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MAGNETIC SENSING DEVICES BASED ON The magnetic sensing devices of the present invention 
INTERLAYER EXCHANGE - COUPLED have high sensitivities up to 10+ 2 / T . 

MAGNETIC THIN FILMS The magnetic sensing devices of the present invention can 
reach high magnetic field detectability . 

CROSS REFERENCE TO RELATED The magnetic sensing devices of the present invention 
APPLICATIONS have high temperature stability and can work within a broad 

temperature interval . 
This application claims benefit from U.S. Provisional The magnetic sensing devices of the present invention 

Patent Application Ser . No. 62 / 983,285 , filed Feb. 28 , 2020 , have a low cross - field error . 
which is incorporated by reference in its entirety . Many magnetic sensing applications take place in a 

varying environmental conditions . The magnetic sensing 
STATEMENT REGARDING GOVERNMENT devices of the present invention enable application in a 

INTEREST wide - ranging environmental co ons , while the sensing 
capability remains high . 

This invention was made with government support under 15 These and other features and advantages will be apparent 
grant number 1936221 awarded by the National Science from a reading of the following detailed description and a 
Foundation . The government has certain rights in the inven- review of the associated drawings . It is to be understood that 
tion . both the foregoing general description and the following 

detailed description are explanatory only and are not restric 
BACKGROUND OF THE INVENTION 20 tive of aspects as claimed . 

10 

35 

The present invention relates generally to magnetic sen BRIEF DESCRIPTION OF THE DRAWINGS 
sors , and specifically to magnetic sensing devices based on 
interlayer exchange - coupled magnetic thin films . These and other features , aspects , and advantages of the 

In general , magnetic sensing devices based on interlayer 25 present invention will become better understood with refer 
exchange - coupled magnetic thin films solve a trade - off ence to the following description , appended claims , and 
between a sensor size , sensing capability and stability that accompanying drawings where : 
has been observed in many magnetic field sensors . Interlayer FIG . 1A is a cross - sectional schematic view of the mul 
exchange - coupled magnetic thin film - based anomalous Hall tilayer stack . 
sensors not only have high sensitivity , low intrinsic noise , 30 FIG . 1B is a scanning electron microscope image of a Hall 
high detectability , but also have high temperature stability bar . 
and low cross - field error . FIG . 1C is an exemplary graph . 

FIG . 1D is an exemplary graph . 
SUMMARY OF THE INVENTION FIGS . 2A - 2F are exemplary graphs . 

FIGS . 3A - 3F are exemplary graphs . 
The following presents a simplified summary of the FIG . 4 is an exemplary graph . 

innovation in order to provide a basic understanding of some FIGS . 5A - 5D are exemplary graphs . 
aspects of the invention . This summary is not an extensive 
overview of the invention . It is intended to neither identify DETAILED DESCRIPTION 
key or critical elements of the invention nor delineate the 40 
scope of the invention . Its sole purpose is to present some The subject innovation is now described with reference to 
concepts of the invention in a simplified form as a prelude the drawings , wherein like reference numerals are used to 
to the more detailed description that is presented later . refer to like elements throughout . In the following descrip 

In general , in one aspect , the invention features an inter- tion , for purposes of explanation , numerous specific details 
layer exchange - coupled magnetic multilayer structure for 45 are set forth in order to provide a thorough understanding of 
magnetic sensing device including a spacer that couples two the present invention . It may be evident , however , that the 
magnetic layers that sandwich the spacer , the spacer thick- present invention may be practiced without these specific 
ness determining either the ferromagnetic coupling or the details . In other instances , well - known structures and 
antiferromagnetic coupling between the two magnetic lay- devices are shown in block diagram form in order to 
ers , two magnetic layers that sandwich the spacer , two 50 facilitate describing the present invention . 
magnetic layers having tunable perpendicular magnetic The present invention enables design and fabrication of 
anisotropies , two oxide layers or other non - magnetic layers high - performing magnetic sensors with both high sensing 
that sandwich the trilayer structure comprising two magnetic capability and stability . The magnetic sensors can be applied 
layers and the spacer , two oxide layers or other non- in many fields including but not limited to automotive fields , 
magnetic layers having interfaces with two magnetic layers , 55 read heads in data storage devices , magnetic imaging , 
the interfaces determining the perpendicular magnetic microscopy , Internet of things ( IoT ) , robotics , non - destruc 
anisotropies of the two magnetic layers , and a capping layer tive evaluation ( NDE ) , medical diagnostics , electrocardio 
to prevent underlying layers from further oxidization on gram ( ECG or EKG ) , electroencephalogram ( EEG ) , bio 
exposure to the atmosphere . medical applications and so forth . 

