulting fractional FPDEs, at

the collocation points. In fact, the C0-continuity of the fractional order in fixed-

order FDPEs allowed us to require only the C0-continuity for the temporally and/or

spatially-variable fractional orders in this study. This assumption made the point-

wise evaluation of such field-variable orders at any arbitrary point well-defined in the

space-time domain, hence, led us to circumvent the need for any quadrature rules that

usually arise in spectral methods. To our experience, such numerical integrations

become significantly costly when Galerkin/Petrov-Galerkin methods are employed,

moreover, the resulting weak forms yield non-separable linear systems, which may

lead to prohibitive computations in high dimensions.

In chapter 9, we developed a unified and spectrally accurate Petrov-Galerkin

(PG) spectral method for a weak formulation of the general linear FPDE of the form

0D2τ
t u+

∑d
j=1 cxj [ ajD

2µj
xj u ] + γ u = f , τ , µj ∈ (0, 1), in a (1 + d)-dimensional space-
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time domain subject to Dirichlet initial and boundary conditions. We demonstrated

that this scheme performs well for the whole family of linear hyperbolic-, parabolic-

and elliptic-like equations with the same ease. We developed our PG method based

on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), recently

introduced in [187]. In the present method, all the aforementioned matrices are con-

structed exactly and efficiently. We additionally performed the stability analysis (in

1-D) and the corresponding convergence study of the scheme (in multi-D). Moreover,

we formulated a new general fast linear solver based on the eigen-pairs of the corre-

sponding temporal and spatial mass matrices with respect to the stiffness matrices,

which significantly reduces the computational cost in higher-dimensional problems

e.g., (1+3), (1+5) and (1+9)-dimensional FPDEs.

In the p-refinement tests performed in the aforementioned problems, we kept the

fractional order to be the middle-value (either 1/2 or 3/2) in the fixed direction,

and we examined some limit fractional orders in the other direction. However, we

numerically observe that if the fixed fractional order is taken to be closer to the limit

values (i.e., either 0 or 1), the mode of spectral convergence remains unchanged but

we achieve a different rate of convergence to be verified in our future theoretical

analysis.

Alternating Direction Implicit (ADI) methods (see e.g., [75]) are another way of

solving space-fractional FPDEs in higher dimensional problems. In this approach,

a one-dimensional space-fractional FPDE solver with a low-order (finite-difference)

time integrator can be employed to solve 2-D or 3-D problems. However, we note

that ADI naturally cannot treat time- and space-fractional FPDEs. Moreover, the

temporal rate of convergence in this approach is algebraic in contrast to the high

accuracy in the spatial discretizations. Hence, the computational complexity of this

approach becomes exceedingly large in higher-dimensional FPDEs.
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Although the proposed unified PG method enjoys the high accuracy of the dis-

cretization in time and space in addition to its efficiency in solving higher-dimensional

problems, treating FPDEs in complex geometries still remains a great challenge to

be addressed in our future works. Moreover, special care should be taken when the

FPDE of the interest is associated with variable coefficients and/or non-linearity. In

[190], we have employed the fractional bases to construct a new class of fractional La-

grange interpolants i.e., fractional nodal rather than modal basis functions presented

here, to develop efficient and spectrally accurate collocation methods for a variety

of FODEs and FPDEs including non-linear space-fractional Burgers’ equation.

In chapter 10, distributed-order fractional operators were considered. We de-

veloped a spectrally-accurate fractional spectral collocation method for distributed

fractional differential equations. This scheme was developed based on the recent

spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been

recently developed in [187]. In the collocation scheme, We employed fractional La-

grange interpolants, which satisfy the Kronecker delta property at collocation points.

Subsequently, we obtained the corresponding fractional differentiation matrices. In

addition to spectral accuracy in space, we were able to formulate an observable sec-

ond order in time splitting method to be employed in other nonlinear problems such

as Navier-Stokes equation in future. This chapter is under preparation for submission

to SIAM Journal on multiscale simulations, [191].

In chapter 11, we developed an implicit-explicit (IMEX) splitting scheme for a

one-dimensional space-fractional with integer-order time-derivative, in addition to

time- and space-fractional Keller-Segel chemotaxis system. The fractional temporal

derivative is of Caputo sense and the spatial derivatives are of Riemann-Liouville

type. In this method, the diffusion term is treated implicitly while the nonlinear

chemotaxis reaction term is evaluated explicitly. We carried out the time-integration
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in the prediction step employing a fractional finite difference scheme of observable

order ∆2. The spatial discretization was performed by employing an efficient and

spectrally-accurate fractional spectral collocation method, in which the Lagrange

interpolants are non-polynomials (fractional). This chapter is also under preparation

for submission to JCP, [186].

In chapter 12, we extended the concept of projection problem in one-dimensional

cases, studied in chapter 2, to non-tensorial regions of multiple dimensions. We ex-

amined triangle and tetrahedral in the standard domain. To this end, we constructed

the corresponding fractional modal basis function in terms of Jacobi polyfractono-

mials, introduced in chapter 2. This work was the first attempt in employing non-

polynomial (fractional) basis functions in non-tensorial domains, which can lead to

formulation of FPDEs in complex geometries.

13.1 Future Work

Many open issues remain in this field to be addressed in our future work. Here, we

list some of them as follows:

• Complex geometries: the projection work we carried out in simplex domains

(triangles and tetrahedrals) prepared the ground for our future development of

high-order methods for FPDEs in complex geometries. To this end, there are a

number of important issues to be addressed in future: i) the possibility of per-

forming Petrov-Galerkin projection for possible improvement of efficiency, ii)

construction of stiffness matrices in single and multi-element cases, iii) the en-

forcement of different types of boundary conditions, and iv) designing meshes,
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which could minimize the complexity of history calculations in irregular do-

mains.

• Efficient adaptivity: the fast convergence of spectral and spectral element

methods relies on the smoothness of the solution. However, adaptivity is neces-

sary for the region with low regularity, where the solution adopts certain types

of singularities. Hence, effective adaptive strategies are necessary for both h-

and p-convergence for certain problems.

• High-performance computing: we plan for strategic research efforts on

high-performance computing of the developed high-order methods (spectral/hp

element methods) for fractional fixed-, variable-, and distributed-order PDEs

for a range of applications. To this end, we will develop open-source computa-

tional platforms for parallel computing for such models.

• Uncertainty quantification: uncertainties in our knowledge of physical

properties of materials, as well as in topological (boundary) constrains is in-

evitable. Moreover, systems modeled by fractional PDEs could be subject

to random excitements, which naturally cast underlying mathematical mod-

els in a stochastic framework. In addition, large data-driven simulations rely

heavily on fine-tuning of differential orders (fixed, variable, and distributed)

in fractional PDEs. This necessitates a systematic framework for uncertainty

quantification (UQ) in fractional PDEs.



Appendix A

Derivation of the DSM and DSEM

in Chapter 4
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A.1 Derivation of the discontinuous spectral method

(DSM)

Let I = [0, T ] be the time-domain and ϑ(t) ∈ VN be an arbitrary test function.