Embodiments of the invention may include one or more 60 In addition to being applied in industrial productions , the 
of the following advantages . magnetic sensors of the present invention can be applied in 

The magnetic sensing devices of the present invention can scientific studies such as , for example , detection of magnetic 
be fabricated with a miniaturized size . textures in magnetic materials , in medical fields such as 

Fabrication procedures of the magnetic sensing devices of detection of magnetically labeled biomolecules and detec 
the present invention are simple . 65 tion of signals from human bodies like from heart and 

Compositions of the magnetic sensing devices of the human brains . In addition , the magnetic sensors of the 
present invention are cheap . present invention can detect magnetic fields within a broad 

a 
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field range and a broad temperature interval , broadening cm , at least about 100422 cm . In certain embodiments , by 
their applications in different fields . tuning the magnetic anisotropies , the magnetic layer has a 

More specifically , the present invention provides a plat- saturation field selected from the group consisting of : at least 
form to fabricate magnetic sensing devices that include a about 0.1 Oersted unit ( Oe ) , at least about 1 Oe , at least 
spacer that couples two magnetic layers , two magnetic 5 about 10 Oe , at least about 100 Oe , at least about 1000 Oe , 
layers that sandwich the spacer , two oxide layers that at least about 10000 Oe . In a certain embodiment , the 
sandwich the trilayer structure including the two magnetic ferromagnetic layer is the alloy of Cobalt - Iron - Boron with X , 
layers and the spacer , and a capping layer to prevent y , and 100 - x - y as atomic percentage of Cobalt , Iron and 
underlying layers from further oxidization on exposure to Boron atoms ( Co , FeyB100 - x - y ) wherein 0 < x < 100 and 
the atmosphere . The interlayer exchange coupling ( IEC ) 10 0 < y < 100 ( atomic percent ) . In various embodiments , the 
between two magnetic layers and magnetic anisotropies can magnetic layer is either the ferromagnetic layer or ferrimag 
be tuned to control the performance of magnetic sensing netic layer . In various embodiments , the perpendicular mag 
devices . The magnetic sensing devices take advantage of the netic anisotropy is above zero , equals zero , or is below zero . 
anomalous Hall effect of interlayer exchange - coupled mag- The oxide layers have interfaces with the two magnetic 
netic thin films . The magnetic sensing devices based on 15 layers . In various embodiments , the oxide layers are selected 
interlayer exchange - coupled magnetic thin films have both from the group consisting of magnesium oxide , aluminum 
high magnetic field detectability and high stability , which oxide , tantalum oxide , ruthenium oxide , chromium oxide , 
are desirable for magnetic sensing applications under wide tungsten oxide , platinum oxide , silicon oxide , niobium 
ranging environmental conditions . oxide , molybdenum oxide , vanadium oxide , rhenium oxide , 

FIG . 1A is the cross - sectional schematic view of the 20 iridium oxide , copper oxide , rhodium oxide , scandium 
multilayer stack of MgO ( 1.6 nm ) / C040Fe40B20 ( t ) / Tatta ) oxide , titanium oxide , yttrium oxide , zirconium oxide , pal 
CO40Fe40B20 ( t2 ) / MgO ( 1.6 nm ) / TaO ( 1.0 nm ) for magnetic ladium oxide , hafnium oxide , osmium oxide , gold oxide , 
sensing devices . gallium oxide , germanium oxide , arsenic oxide , selenium 
FIG . 1B is the scanning electron microscope image of a oxide , indium oxide , tin oxide , antimony oxide , tellurium 

Hall bar . The active area of the Hall bar is 20x20 um ?. 25 oxide , thallium oxide , lead oxide , bismuth oxide . In certain 
FIG . 1C is an exemplary graph of the anomalous Hall embodiments , oxide layers are not included in structures of 

resistance ( RH ) as a function of the perpendicular magnetic magnetic thin films for magnetic sensing devices . In certain 
field ( H ) for the magnetic thin film of C040Fe 40B20 ( 0.9 embodiments , the effective perpendicular magnetic anisot 
nm ) / Ta ( 0.6 nm ) / C040Fe40B2 . ( 0.9 nm ) , and for the magnetic ropy is improved by interfacing magnetic layers with other 
thin film of C040F40B20 ( 1.0 nm ) / Ta ( 0.8 nm ) / C040Fe40B20 30 non - magnetic layers , such as interfacing Co with the Pt layer 
( 0.8 nm ) . The samples were annealed in a high - vacuum in Co / Pt multilayers . In certain embodiments , the perpen 
chamber at different annealing temperatures Ta for 1 h . dicular magnetic anisotropy is present in a single magnetic 
FIG . 1D is an exemplary graph of the anomalous Hall layer without neighboring with any other materials , such as 

sensitivity s as a function of the annealing temperature , for L1 , ordered FeCo and FePt thin films . 
C040Fe4B20 ( 1.0 nm / Ta ( 0.8 nm ) / C040F640B20 ( 0.8 nm ) . In a specific embodiment , the capping layer is Ta . In 

In various embodiments , the spacer has an interlayer various embodiments , different capping layers are used to 
exchange coupling strength at least about 0.0001 milli - joule prevent underlying layers from further oxidization . 
divided by square - meters ( [ mJ / m² ) , at least about 0.0005 In various embodiments , the multilayers are annealed at 
mJ / m2 , at least about 0.001 mJ / m2 , at least about 0.005 different annealing temperature and under different magnetic 
mJ / m2 , at least about 0.01 mJ / m2 , at least about 0.05 mJ / m2 , 40 fields . The annealing temperature is selected from the group 
at least about 0.1 mJ / m2 , at least about 0.5 mJ / m2 , at least consisting of : at least about 20 degrees Celsius ( ° C. ) at least 
about 1 mJ / m2 , at least about 5 mJ / m2 . In an embodiment , about 50 ° C. , at least about 100 ° C. , at least about 150 ° C. , 
the spacer is Ta . In certain embodiments , the spacer has a at least about 200 ° C. , at least about 250 ° C. , at least about 
thickness with the range of about 0.1 nanometers ( nm ) to 300 ° C. , at least about 350 ° C. , at least about 400 ° C. In 
about 10.0 nm , for example , about 0.1 nm to about 1.0 nm , 45 various embodiments , the perpendicular or in - plane mag 
about 0.6 nm to 1.4 nm , about 0.5 nm to 5.0 nm , or about 5.0 netic field applied during the annealing is selected from the 
nm to 10.0 nm . In various embodiments , the spacer is a group consisting of at least about 0.01 Tesla ( T ) , at least 
metal , semiconductor , insulator or the organic material . For about 0.1 T , at least about 1.0 T , at least about 10 T , at least 
example , the metal , semiconductor , insulator or the organic about 20 T. In certain embodiments , no magnetic field is 
material serving as the spacer is selected from the group 50 applied during magnetic annealing processes . In certain 
consisting of : tantalum , tungsten , niobium , molybdenum , embodiments , the as - grown multilayers are used to fabricate 
vanadium , chromium , rhenium , ruthenium , iridium , copper , magnetic sensing devices . 
rhodium , scandium , titanium , yttrium , zirconium , palla- The synthetic ferromagnetic or synthetic antiferromag 
dium , hafnium , osmium , platinum , gold , gallium , germa- netic structures include a non - magnetic spacer and two 
nium , arsenic , selenium , indium , tin , antimony , tellurium , 55 magnetic layers that sandwich the non - magnetic spacer . In 
thallium , lead , bismuth , silicon , vanadium dioxide , gallium certain embodiments , oxide layers are included in the struc 
arsenide , magnesium oxide , and a - sexithiphene . ture . Neighboring magnetic layers with oxide layers pro 