Then, we obtain a variational form for the solution u(t) by multiplying (4.1) by ϑ(t)

and integrating in I as

(
0Dνt u(t) , ϑ(t)

)
I

=
(
f(t) , ϑ(t)

)
I
. (A.1)

On the left-hand side, by the definition of the left-sided fractional derivative we have

(
0Dνt u(t) , ϑ(t)

)
I

=

∫ T

0

1

Γ(1− ν)

d

dt

∫ t

0

u(s)ds

(t− s)ν ϑ(t)dt, (A.2)

=
ϑ(t)

Γ(1− ν)

∫ t

0

u(s)ds

(t− s)ν
∣∣∣t=T
t=0
−
∫ T

0

1

Γ(1− ν)

∫ t

0

u(s)ds

(t− s)ν
d

dt
ϑ(t) dt

=
ϑ(T )

Γ(1− ν)

∫ T

0

u(s)ds

(T − s)ν −
∫ T

0

1

Γ(1− ν)

∫ t

0

u(s)ds

(t− s)ν
d

dt
ϑ(t) dt

=
ϑ(T )

Γ(1− ν)

∫ 0+

0

u(s)ds

(T − s)ν +
ϑ(T )

Γ(1− ν)

∫ T

0+

u(s)ds

(T − s)ν

−
∫ T

0

1

Γ(1− ν)

∫ t

0

u(s)ds

(t− s)ν
d

dt
ϑ(t) dt

where by carrying out the integration-by-parts in ϑ(T )
Γ(1−ν)

∫ 0+

0
u(s)ds
(T−s)ν and assuming the

exact solution u ∈ C1[0, T ] we obtain

ϑ(T )

Γ(1− ν)

∫ 0+

0

u(s)ds

(T − s)ν = 0 (A.3)

=
ϑ(T )T 1−ν

(1− ν)Γ(1− ν)
(uD − u(0+))

+
ϑ(T )

Γ(1− ν)

∫ 0+

0

(T − s)1−ν du(s)

ds
ds
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where the second integral term in (A.3) is also identically zero. Now, by substituting

the exact solution u(t) by the approximate uN(t), we obtain

ϑ(T )

Γ(1− ν)

∫ 0+

0

u(s)ds

(T − s)ν ≈
ϑ(T )T 1−ν

(1− ν)Γ(1− ν)
(uD − uN(0+)) (A.4)

where (uD − uN(0+)) 6= 0, however, as N → ∞ this jump discontinuity approaches

zero. Now, by substituting (A.4) in (A.2), replacing u by uN , and finally subtracting

a zero term ϑ(0+)
Γ(1−ν)

∫ 0+

0+
uN (s)ds
(0+−s)ν , we obtain

(
0Dνt u(t) , ϑ(t)

)
I
≈

(
0Dνt uN(t) , ϑ(t)

)
I

=
ϑ(T )T 1−ν

(1− ν)Γ(1− ν)
(uD − uN(0+))

+
ϑ(T )

Γ(1− ν)

∫ T

0+

uN(s)ds

(T − s)ν −
ϑ(0+)

Γ(1− ν)

∫ 0+

0+

uN(s)ds

(0+ − s)ν

−
∫ T

0

1

Γ(1− ν)

∫ t

0

uN(s)ds

(t− s)ν
d

dt
ϑ(t) dt

=
ϑ(T−)T 1−ν

(1− ν)Γ(1− ν)
(uD − uN(0+)) +

ϑ(t)

Γ(1− ν)

∫ t

0+

uN(s)ds

(t− s)ν
∣∣∣t=T
t=0+

−
∫ T

0

1

Γ(1− ν)

∫ t

0

uN(s)ds

(t− s)ν
d

dt
ϑ(t) dt

=
(

0+Dνt uN(t) , ϑ(t)
)
I

+
ϑ(T−)T 1−ν

(1− ν)Γ(1− ν)
(uD − uN(0+)),

where by by Lemma 6.3.4

(A.5)(
0Dνt uN(t) , ϑ(t)

)
I

=
(

0+D
ν/2
t uN(t) , tDν/2T ϑ(t)

)
I
− ϑ(T )T 1−ν

(1− ν)Γ(1− ν)
JuN(0)K,

which completes the derivation of the DSM spectral method for FIVPs by substitut-

ing (A.5) into (A.1).

For the derivation of the DSM scheme (4.42) for FFVPs, we repeat the above
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steps where this time the jump discontinuity occurs at the final-condition. However,

we realize that there exists an easier way to do so that is performing the change of

variable t̃ = T − t in (A.5) and the Lemma 6.3.4.
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A.2 Derivation of the discontinuous spectral ele-

ment method (DSEM)

Now, let Ie = [te−1/2 , te+1/2] be the e-th time-element and ϑe(t) ∈ VN be an arbitrary

test function. Then, we obtain the corresponding variational form by multiplying

(4.1) by ϑe(t), and integrating in Ie as

(
0Dνt u(t) , ϑe(t)

)
Ie

=
(
f(t) , ϑe(t)

)
Ie
. (A.6)

On the left-hand side, by the definition of the left-sided fractional derivative we have

(
0Dνt u(t) , ϑe(t)

)
Ie

=
( 1

Γ(1− ν)

d

dt

∫ t

0

u(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

=
( 1

Γ(1− ν)

d

dt

∫ t−
e−1/2

0

u(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

+
( 1

Γ(1− ν)

d

dt

∫ t+
e−1/2

t−
e−1/2

u(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

+
( 1

Γ(1− ν)

d

dt

∫ t

t+
e−1/2

u(s) ds

(t− s)ν , ϑ
e(t)

)
Ie
,
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where by the same argument as in the derivation in A.1 and also by the definition

of the left-sided fractional derivative in the last term we obtain

(
0Dνt u(t) , ϑe(t)

)
Ie
≈

(
0Dνt uN(t) , ϑe(t)

)
Ie

(A.7)

=
(

t+
e−1/2
Dνt ueN(t) , ϑe(t)

)
Ie

+
ϑe(t−e+1/2)(∆t)1−ν

e

(1− ν)Γ(1− ν)

(
ue−1
N (t−e−1/2)− ueN(t+e−1/2)

)
+

( 1

Γ(1− ν)

d

dt

∫ t−
e−1/2

0

u(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

where (∆t)e = te+1/2− te−1/2, and we have replaced u in the last first and the second

term by uN and have left the last term unchanged for the following argument. Now,

by Lemma 6.3.4, and the definition of the jump discontinuity we obtain

(
0Dνt uN(t) , ϑe(t)

)
Ie

=
(

t+
e−1/2
Dν/2t ueN(t) , tDν/2t−

e+1/2

ϑe(t)
)
Ie

(A.8)

−
ϑe(t−e+1/2)(∆t)1−ν

e

(1− ν)Γ(1− ν)
JueN(te−1/2)K +He .

We suppose that uN(t) is only unknown in the present element Ie and we have already

solved for uN(t) in all the previous (past) time-elements. Hence the time-interval

[0, t−e−1/2], appearing in the last integral in (A.7), in fact represents a time-history

interval. Consequently, we compute He in (A.8) by decomposing the time-history
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interval [0, t−e−1/2] into the interior past time-elements Iε ≡ [t+ε−1/2, t
−
ε+1/2] as

He =
( 1

Γ(1− ν)

d

dt

∫ t−
e−1/2

0

uN(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

(A.9)

=
( e−1∑

ε=1

( 1

Γ(1− ν)

d

dt

∫ t+
ε−1/2

t−
ε−1/2

uεN(s) ds

(t− s)ν , ϑ
e(t)

)
Ie

=
(
ϑe(t)

1

Γ(1− ν)

e−1∑
ε=1

∫
Iε

uεN(s)ds

(t− s)ν
)∣∣∣t=t−e+1/2

t=t+
e−1/2

−
( 1

Γ(1− ν)

e−1∑
ε=1

∫
Iε

uεN(s)ds

(t− s)ν ,
d

dt
ϑe(t)

)
Ie

where uεN denotes the known solution we have already solved for, and is well-defined

only in element Iε = [t+ε−1/2, t
−
ε+1/2]. We note that uεN is a polynomial of degree N .

Therefore, uεN has N continuous derivatives in Iε. Accordingly, in order to reduce the

double integral appearing in the last term in (A.9), we carry out integration-by-parts

in
∫
Iε

uεN (s)ds

(t−s)ν N times to obtain

1

Γ(1− ν)

e−1∑
ε=1

∫
Iε

uεN(s)ds

(t− s)ν =
e−1∑
ε=1

N∑
δ=0

τδ(t− s)δ+1−νu
(δ)ε
N (s)

∣∣∣s=t−ε+1/2

s=t+
ε−1/2

(A.10)

=
e−1∑
ε=1

F ε
e (t)

= Fe(t)

where Fe(t) denotes the flux function associated to the element Ie in which τδ =

−1

Γ(1−ν)
∏δ
m=0(m+1−ν)

. Now, by substituting (A.10) we can efficiently compute the his-

tory term as

He = ϑe(t)Fe(t)
∣∣∣t=t−e+1/2

t=t+
e−1/2

−
(
Fe(t) ,

d

dt
ϑe(t)

)
Ie

(A.11)

where the double-integral in (A.9) renders a convenient one-dimensional form in

(A.11). It completes the derivation for the fractional discontinuous spectral element
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scheme given in (5.79).