In various embodiments , the magnetic layer has an motes the perpendicular magnetic anisotropy of magnetic 
anomalous Hall angle at least about 0.1 % , at least about layers . To give examples , we deposited multilayers of Mgo 
0.5 % , at least about 1 % , at least about 5 % , at least about 60 ( 1.6 ) / C040Fe40B2o ( t ) / Ta ( tza ) / C040F240Bz ( t2 ) / MgO ( 1.6 ) / 
10 % , at least about 15 % , at least about 20 % , at least about TaO ( 1.0 ) ( layer thicknesses in nanometers ) on thermally 
25 % , at least about 30 % , at least about 35 % , at least about oxidized silicon wafers using a high - vacuum magnetron 
40 % , at least about 45 % , at least about 50 % . In various sputtering system . The cross - sectional schematic view of the 
embodiments , the magnetic layer has an anomalous Hall multilayer stack is presented in FIG . 1A . The total thickness 
resistivity at least about 0.1 micro - Ohm centimeters ( u22 65 of the top and bottom ferromagnetic layers is fixed to be 1.8 
cm ) , at least about 0.5u22 cm , at least about lu22 cm , at least nm ( t ; = 0.8,0.9 and 1.0 nm ) . The Ta layer thickness tta varies 
about 5u22 cm , at least about 10422 cm , at least about 50u22 from 0.6 to 1.4 nm . We used photolithography and ion 

35 
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milling to pattern multilayers into Hall bars . The scanning As an essential parameter to characterize the performance 
electron microscope ( SEM ) image of a Hall bar is presented of anomalous Hall sensors , the sensitivity is presented in 
in FIG . 1B . The active area of the Hall bar is 20x20 um ?. In FIG . 2B . The sensitivity increases with increasing the per 
order to reduce the Johnson noise that shows a positive pendicular anisotropy , and reaches 8634 Q / T for sample3 . 
correlation with the resistance between two Hall voltage 5 The sensitivity value is comparable with that of the single 
leads , we deposited Cr / Au layers as electrodes . The post magnetic layer - based anomalous Hall sensor . We determine 
growth thermal annealing was then performed in a high the dynamic range 2HDR to be the same as the full width at 
vacuum chamber at different temperatures for 1 h , while half maximum of the H_ - dependence of sensitivity . The 
applying a perpendicular magnetic field of about 0.4 T. dynamic range of samplel that has the lowest perpendicular 
Varying layer thicknesses and annealing temperatures 10 anisotropy is 197 Oe , while the sample2 and sample3 with 

larger perpendicular anisotropies have lower dynamic allows us to get insight into the performance of the magnetic 
sensors with different magnetic configurations . As a com ranges of 111 and 33 Oe , respectively . 

Apart from the sensitivity , noise spectra were also mea parison , we have also deposited Ta ( 1.6 ) / C040Fe40B20 ( 0.9 ) / sured , as shown in FIG . 2C . The H_ - dependent noise Sy at MgO ( 1.6 ) / TaO ( 1.0 ) on thermally oxidized silicon wafers . 15 1 Hz was derived from noise spectra and plotted in FIG . 2D . The sensing mode of the single C040F 40B20 layer - based The noise spectrum includes 1 / f noise and white noise . The 
magnetic sensor was achieved by annealing samples at a 1 / f noise that is dominant at low frequency originates from 
moderate temperature . Since the magnetic sensor takes both defects and thermal magnetic fluctuations . In the sens 
advantage of the anomalous Hall effect of magnetic thin ing region , 1 / f noise increases with increasing the perpen 
films , in the following descriptions , we refer to the magnetic 20 dicular anisotropy . This is because of enhanced thermal 
sensor as the anomalous Hall sensor . magnetic fluctuations with the emergence of the multi 

To obtain the accurate anomalous Hall sensitivity , we domain state . For sample1 , the noise in the sensing region is 
used a coil to generate an AC perpendicular magnetic field the same as the noise in the saturation region . This implies 
AH2,0 sin ( 2tot ) , while applying a constant perpendicular that the magnetic 1 / f noise is not as large as the defect 
field H , through the superconducting coil in the Quantum 25 induced electronic 1 / f noise . 
Design® Physical Property Measurement System ( PPMS ) . The magnetic sensing detectability was calculated 
The frequency 21W = 5 Hz and AH2,0 = 0.3 Oe . The sensitivity through S70.5 = S 0.5 / Is , which is plotted in FIG . 2E . The best 
S = AR 4,0 AH ,, o at the field H , was then derived by measuring field detectability is achieved in sample2 ( 60.4 nT / VHz at 1 
the corresponding anomalous Hall voltage response that Hz ) around the saturation region . The field detectability is 
gives the anomalous Hall resistance R + AR 11,0 sin ( 2tot ) , ( 2??t ) . 30 better than the detectability of conventional semiconductor 
FIG . 1C shows anomalous Hall curves of interlayer Hall sensors ( uT / VHz at 1 Hz ) by two orders of magnitude . 

exchange - coupled magnetic thin films with tra = 0.6 and 0.8 On the one hand , the anomalous Hall sensitivity is larger 
nm . The two magnetic layers are antiferromagnetically than the sensitivity of conventional semiconductor Hall 
coupled when tra = 0.6 nm . The antiferromagnetic ( AFM ) sensors by one order of magnitude . On the other hand , the 
coupling induces a nonlinear anomalous Hall curve with a 35 metallic feature of the anomalous Hall sensor allows it to 
low sensitivity ( 347 22 / T ) at zero magnetic field . The AFM possess a lower electronic noise compared with the semi 
coupling changes into ferromagnetic ( FM ) coupling when conductor Hall sensor that suffers from semiconductor limi 
tta changes from 0.6 to 0.8 nm . The FM coupling is followed tations . At zero field , the samplel has the best field detect 
by the other transition into the AFM coupling when further ability ( 126 nT / VHz at 1 Hz ) among all three samples , and 
increasing tra to 1.2 nm . The IEC strength oscillates peri- 40 the detectability reaches 4.5 nT / VHz at 1 kHz . The high 
odically , which is attributed to the presence of Friedel - like detectability of samplel is attributed to the low magnetic 
spatial oscillations in spin density in the Ta spacer . noise , although it has the lowest sensitivity among all three 

For the interlayer exchange - coupled magnetic thin film samples . 
with tra = 0.8 nm , the perpendicular anisotropy increases To quantify the performance of anomalous Hall sensors , 
when increasing the annealing temperature from 100 to 150 ° 45 we calculated the dynamic reserve that is defined as 20 
C. , as presented in FIG . 1C . The increase in perpendicular log10 ( 2HDR / S.O.S ( at 1 Hz and zero field ) ) , as presented in 
anisotropy gives rise to a higher sensitivity , as shown in FIG . FIG . 2F . For high - performing magnetic sensors , a large 
1D , but also promotes the emergence of the multi - domain dynamic reserve is expected . FIG . 3F shows that the 
state . The multi - domains would increase the magnetic noise dynamic reserve decreases with increasing the perpendicular 
that is undesirable for magnetic sensing applications . The 50 anisotropy ( sensitivity ) , for all three samples and the other 
competition between the sensitivity and the magnetic noise two samples with similar structures . Samplel that has the 
motivates us to perform transport and noise measurements highest detectability at zero field has the dynamic reserve of 
of magnetic thin films with different magnetic anisotropies . 103.0 dB . Further decreasing the perpendicular anisotropy 
In the following text , we show experimental results of may increase the dynamic range , but would also reduce the 
interlayer exchange - coupled magnetic thin films with 55 sensing capability , which is undesirable for magnetic sens 
tra = 0.8 nm , while magnetic thin films with other Ta spacer ing . By tuning perpendicular anisotropy to the spin reorien 
thicknesses possess lower magnetic sensing detectability . tation transition region , one expects to fabricate anomalous 
By way of example , we focus on three magnetic thin films Hall sensors with high detectability . 

with different perpendicular anisotropies . We denote three FIG . 2A is an exemplary graph of anomalous Hall curves 
samples as “ samplel ” , “ sample2 ” and “ sample3 ” , respec- 60 of three interlayer exchange - coupled magnetic thin films 
tively . FIG . 2 ) shows anomalous Hall curves of the three with different perpendicular anisotropies . The samplel has 
magnetic thin films . The anomalous Hall curve of sample3 the structure of C040Fe40B20 ( 0.8 nm ) / Ta ( 0.8 nm ) / 
shows a nonlinear feature . This is the typical feature of the C040F640B20 ( 1.0 nm ) . The sample2 and sample3 have the 
presence of the multi - domain state . The linear anomalous structure of C040F640B20 ( 0.9 nm ) / Ta ( 0.8 nm ) / 
Hall curves of samplel and sample2 suggest that magneti- 65 C040Fe40B20 ( 0.9 nm ) . The samplel has the lowest perpen 
zations of the two samples are in the region near the spin dicular anisotropy . Sample2 and sample3 have stronger 
reorientation transition . perpendicular magnetic anisotropies . 
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FIG . 2B is an exemplary graph of sensitivity as a function As a comparison , we also measured magnetotransport and 
of the perpendicular magnetic field H , for three samples . noise properties of the single C040FeB20 layer - based 
FIG . 2C is an exemplary graph of noise spectra for three anomalous Hall sensor in the temperature range from 310 to 

samples measured at zero field . 250 K. The temperature - dependent magnetic field detect 
FIG . 2D is an exemplary graph of the intrinsic noise at 1 5 ability at 1 Hz at a bias field Hp = -14 Oe ( at which the field 