Now, we would like to shed more light on the meaning of such history term by

re-representing the history term as

He = (A.12)

1

Γ(1− ν)

e−1∑
ε=1

{
ϑe(t−e+1/2)

∫ t−
ε+1/2

t+
ε−1/2

uεN(s)ds

(t−e+1/2 − s)ν
− ϑe(t+e−1/2)

∫ t−
ε+1/2

t+
ε−1/2

uεN(s)ds

(t+e−1/2 − s)ν
}

− 1

Γ(1− ν)

e−1∑
ε=1

( ∫
Iε

uεN(s)ds

(t− s)ν ,
d

dt
ϑe(t)

)
Ie
,

Next, we continuously extend the solution uεN from the corresponding element

Iε to the present element Ie, denoted by uε∗N , such that uε∗N

∣∣∣
Iε

= uεN . In the simplest

extension which also sounds natural is to take right-end value of uεN and consider

this constant value in later elements upto Ie. Having such an extension defined, we

can replace uεN in (A.12) with uε∗N and re-write each expression in (A.12) in terms of

the subtraction of two integrals as

∫ t−
ε+1/2

t+
ε−1/2

uεN(s)ds

(t−e+1/2 − s)ν
=

∫ t−
e+1/2

t+
ε−1/2

uε∗N (s)ds

(t−e+1/2 − s)ν
−
∫ t−

e+1/2

t−
ε+1/2

uε∗N (s)ds

(t−e+1/2 − s)ν
, (A.13)

∫ t−
ε+1/2

t+
ε−1/2

uεN(s)ds

(t+e−1/2 − s)ν
=

∫ t+
e−1/2

t+
ε−1/2

uε∗N (s)ds

(t+e−1/2 − s)ν
−
∫ t+

e−1/2

t−
ε+1/2

uε∗N (s)ds

(t+e−1/2 − s)ν
, (A.14)

and

∫
Iε

uεN(s)ds

(t− s)ν =

∫ t

t+
ε−1/2

uε∗N (s)ds

(t− s)ν −
∫ t

t−
ε+1/2

uε∗N (s)ds

(t− s)ν (A.15)
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for any arbitrary t ∈ Ie. Now, by substituting (A.13)-(A.15) into (A.12), we obtain

(A.16)

He =
e−1∑
ε=1

{ ϑe(t)

Γ(1− ν)

∫ t

t+
ε−1/2

uε∗N (s)ds

(t− s)ν
∣∣∣t=t−e+1/2

t=t+
e−1/2

− 1

Γ(1− ν)

( ∫ t

t+
ε−1/2

uε∗N (s)ds

(t− s)ν ,
d

dt
ϑe(t)

)
Ie

}
−

e−1∑
ε=1

{ ϑe(t)

Γ(1− ν)

∫ t

t−
ε+1/2

uε∗N (s)ds

(t− s)ν
∣∣∣t=t−e+1/2

t=t+
e−1/2

− 1

Γ(1− ν)

( ∫ t

t−
ε+1/2

uε∗N (s)ds

(t− s)ν ,
d

dt
ϑe(t)

)
Ie

}
,

where by inverse integration-by-parts we obtain

(A.17)

He =
e−1∑
ε=1

( 1

Γ(1− ν)

d

dt

∫ t

t+
ε−1/2

uε∗N (s)ds

(t− s)ν , ϑ
e(t)

)
Ie

−
e−1∑
ε=1

( 1

Γ(1− ν)

d

dt

∫ t

t−
ε+1/2

uε∗N (s)ds

(t− s)ν , ϑ
e(t)

)
Ie

and by definition of the left-sided fractional derivative we obtain

He = −
e−1∑
ε=1

{(
s0ε
Dνt uε∗N (t) , ϑe(t)

)
Ie

∣∣∣s0ε=t−ε+1/2

s0ε=t
+
ε−1/2

. (A.18)



Appendix B

Derivation of the SM-DSEM in

Chapter 6
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B.1 Derivation of SM-DSEM Scheme

We partition the computational domain into Nel non-overlapping space-time ele-

ments, Ωe = [xe−1/2, xe+1/2] ×[0, T ]. Next, we test the TSFAE (6.2) against some

proper test function ve(x, t), then integrate over the sub-domain Ωe and using Lemma

6.3.4 to carry out the temporal fractional integration-by-parts, we obtain

(B.1)(
0Dτ/2t u(x, t) , tDτ/2T ve(x, t)

)
Ωe

+ θ
(

0Dνxu(x, t) , ve(x, t)
)

Ωe
=
(
f(x, t), ve(x, t)

)
Ωe
.

Due to our domain-decomposition, also the definition of the spatial fractional deriva-

tive with lower terminal beginning at x = 0, we obtain an equivalent yet more efficient

expression as follows

(
0Dνxu(x, t) , ve(x, t)

)
Ωe

=
( 1

Γ(1− ν)

∂

∂x

∫ x

x+
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

(B.2)

+
( 1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

+
( 1

Γ(1− ν)

∂

∂x

∫ x−
e−1/2

0

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe
,

where we can re-write (B.2) as

(
0Dνxu(x, t) , ve(x, t)

)
Ωe

=
(

x+
e−1/2
Dνxu(x, t) , ve(x, t)

)
Ωe

(B.3)

+
( 1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

+Hx
e ,
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where the middle term can be obtained as

( 1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe
≈ (B.4)

−
∫ T

0

ve(x−e+1/2, t)(∆xe)
1−ν

(1− ν)Γ(1− ν)
Ju(xe−1/2, t)K dt,

where (∆xe)
1−ν = (xe+1/2 − xe−1/2)1−ν and Ju(xe−1/2, t)K denotes the jump discon-

tinuity in the solution across the interface between elements Ωe and Ie−1 along the

time-axis at x = xe−1/2. We also obtain the history-load term Hx
e as

Hx
e =

1

Γ(1− ν)

(
e−1∑
ε=0

∂

∂x

∫
Iε

uε(x, z)dz

(x− z)ν
, ve(x, t)

)
Ωe

. (B.5)

Plugging (B.5), (B.4) in (B.3), then plugging (B.3) into (B.1) after carrying out the

spatial fractional integration-by-parts using Lemma 6.3.5, we obtain

(B.6)(
0Dτ/2t u(x, t) , tDτ/2T ve(x, t)

)
Ωe

+ θ

(
x+
e−1/2
Dν/2x u(x, t) , xDν/2x−

e+1/2

ve(x, t)

)
Ωe

− θ(∆x)1−ν
e

(1− ν)Γ(1− ν)

∫ T

0

ve(x−e+1/2, t) Jue(xe−1/2, t)Kdt+Hx
e

=
(
f(x, t), ve(x, t)

)
Ωe

The variational (weak) form (B.6) is an infinite-dimensional problem. Seeking the

solution in each sub-domain Ωe of the form

uMN(x, t) =
M∑
m=0

N∑
n=1

ûmnP̃
η,0
m (xe) ˜(1)Pµn (t),

as linear combination of elements in the basis function space V e, and plugging it

into (B.6), we obtain the variational form (6.28). At last, we need to provide a more
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efficient expression for the history-load term Hx
e in (B.5):

Hx
e =

∑
m,n

e−1∑
ε=1

(Mt)jn
1

Γ(1− ν)

(∫ xε+1/2

xε−1/2

ûεmnP̃
η,0
m (s) ds

(x− s)ν P̃ 0,χ
i (x)

∣∣∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

∫ xε+1/2

xε−1/2

ûεmnP̃
η,0
m (s) ds

(x− s)ν
d

dx
P̃ 0,χ
i (x)dx

)
.

Since P̃ η,0
m (s) are at most of degreeM in each element Ωe, we can carry out integration-

by-parts M recursive times to eliminate the double integral. It leads to the history

term shown in (6.39), where we reduce the calculation of the history term to a func-

tion evaluation and a one-dimensional integration carried out in the current element

Ωe. Finally, we obtain the history-load term Hx
e in a computationally efficient form

as

(Hx
e )ij = θ

∑
m,n

ûmn(Mt)jn

(
Fe(x)P

0,ν/2
i (x)

∣∣∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx

)
,

in which Fe(x) represents the history function associated with the current element

Ωe

Fe(x) =
e−1∑
ε=1

F ε
e (x)

consisting of all the past element contributions as

F ε
e (x) =

∑
m

ûεmn

M∑
δ=0

τδ(x− s)δ+1−νP̃ η,0(δ)
m (s)

∣∣∣∣s=s−ε+1/2

s=s+
ε−1/2

, (B.7)

where P̃
η,0(δ)
m (s) represents the δ-th derivative of P̃ η,0

m (s), moreover, the coefficient

τδ = −1/{Γ(1 − ν)
∏δ

m=0(m + 1 − ν)} decays in a factorial fashion with respect to

δ.



Appendix C

Proof of Theorems in Chapter 8
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C.1 Proof of Theorem 8.5.1 (∗Dσ(x,t)
x ≡ RL

aDσ(x,t)
x )

We substitute (8.29) in (8.28) and take the σ(x, t)-th order fractional derivative. We

do this by mapping the interval x ∈ [a, b] to the standard domain ξ ∈ [−1, 1] through

x(ξ) = b+a
2

+ b−a
2
ξ and following (8.10) as

RL
aDσ(x,t)

x uN = (
2

b− a)σ(x(ξ),t)
−1D σ(x(ξ),t)

ξ uN(x(ξ), t )

= (
2

b− a)σ RL−1D σ
ξ

{ M∑
m=2

N∑
n=1

uN(xm, tn)Lµm(x(ξ) )T τn (t)
}

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
−1D σ

ξ

{
Lµm(x(ξ) )

}
T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
−1D σ

ξ

{( ξ − ξ1

ξm − ξ1

)µ M∏
k=1
k 6=m

( ξ − ξk
ξm − ξk

)}
T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
−1D σ

ξ

{
(1 + ξ)µGm(ξ)

}
Am T τn (t)

where (2/(b− a))σ(x,t) is a strictly positive function, Am = 1/(ξm + 1)µ and Gm(ξ) =∏M
k=1
k 6=m

(
ξ−ξk
ξm−ξk

)
, m = 2, 3, · · · ,M, are all polynomials of order (M− 1), which can

be represented exactly in terms of Jacobi polynomials P−µ,µn−1 (ξ) by

Gm(ξ) =
M∑
j=1

βLmjP
−µ,µ
j−1 (ξ). (C.1)

We note that the unknown coefficient matrix βLmj can be obtained analytically. The

superscript L actually refers to the proper change of basis to the regular eigen-

functions of FSLP (11.16) whose Left-sided fractional derivative is given exactly in
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(11.17). Next, by plugging (C.1) we obtain

RL
aDσ(x,t)

x uN = (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
−1D σ

ξ

{
(1 + ξ)µ

M∑
j=1

βLmjP
−µ,µ
j−1 (ξ)

}
Am T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)
M∑
j=1

βLmj
RL
−1D σ

ξ

{
(1 + ξ)µP−µ,µj−1 (ξ)

}
Am T τn (t)

Hence, by (11.17) we obtain

RL
aDσ(x,t)

x uN = (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj
RL
−1Dσξ (1)P µ

j (ξ). (C.2)

Case A-I) Constant σ = µ ∈ (0, 1). We use the property (11.17) and obtain

RL
aD σ

x uN = (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj
Γ(j + σ)

Γ(j)
Pj−1( ξ ). (C.3)

Consequently, by evaluating aD σ
x uN(x, t ) at the collocation points (xi, tk) and re-

calling that Lτn(tk) = δkn, we obtain

RL
aD σ

x uN(x, t )
∣∣∣
(xi,tk)

=

(
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)Amδkn

M∑
j=1

βLmj
Γ(j + σ)

Γ(j)
Pj−1( ξi )

=
M∑
m=2

{RLDσ
L}im uN(xm, tk),

where {RLDσ
L}im are the entries of the (M− 1)× (M− 1) left-sided spatial differ-

entiation matrix RLDσ
L of Riemann-Liouville type, given by

{RLDσ
L}im = (

2

b− a)σAm

M∑
j=1

βLmj
Γ(j + σ)

Γ(j)
Pj−1( ξi ). (C.4)
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Case A-II) The general σ(x, t) ∈ (0, 1). Following [168] and [187], we first rep-

resent the polyfractonomial basis (2)Pµj (ξ) in terms of a sum and take a left-sided

Riemann-Liouville fractional derivative, to obtain FL,σ
j as

FL,σ
j

(
x(ξ), t

)
≡ RL

−1Dσξ
{

(1)Pµj (ξ)
}

= RL
−1Dσξ

{ j−1∑
q=0

(
1

2
)q(−1)q+j−1 bµjq (1 + ξ)q+µ

}
=

j−1∑
q=0

(
1

2
)q(−1)q+j−1 b∗jq

RL
−1Dσξ

{
(1 + ξ)q+µ

}
,

where b∗jq =

j − 1 + q

q


j − 1 + µ

j − 1− q

. Now, we obtain FL,σ
j

(
x(ξ), t

)
exactly using

(8.8) as

FL,σ
j

(
x(ξ), t

)
=

j−1∑
q=0

bµjq (1 + ξ)q+µ−σ, (C.5)

which leads to

RL
aDσ(x,t)

x uN(x, t) = (
2

b− a)σ(x,t)

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj F
L,σ
j (x, t).

(C.6)

where

bµjq = (
1

2
)q(−1)q+j−1

j − 1 + q

q


j − 1 + µ

j − 1− q

 Γ(q + µ+ 1)

Γ(q + µ+ 1− σ)
. (C.7)

Now, by evaluating RL
aDσ(x,t)

x uN(x, t) at the collocation points (xi, tk) also by Lτn(tk) =
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δkn, we obtain

RL
aDσ(x,t)

x uN

∣∣∣
(xi,tk)

= (
2

b− a)σ(xi,tk)

M∑
m=2

uN(xm, tk)Am

M∑
j=1

βLmj F
L,σ
j

(
xi, tk

)
=

M∑
m=2

{RLDσ
L}imkuN(xm, tk),

where {RLDσ
L}ikm are the entries of the (M− 1) × (N − 1) × (M− 1) left-sided

spatial fractional differentiation matrix RLDσ
L of Riemann-Liouville sense, computed

as

{RLDσ
L}ikm = (

2

b− a)σ(xi,tk)Am

M∑
j=1

βLmj F
L,σ
j

(
xi, tk

)
(C.8)

where by re-arrangement Am = ( b−a
2xm−2a

)µ. It completes the proof.