Hz as a function of the perpendicular magnetic field H , for detectability value is lowest ) is also presented in FIG . 4. The 
three samples . results show that the field detectability of the single 

FIG . 2E is an exemplary graph of the magnetic field C040F 40B20 320 layer - based anomalous Hall sensor has a stron 
detectability at 1 Hz as a function of the perpendicular ger temperature dependence , compared with the interlayer 
magnetic field H , for three samples . 10 exchange - coupled magnetic thin films . The temperature 
FIG . 2F is an exemplary graph of the dynamic reserve as coefficient of sensitivity of the single Co40Fe40B20 layer 

a function of the sensitivity . system is calculated to be 6540 ppm / K in the 310 to 250 K 
We performed transport and noise measurements of temperature range , which is much larger than the tempera 

anomalous Hall sensors at different temperatures T , to inves- ture coefficient of sensitivity ( 530 ppm / K ) of sample 1 
tigate temperature stability of anomalous Hall sensors . FIG . 15 measured in a broader temperature range from 300 to 200 K. 
3A shows anomalous Hall curves of samplel that were These results confirm that the interlayer exchange - coupled 
measured at 300 , 250 , 200 and 150 K , respectively . The magnetic thin film - based anomalous Hall sensor has a better 
anomalous Hall curve shows a much weaker temperature temperature stability , compared with the single magnetic 
dependence compared with the single magnetic layer - based layer - based anomalous Hall sensor , as a result of the IEC 
anomalous Hall sensors . This is what we expect as a result 20 between magnetic layers in the multilayer structure . 
of the IEC in the interlayer exchange - coupled magnetic thin FIG . 3A is an exemplary graph of the anomalous Hall 
films . For samplel , both the saturation magnetization and curves of samplel that were measured at 300 , 250 , 200 and 
coercivity increase with decreasing the temperature . The 150 K , respectively . The samplel has the structure of 
increase in coercivity is most probably due to the enhanced C040Fe40B20 ( 0.8 nm ) / Ta ( 0.8 nm ) C040Fe40B20 ( 1.0 nm ) . 
perpendicular anisotropy , as well as suppressed thermal 25 FIG . 3B is an exemplary graph of the anomalous Hall 
fluctuations of magnetization across the field - induced mag- sensitivity as a function of the perpendicular magnetic field 
netization switching . The slope of the anomalous Hall curve H , for samplel , measured at 300 , 250 , 200 and 150 K , 
increases with decreasing the temperature . However , the respectively . 
temperature - dependent coercivity induces that the sensitiv- FIG . 3C is an exemplary graph of the intrinsic noise at 1 
ity increases slightly when decreasing the temperature from 30 Hz as a function of the perpendicular magnetic field H , for 
300 to 200 K , and then drops with further decreasing the samplel , measured at 300 , 250 , 200 and 150 K , respectively . 
temperature to 150 K , as presented in FIG . 3B . Similar to the FIG . 3D is an exemplary graph of the magnetic field 
temperature - dependent sensitivity , in the sensing region , the detectability at 1 Hz as a function of the perpendicular 
intrinsic noise ( at 1 Hz ) shows ignorable variations within magnetic field H , for samplel , measured at 300 , 250 , 200 
the temperature range from 300 to 200 K , and then increases 35 and 150 K , respectively . 
with decreasing the temperature to 150 K , as presented in FIG . 3E is an exemplary graph of the temperature depen 
FIG . 3C . In the saturation region , the intrinsic noise dence of the magnetic field detectability for samplel , 
decreases with decreasing the temperature . This is because sample2 and sample3 . The samplel has the structure of 
of suppressed thermal fluctuations from the defects . The C040Fe40B20 ( 0.8 nm ) / Ta ( 0.8 nm ) / C040Fe40B20 ( 1.0 nm ) . 
magnetic sensing detectability was calculated and plotted in 40 The sample2 and sample3 have the same structure of 
FIG . 3D . It is noteworthy that the field detectability data C040Fe40B20 ( 0.9 nm ) / Ta ( 0.8 nm ) / C040F 40B20 ( 0.9 nm ) . 