C.2 Proof of Theorem 8.5.3 (∗D1+ν(x,t)
x ≡ RL

aD1+ν(x,t)
x )

We switch the order of ∂/∂x and RL
aDν(x,t)

x to avoid the difficulties arising from taking

the first partial derivative of the corresponding Euler gamma functions with respect

to x. Hence,

RL
aD1+ν(x,t)

x uN(x, t) = RL
aDν(x,t)

x

∂

∂x

{
uN(x, t )

}
= (

2

b− a)ν(x,t) RL
−1Dν(x,t)

ξ

{ M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj (
2

b− a)
∂

∂ξ

[
(1)Pµj (ξ)

]}
= (

2

b− a)(1+ν(x,t))

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj
RL
−1Dν(x,t)

ξ

{ ∂

∂ξ

[
(1)Pµj (ξ)

]}
.
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Now, by substituting (11.16) we obtain

(C.9)

RL
aD1+ν(x,t)

x uN(x, t) = (
2

b− a)(1+ν(x,t))

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
(µ) RL−1Dν(x,t)

ξ

{
(1 + ξ)µ−1P−µ,µj−1 (ξ)

}
+ (

j

2
) RL−1Dν(x,t)

ξ

{
(1 + ξ)µP 1−µ,1+µ

j−2 (ξ)
}]

in which the Jacobi polynomials P−µ,µj−1 (ξ) and P 1−µ,1+µ
j−2 (ξ) can be represented in

terms of the following sums

P−µ,µj−1 (ξ) =

j−1∑
q=0

(
1

2
)q(−1)q+j−1b∗jq(1 + ξ)q, j ≥ 1

P 1−µ,1+µ
j−2 (ξ) =

j−2∑
q=0

(
1

2
)q(−1)q+j−2B∗jq(1 + ξ)q, j ≥ 2

respectively, where B∗jq =

j + q

q


j − 1 + µ

j − 2− q

. By substituting the Jacobi poly-

nomials back into (C.9) and simplifying, it yields

RL
aD1+ν(x,t)

x uN(x, t) = (
2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
(µ)I{j≥1}

j−1∑
q=0

(
1

2
)q(−1)q+j−1b∗jq

RL
−1Dν(x,t)

ξ

{
(1 + ξ)q+µ−1

}
+ (

j

2
)I{j≥2}

j−2∑
q=0

(
1

2
)q(−1)q+j−2B∗jq

RL
−1Dν(x,t)

ξ

{
(1 + ξ)q+µ

}]
.



395

Now, by virtue of (8.8), we exactly obtain the variable-order fractional derivative of

uN as

RL
aD1+ν(x,t)

x uN(x, t) = (
2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
(µ)I{j≥1}

j−1∑
q=0

(
1

2
)q(−1)q+j−1bµjq

Γ(q + µ)

Γ(q + µ− ν(x, t))
(1 + ξ)q+µ−1−ν

+ (
j

2
)I{j≥2}

j−2∑
q=0

(
1

2
)q(−1)q+j−2Bµ

jq

Γ(1 + q + µ)

Γ(1 + q + µ− ν(x, t))
(1 + ξ)q+µ−ν

]
.

Next, by evaluating the above expression at the collocation points (xi, tk), we obtain

aD1+ν(x,t)
x uN(x, t )

∣∣∣
(xi,tk)

=
M−1∑
m=2

{RLD1+ν
L }ikmuN(xm, tk)

in which {RLD1+ν
L }ikm, when ν = ν(x, t) are computed as

(C.10)

{RLD1+ν
L }ikm = (

2

b− a)1+ν(xi,tk)Am

M∑
j=1

βLmjFL,νj (xi, tk),

where i,m = 2, 3, · · · ,M, k = 2, 3, · · · ,N , and FL,νj

(
x(ξ), t

)
is explicitly given by

FL,νj

(
x(ξ), t

)
= I{j≥1}

j−1∑
q=0

Bµjq · (1 + ξ)q+µ−1−ν(xi,tk) (C.11)

+ I{j≥2}

j−2∑
q=0

Bµ
jq · (1 + ξ)q+µ−ν(xi,tk),
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in which j = 1, 2, · · · ,M, and Am = ( b−a
2xm−2a

)µ. Finally Bµjq and Bµ
jq are the corre-

sponding expansion coefficients, obtained as

Bµjq = µ(
1

2
)q(−1)q+j−1

j − 1 + q

q


j − 1 + µ

j − 1− q

 Γ(q + µ)

Γ(q + µ− ν(xi, tk))
, (C.12)

and

Bµ
jq =

j

2
(
1

2
)q(−1)q+j−2

j + q

q


j − 1 + µ

j − 2− q

 Γ(1 + q + µ)

Γ(1 + q + µ− ν(xi, tk))
. (C.13)

C.3 Proof of Theorem 8.5.5 (∗Dσ(x,t)
x ≡ RL

xDσ(x,t)
b )

We substitute (8.32) in (8.31) and take the σ(x, t)-th order fractional derivative as

RL
xDσ(x,t)

b uN = (
2

b− a)σ(x(ξ),t)
ξDσ(x(ξ),t)

1

{
uN(x(ξ), t )

}
= (

2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
ξDσ1

{
Rµ
m(x(ξ) )

}
T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
ξDσ1

{( ξM − ξ
ξM − ξm

)µ M∏
k=1
k 6=m

( ξ − ξk
ξm − ξk

)}
T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
−1D σ

ξ

{
(1− ξ)µGm(ξ)

}
Am T τn (t)

in whichAm = 1/(ξM−ξm)µ and this time we can re-represent Gm(ξ),m = 2, 3, · · · ,M,

in terms of another set of Jacobi polynomials P µ,−µ
n−1 (ξ) exactly by

Gm(ξ) =
M∑
j=1

βRmjP
µ,−µ
j−1 (ξ), (C.14)
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where the superscript R in (C.14) now refers to the change of basis to the regular

eigenfunctions of FSLP of second kind (8.26) whose Right-sided fractional derivative

is given exactly in (11.17). We again highlight that the unknown coefficient matrix

βRmj can be obtained analytically. Next, by plugging (C.1) we obtain

RL
xDσ(x,t)

b uN = (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn) RL
ξDσ1

{
(1− ξ)µ

M∑
j=1

βRmjP
µ,−µ
j−1 (ξ)

}
Am T τn (t)

= (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)
M∑
j=1

βRmj
RL
ξDσ1

{
(1− ξ)µP µ,−µ

j−1 (ξ)
}
Am T τn (t),

Hence, by (11.17)

RL
xDσ(x,t)

b uN = (
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βRmj
RL
ξDσ1

{
(2)Pµj (ξ)

}
(C.15)

Case C-I) Constant σ = µ ∈ (0, 1). By (11.17), we can directly obtain

RL
xDσb uN = (

2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βRmj
Γ(j + σ)

Γ(j)
Pj−1( ξ ), (C.16)

which we evaluate (xi, tk) to obtain,

RL
xDσb uN(x, t )

∣∣∣
(xi,tk)

=

(
2

b− a)σ
M∑
m=2

N∑
n=1

uN(xm, tn)Amδkn
M∑
j=1

βRmj
Γ(j + σ)

Γ(j)
Pj−1( ξi )

=
M∑
m=2

{RLDσ
R}im uN(xm, tk),

where {RLDσ
R}im are the entries of the (M− 1)× (M− 1) right-sided spatial differ-
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entiation matrix RLDσ
R of Riemann-Liouville since, given by

{RLDσ
R}im = (

2

b− a)σAm
M∑
j=1

βRmj
Γ(j + σ)

Γ(j)
Pj−1( ξi ). (C.17)

Case C-II) The general σ(x, t) ∈ (0, 1). Following [187], we first represent the

polyfractonomial basis (2)Pµj (ξ) in terms of the following sum then we take its right-

sided Riemann-Liouville fractional derivative, denoted by FR,σ
j , as

FR,σ
j

(
x(ξ), t

)
≡ RL

ξDσ1
{

(2)Pµj (ξ)
}

= RL
ξDσ1

{ j−1∑
q=0

(
−1

2
)q bµjq (1− ξ)q+µ

}
=

j−1∑
q=0

(
−1

2
)q c∗jq

RL
ξDσ1

{
(1− ξ)q+µ

}
,

where c∗jq =

j − 1 + q

q


j − 1− µ

j − 1− q

. Now, we obtain FR,σ
j

(
x(ξ), t

)
exactly using

(8.9) as

FR,σ
j

(
x(ξ), t

)
=

j−1∑
q=0

cµjq (1− ξ)q+µ−σ, (C.18)

where

cµjq = −(
−1

2
)q

j − 1 + q

q


j − 1− µ

j − 1− q

 Γ(q + µ+ 1)

Γ(q + µ+ 1− σ)
, (C.19)

which leads to

RL
xDσ(x,t)

b uN(x, t) = (
2

b− a)σ(x,t)

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βRmj F
R,σ
j (x, t).

(C.20)
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Now, by evaluating RL
xDσ(x,t)

b uN(x, t) at the collocation points (xi, tk) we obtain

RL
xDσ(x,t)

b uN

∣∣∣
(xi,tk)

= (
2

b− a)σ(xi,tk)

M∑
m=2

uN(xm, tk)Am
M∑
j=1

βRmj F
R,σ
j

(
xi, tk

)
=

M∑
m=2

{RLDσ
R}imkuN(xm, tk),

where {RLDσ
R}ikm are the entries of the (M− 1) × (N − 1) × (M− 1) right-sided

spatial fractional differentiation matrix RLDσ
R of Riemann-Liouville sense, computed

as

{RLDσ
R}ikm = (

2

b− a)σ(xi,tk)Am
M∑
j=1

βRmj F
R,σ
j

(
xi, tk

)
, (C.21)

where by re-arrangement Am = ( b−a
2b−2xm

)µ. We recall from Remark 8.5.2 that if

σ = σ(x), we again reduce the dimension of RLDσ
R by one, hence, we can obtain the

entries of the corresponding two-dimensional right-sided differentiation matrix as

{RLDσ
R}im = (

2

b− a)σ(xi)Am
M∑
j=1

βLmj F
R,σ
j

(
xi

)
. (C.22)

C.4 Proof of Theorem 8.5.6 (∗Dσ(x,t)
x ≡ RL

xD1+ν(x,t)
b )

When the fractional order is both x- and t-dependent, to avoid the difficulties in

computations of the first partial derivative in the corresponding gamma functions
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with respect to x, we alternatively write RL
xD1+ν(x,t)

b as

RL
xD1+ν(x,t)

b uN(x, t) = RL
xDν(x,t)

b

∂

∂x

{
uN(x, t )

}
= (

2

b− a)ν RLξDν(x,t)
1

{ M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj (
2

b− a)
∂

∂ξ

[
(2)Pµj (ξ)

]}
= (

2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t)
M∑
j=1

βLmj
RL
ξDν(x,t)

1

{ ∂

∂ξ

[
(2)Pµj (ξ)

]}
.

Now, by substituting (8.26) we obtain

(C.23)

RL
xD1+ν(x,t)

b uN(x, t) = (
2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
(−µ) RLξDν(x,t)

1

{
(1− ξ)µ−1P µ,−µ

j−1 (ξ)
}

+ (
j

2
) RLξDν(x,t)

1

{
(1− ξ)µP 1+µ,1−µ

j−2 (ξ)
}]

in which the Jacobi polynomials P µ,−µ
j−1 (ξ) and P 1+µ,1−µ

j−2 (ξ) can be represented in

terms of the following sums

P µ,−µ
j−1 (ξ) =

j−1∑
q=0

(
−1

2
)qcµjq · (1− ξ)q, j ≥ 1,

P 1+µ,1−µ
j−2 (ξ) =

j−2∑
q=0

(
−1

2
)qBµ

jq · (1− ξ)q, j ≥ 2,
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respectively. Now, by substituting the Jacobi polynomials back into (C.23) and

simplifying, it yields

RL
xD1+ν(x,t)

b uN(x, t) = (
2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
(−µ)I{j≥1}

j−1∑
q=0

(
−1

2
)qc∗jq

RL
ξDν(x,t)

1

{
(1− ξ)q+µ−1

}
+ (

j

2
)I{j≥2}

j−2∑
q=0

(
−1

2
)qC∗jq

RL
ξDν(x,t)

1

{
(1− ξ)q+µ

}]
.

where C∗jq =

j + q

q


j − 1 + µ

j − 2− q

. Now, by virtue of (8.9), we exactly obtain the

variable-order fractional derivative of uN as

RL
xD1+ν(x,t)

b uN(x, t) = (
2

b− a)1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)AmT τn (t) ·

M∑
j=1

βLmj

[
I{j≥1}

j−1∑
q=0

Cµ
jq(1− ξ)q+µ−1−ν

+ I{j≥2}

j−2∑
q=0

Cµ
jq(1− ξ)q+µ−ν

]
.

where

Cµ
jq = (µ)(

−1

2
)q

j − 1 + q

q


j − 1− µ

j − 1− q

 Γ(q + µ)

Γ(q + µ− ν(x, t))
(C.24)
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and

Cµ
jq = (

−j
2

)(
−1

2
)q

j + q

q


j − 1 + µ

j − 2− q

 Γ(1 + q + µ)

Γ(1 + q + µ− ν(x, t))
. (C.25)

Next, by evaluating the above expression at the collocation points (xi, tk), we obtain

(C.26)

{RLD1+ν
R }ikm = (

2

b− a)1+ν(xi,tk)Am
M∑
j=1

βRmjFR,νj (xi, tk),

where FR,νj

(
x(ξ), t

)
is obtained as

FR,νj

(
x(ξ), t

)
= I{j≥1}

j−1∑
q=0

Cµ
jq · (1− ξ)q+µ−1−ν(xi,tk) (C.27)

+ I{j≥2}

j−2∑
q=0

Cµ
jq · (1− ξ)q+µ−ν(xi,tk),

which completes the proof.

C.5 Proof of Theorem 8.5.8 (∗Dσ(x,t)
x ≡ ∂σ(x,t)u/∂|x|σ(x,t))

We substitute (8.34) in (8.33) and take the σ(x, t)-th order fractional derivative.

Once again, we perform the affine mapping from x ∈ [a, b] to ξ ∈ [−1, 1] as before

an we obtain

∂σ(x,t)uN(x, t)

∂|x|σ(x,t)
= (

2

b− a)σ(x(ξ),t)Cσ(x(ξ),t)

(
−1Dσξ uN + ξDσ1uN

)
= (

2

b− a)σCσ

M∑
m=2

N∑
n=1

uN(xm, tn)
(
RL
−1Dσξ

{
hm(x(ξ) )

}
+ RL

ξDσ1
{
hm(x(ξ) )

})
T τn (t),
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where hm(x(ξ) ) ≡ hm(ξ) are all polynomials of order (M), which can be represented

exactly in terms of Legendre polynomials Pn(ξ) as

hm(ξ) =
M∑
j=0

β̃mjPj(ξ). (C.28)

We again note that the coefficient matrix β̃mj can be obtained analytically. By

plugging (C.28) we obtain

∂σ(x,t)uN(x, t)

∂|x|σ(x,t)
=

(
2

b− a)σCσ

M∑
m=2

N∑
n=1

uN(xm, tn)
M∑
j=0

β̃mj

(
RL
−1Dσξ

{
Pj(ξ)

}
+ RL

ξDσ1
{
Pj(ξ)

})
T τn (t),

where by exact evaluation of the left- and right-sided fractional derivatives of the

Legendre polynomials in (10.18) and (10.20),

∂σ(x,t)uN(x, t)

∂|x|σ(x,t)
= (

2

b− a)σCσ

M∑
m=2

N∑
n=1

uN(xm, tn)
{

M∑
j=dσ(x,t)e

β̃mj
Γ(j + 1)

Γ(j − σ + 1)

{
(1 + ξ)−σP σ,−σ

j (ξ) + (1− ξ)−σP−σ,σj (ξ)
}}
T τn (t)

}
,(C.29)

which we evaluate at the collocation points uN(xi, tk) to obtain

∂σ(x,t)uN(x, t)

∂|x|σ(x,t)

∣∣∣
(xi,tk)

=
M∑
m=2

{Dσ
Riesz}ikmuN(xm, tk)

in which {Dσ
Riesz}ikm are the entries of the three dimensional Riesz spatial differen-

tiation matrix of order σ(xi, tk), Dσ
Riesz, given by

{Dσ
Riesz}ikm =

[
(

2

b− a)σ(x,t)Cσ(x,t)

]
(xi,tk)

M∑
j=1

β̃mjZσj (xk, tk), (C.30)
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where

Zσj (x, t) =
Γ(j + 1)

Γ(j − σ(xi, tk) + 1)

[
(1 + ξ)−σ(x,t)P σ,−σ

j (ξ) + (1− ξ)−σ(x,t)P−σ,σj (ξ)
]
,

in which we recall that ξ = 2x−a
b−a .

C.6 Proof of Theorem 8.5.9 (∗D1+ν(x,t)
x ≡ ∂1+ν(x,t)u/∂|x|1+ν(x,t))

We first take the fractional and then the first derivative of the solution to obtain

∂1+ν(x,t)uN(x, t)

∂|x|1+ν(x,t)
= C1+ν

{
RL
aDν(x,t)

x + RL
xDν(x,t)

b

}(∂uN
∂x

)
= (

2

b− a)1+νC1+ν

M∑
m=2

N∑
n=1

uN(xm, tn) T τn (t)
{
RL
−1Dνξ + RL

ξDν1
} M∑

j=0

β̃mj
∂

∂ξ

{
Pj(ξ)

}
,

= (
2

b− a)1+νC1+ν

M∑
m=2

N∑
n=1

uN(xm, tn)T τn (t)
M∑
j=0

β̃mjWν
j ,

(C.31)

in which we evaluate Wν
j ≡ ( j+1

2
)
{
RL
−1Dνξ + RL

ξDν1
}
P 1,1
j−1(ξ) exactly by representing

the Jacobi polynomial P 1,1
j−1(ξ) as the following two alternative forms

P 1,1
j−1(ξ) =

j−1∑
q=0

Cj(−1)q+j−1(
1

2
)q(1 + ξ)q (C.32)

=

j−1∑
q=0

Cj(
−1

2
)q(1− ξ)q (C.33)
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where Cj =

j + 1 + q

q


 j

j − 1− q

. Hence,

Wν
j = (

j + 1

2
)(RLaDν(x,t)

x + RL
xDν(x,t)

b )
{
P 1,1
j−1(ξ)

}
= (

j + 1

2
) RLaDν(x,t)

x

{ j−1∑
q=0

Cj(−1)q+j−1(
1

2
)q(1 + ξ)q

}
+ (

j + 1

2
) RLxDν(x,t)

b

{ j−1∑
q=0

Cj(
−1

2
)q(1− ξ)q

}
,

by substituting P 1,1
j−1(ξ) by (C.32) when taking the left-sided and by (C.33) when

taking the right-sided Riemann-Liouville fractional derivative, respectively. Now, by

(8.8) and (8.9), we obtain

Wν
j = (

j + 1

2
)

j−1∑
q=dνe

Cj
(−1

2
)qΓ(q + 1)

Γ(q + 1− ν(x, t))

[
(−1)j−1(1 + ξ)q−ν(x,t)

−(1− ξ)q−ν(x,t)
]
. (C.34)

Next, by substituting (C.34) into (C.31), evaluating it at the collocation points

(xi, tk), ans using the Kronecker delta property T τn (tk) = δkn, we obtain

∂1+ν(x,t)uN(x, t)

∂|x|1+ν(x,t)

∣∣∣
(xi,tk)

=
[
(

2

b− a)1+νC1+ν

]
(xi,tk)

M∑
m=2

uN(xm, tk)
M∑
j=1

β̃mjWν
j

=
M∑
m=2

{D1+ν(x,t)
Riesz }ikmuN(xm, tk),
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in which {D1+ν(x,t)
Riesz }ikm denotes the x- and t-dependent fractional diffusion differen-

tiation matrix of Riesz type, give by

{D1+ν(x,t)
Riesz }ikm =

[
(

2

b− a)1+νC1+ν

]
(xi,tk)

M∑
j=1

β̃mjWν
j (x, t). (C.35)
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C.7 Construction of the Mass and Stiffness Ma-

trices

Theorem C.7.1. The temporal stiffness matrix Sτ corresponding to the time-fractional

order τ ∈ (0, 1) is a diagonal N ×N matrix, whose entries are explicitly given as

{Sτ}n,n = σ̃n σn

[Γ(n+ τ)

Γ(n)

]2( 2

T

)2τ−1 2

2n− 1
, n = 1, 2, · · · , N .

Proof. By the PG projection, the (r, n)-th entry of the stiffness matrix, r, n =

1, 2, · · · ,N , is defined as

{Sτ}r,n =

∫ T

0
tDτT

(
Ψτ
r ◦ η

)
(t) 0Dτt

(
ψτn ◦ η

)
(t) dt, (C.36)

Following [187], we obtain the Riemann-Liouville left-sided time-fractional derivative

of the temporal basis as

0Dτt
(
ψτn ◦ η

)
(t) = σn

( 2

T

)τ Γ(n+ τ)

Γ(n)
Pn−1( 2t/T − 1 ), (C.37)

where Pn−1( 2t/T − 1 ) represents the (n − 1)-th order Legendre polynomial in t ∈

[0, T ]. Also, we obtain the right-sided time-fractional derivative of the temporal basis

again following [187] as

tDτT
(

Ψτ
r ◦ η

)
(t) = σ̃r

( 2

T

)τ Γ(r + τ)

Γ(r)
Pr−1( 2t/T − 1 ). (C.38)
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Now, by plugging (C.37) and (C.38) into (C.36), we obtain

{Sτ}r,n = σ̃r σn
Γ(r + τ)

Γ(r)

Γ(n+ τ)

Γ(n)

( 2

T

)2τ
∫ T

0

Pr−1(x(t))Pn−1(x(t)) dt(C.39)

= σ̃r σn
Γ(r + τ)

Γ(r)

Γ(n+ τ)

Γ(n)

( 2

T

)2τ−1
∫ 1

−1

Pr−1(x)Pn−1(x) dx

= σ̃r σn
Γ(r + τ)

Γ(r)

Γ(n+ τ)

Γ(n)

( 2

T

)2τ−1 2

2n− 1
δrn,

by the orthogonality of the Legendre polynomials, where δrn is the Kronecker delta

functions.

Theorem C.7.2. (I) If µj ∈ (0, 1/2], the spatial stiffness matrix Sµj is a diagonal

Mj ×Mj matrix, whose entries are explicitly given as

{Sµj}k,k = σ̃k σk

[Γ(k + µj)

Γ(k)

]2 ( 2

Lj

)2µj−1 2

2k − 1
, k = 1, 2, · · · ,Mj.

(II) If µj ∈ (1/2, 1), Sµj is a symmetric tridiagonal (Mj−1)×(Mj−1) with entries,

explicitly given as

{Sµj}k,m = bk am

[Γ(k + µj)

Γ(k)

]2 ( 2

Lj

)2µj−1 2

2k − 1

(
δk,m − εµjm δk,m−1

)
+

ε
µj
k bk am

[Γ(k − 1 + µj)

Γ(k − 1)

]2 ( 2

Lj

)2µj−1 2

2k − 3

(
δk−1,m − εµjm δk−1,m−1

)
,

k,m = 2, 3, · · · ,Mj and Lj = bj − aj.

Proof. The first part, when µj ∈ (0, 1/2] is similar to the proof in Thm. C.7.1,

however, carried out on the interval [aj, bj] rather than [0, T ]. Here, the µj-th order

left-sided Riemann-Liouville fractional derivative of
(
φ
µj
mj ◦ ξj

)
(xj) is given following
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[187] as

aj
D µj
xj

(
φµjm ◦ ξj

)
(xj) =


B
µj
m Pm−1

(
ξ(xj)

)
, µj ∈ (0, 1/2],

B
µj
m Pm−1

(
ξ(xj)

)
− Cµj

m Pm−2

(
ξ(xj)

)
, µj ∈ (1/2, 1),

(C.40)

for m = d2µje, · · · ,Mj in the j-th spatial dimension, where the coefficient B
µj
mj =

σm (2/Lj)
2µj Γ(m+ µj)/Γ(m) and C

µj
m = σm (2/Lj)

2µj ε
µj
m Γ(m− 1 + µj)/Γ(m− 1);

in addition, the µj-th order left-sided Riemann-Liouville fractional derivative of(
Φ
µj
m ◦ ξj

)
(xj) is obtained as

xj
D µj
bj

(
Φµj
m ◦ ξj

)
(xj) =


Bµjk Pk−1

(
ξ(xj)

)
, µj ∈ (0, 1/2],

Bµjk Pk−1

(
ξ(xj)

)
− Cµjk Pk−2

(
ξ(xj)

)
, µj ∈ (1/2, 1),

(C.41)

for k = d2µje, · · · ,Mj in the j-th spatial dimension, in which we set the coefficient

Bµjk = σ̃k (2/Lj)
2µj Γ(k + µj)/Γ(k) and Cµjk = σ̃k (2/Lj)

2µj ε
µj
k Γ(k − 1 + µj)/Γ(k − 1).

For the second part, when µj ∈ (1/2, 1), the (k,m)-th entry of Sµj is

{Sµj}k,m =

∫ bj

aj
xj
Dµjbj

(
Φ
µj
k ◦ ξj

)
(xj) ajDµjxj

(
φµjm ◦ ξj

)
(xj)dxj.

Next, by virtue of (C.40) and (C.41), also by an affine mapping from [aj, bj] to the

standard interval [−1, 1], we obtain

{Sµj}k,m = (
Lj
2

)

∫ 1

−1

[
Bµj
m Pm−1( ξj ) − Cµj

m Pm−2( ξj )
]

[
Bµjk Pk−1( ξj ) − Cµjk Pk−2( ξj )

]
dξj.
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Hence, by the orthogonality of the Legendre polynomials we obtain

{Sµj}k,m = (
Lj
2

)
[

Bµj
m B

µj
k

2

2k − 1
δk,m

− Cµj
m B

µj
k

2

2k − 1
δk,m−1

+ Bµj
m C

µj
k

2

2k − 3
δk−1,m

− Cµj
m C

µj
k

2

2k − 3
δk−1,m−1

]
,

which completes the proof, while the symmetry of the stiffness matrix can be easily

checked.

Theorem C.7.3. The temporal and the spatial mass matrices Mτ as well as Mµj

are symmetric. Moreover, their entries can be computed exactly by employing a

Gauss-Lobatto-Jacobi (GLJ) rule with respect to the weight function (1−ξ)α(1+ξ)α,

ξ ∈ [−1, 1], where α = τ/2 in the temporal and α = µj for the spatial case.

Proof. The entries of Mτ in our PG spectral method are defined as

{Mτ}r,n =

∫ T

0

(
Ψτ
r ◦ η

)
(t)
(
ψµtm ◦ η

)
(t)dt,

which be computed exactly as

{Mτ}r,n = σ̃r σn (
2

T
)τ
∫ T

0

tτ (T − t)τP τ,−τ
r−1 ( η(t) )P−τ, τn−1 ( η(t) ) dt

= σ̃r σn
T

2

∫ 1

−1

(1− η)τ (1 + η)τP τ,−τ
r−1 (η)P−τ, τn−1 (η)dη

= σ̃r σn
T

2

Q∑
q=1

wq P
τ,−τ
r−1 (ηq)P

−τ, τ
n−1 (ηq), (C.42)

in which Q ≥ N + 2 represents the minimum number of GLJ quadrature points

{ηq}Qq=1, associated with the weigh function (1 − η)τ (1 + η)τ , for exact quadrature,
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and {wq}Qq=1 are the corresponding quadrature weights. From the exact discrete

rule, recalling the definition of σn and σ̃r, employing the property of the Jacobi

polynomials where Pα,β
n (−x) = (−1)nP β,α

n (x), moreover, noting that {ηq}Qq=1 and

{wq}Qq=1 are symmetric with respect to the reference point, it is easy to show that

{Mτ}r,n = {Mτ}n,r.

The spatial mass matrix Mµj , when µj ∈ (0, 1/2], is alsoMj×Mj, whose entries

are computed similarly as

{Mµj}k,m = σ̃k σm
Lj
2

Q∑
q=1

wq P
µj ,−µj
k−1 (ξq)P

−µj , µj
m−1 (ξq), (C.43)

in which Q ≥ Mj + 2 represents the minimum number of GLJ quadrature points

{ξq}Qq=1, associated with the weigh function (1− ξ)µj(1 + ξ)µj , for exact quadrature.

We can also show that Mµj is symmetric and that the GJL rule is exact when

Q ≥Mj + 2.

Finally, when µj ∈ (1/2, 1), the spatial mass matrix Mµj , becomes (Mj − 1) ×

(Mj − 1), whose entries are computed exactly as

{Mµj}k,m =

∫ bj

aj

(
Φ
µj/2
k ◦ ξ

)
(xj)

(
φµj/2m ◦ ξ

)
(xj)dxj

= σ̃kj σmj

[ ∫ 1

−1

(2)P µj
kj

( ξ(xj) ) (1)P µx
m ( ξ(xj) ) dxj

− εµxm

∫ 1

−1

(2)P µj
kj

( ξ(xj) ) (1)P µj
mj−1( ξ(xj) ) dxj

+ εµxk

∫ 1

−1

(2)P µj
kj−1( ξ(xj) ) (1)P µj

mj
( ξ(xj) ) dxj

− ε
µj
kj
εµjmj

∫ 1

−1

(2)P µj
kj−1( ξ(xj) ) (1)P µj

mj−1( ξ(xj) )dxj

]
,

where we note that all the above integrations share the same weight function by
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construction. Hence, we obtain

{Mµj}k,m = σ̃kj σmj
Lj
2

∫ 1

−1

(1− ξ)µj (1 + ξ)µj[
P
µj ,−µj
k−1 (ξ) P

−µj , µj
m−1 (ξ)

− εµxm P
µj ,−µj
k−1 (ξ) P

−µj , µj
m−2 (ξ)

+ εµxk P
µj ,−µj
k−2 (ξ) P

−µj , µj
m−1 (ξ)

− ε
µj
kj
εµjmj P

µj ,−µj
k−2 (ξ) P

−µj , µj
m−2 (ξ)

]
dxj

which leads to the following exact GLJ rule

{Mµj}k,m = σ̃kj σmj
Lj
2

Q∑
q=1

wq

[
P
µj ,−µj
k−1 (ξq) P

−µj , µj
m−1 (ξq) (C.44)

− εµxm P
µj ,−µj
k−1 (ξq) P

−µj , µj
m−2 (ξq)

+ εµxk P
µj ,−µj
k−2 (ξq) P

−µj , µj
m−1 (ξq)

− ε
µj
kj
εµjmj P

µj ,−µj
k−2 (ξq) P

−µj , µj
m−2 (ξq)

]
,

which is also exact when Q ≥Mj + 2, and the same argument on the symmetry of

the matrix applies here.
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[162] T. Srokowski. Lévy flights in nonhomogeneous media: distributed-order frac-
tional equation approach. Physical Review E, 78(3):031135, 2008.

[163] N Sugimoto. Burgers equation with a fractional derivative; hereditary effects
on nonlinear acoustic waves. J. Fluid Mech, 225(631-653):4, 1991.

[164] N Sugimoto and T Kakutani. generalized burgers’ equation for nonlinear vis-
coelastic waves. Wave motion, 7(5):447–458, 1985.

[165] H. G. Sun, W. Chen, and Y. Q. Chen. Variable-order fractional differential
operators in anomalous diffusion modeling. Physica A: Statistical Mechanics
and its Applications, 388(21):4586–4592, 2009.

[166] Zhi-zhong Sun and Xiaonan Wu. A fully discrete difference scheme for a
diffusion-wave system. Applied Numerical Mathematics, 56(2):193–209, 2006.

[167] N. H. Sweilam, M. M. Khader, and A. M. S. Mahdy. Numerical studies for
fractional-order Logistic differential equation with two different delays. J. Appl.
Math., pages Art. ID 764894, 14, 2012.
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