measured at T = 300 , 250 and 200 K collapse in the sensing The field detectability of single C040FeB20 layer - based 
region . The detectability increases to about 250 nT / VHz at 1 anomalous Hall sensor is also present . 
Hz when decreasing the temperature to 150 K. The nearly FIG . 3F is an exemplary graph of the temperature depen 
unchanged magnetic field detectability suggests that 45 dence of the dynamic reserve for samplel , sample2 and 
samplel has a good temperature stability in the 300 K to 200 sample3 . 
K temperature range . We have also performed transport and In addition to the temperature stability , reaching high 
noise measurements of sample2 and sample3 at different tolerance to orthogonal magnetic fields is essential as well 
temperatures . We plotted the temperature - dependent field for anomalous Hall sensors in applications of perpendicular 
detectability ( at zero field and 1 Hz ) and dynamic reserve , 50 magnetic field sensing . The IEC in magnetic thin films is 
for all three samples , in FIG . 3E and FIG . 3F , respectively . expected to enhance the stability . To confirm this , we 
The samplel that has the highest detectability at zero field , measured anomalous Hall curves of both interlayer 
also has the best temperature stability among all three exchange - coupled magnetic thin film - based and the single 
samples . We used a temperature coefficient of sensitivity that C040Fe40B20 layer - based anomalous Hall sensors , while 
is defined as | As / sAT to quantify temperature stability . The 55 applying an in - plane magnetic field Hip . Hip was applied 
temperature coefficients for samplel , sample2 and sample3 either parallel ( a = 0 ° ) or perpendicular ( a = 90 ° ) to the cur 
are 530 , 4060 and 6800 ppm / K , respectively , in the tem- rent flow direction . FIG . 4 shows that the relative changes 
perature range from 200 to 300 K. The temperature coeffi- ( As / s = ( s ( Hyp ) -s ( Hip = 0 ) ) / s ( Hp = 0 ) ) of the sensitivity 
cient of sensitivity ( 530 ppm / K for samplel ) has the same increases with | H?pl , but is independent of the in - plane field 
order of magnitude as the temperature coefficient of con- 60 direction and the perpendicular anisotropy that determines 
ventional semiconductor Hall sensors . However , in semi- s ( H?p = 0 ) . We used the value of As / sl to characterize the 
conductor Hall sensors , reaching such a low temperature cross - field error . The interlayer exchange - coupled magnetic 
coefficient requires sacrificing the sensitivity ( < 102 2 / T ) . thin film shows a lower cross - field error compared with the 
Our results suggest that the interlayer exchange - coupled single C040Fe40B20 layer - based anomalous Hall sensor . 
magnetic thin film - based anomalous Hall sensors outper- 65 Especially , when | Hip < 2 Oe , the As / s keeps at about 0 % for 
form semiconductor Hall sensors in sensitivity , field detect- interlayer exchange - coupled magnetic thin films , while it 
ability and temperature stability . changes by almost 10 % for the single C040Fe40B20 layer 
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system . The IEC - improved temperature stability and toler- the anomalous Hall sensors with both high detectability and 
ance to in - plane magnetic fields make anomalous Hall high stability can be fabricated for magnetic sensing . 
sensors highly promising in magnetic sensing applications FIG . 5A is an exemplary graph of anomalous Hall curves 
under wide - ranging environmental conditions . of interlayer exchange - coupled magnetic thin films of 
FIG . 4 is an exemplary graph of the relative changes 5 C040Fe40B20 ( 0.9 nm ) / Ta ( 0.6 nm ) / C040Fe40B20 ( 0.9 nm ) and 

( As / s ) of the anomalous Hall sensitivity as a function of C040Fe40B20 ( 0.9 nm ) / Ta ( 0.7 nm ) / C040Fe40B20 ( 0.9 nm ) . 
in - plane magnetic field Hip . The As / s was derived from the FIG . 5B is an exemplary graph of the anomalous Hall 
slope of anomalous Hall curves of magnetic thin films with sensitivity as a function of the perpendicular magnetic field 
different s ( H?p = 0 ) . We have also plotted As / s for a single H , for magnetic thin films of Co4F440B20 ( 0.9 nm ) / Ta ( 0.6 
C040F640B20 layer - based anomalous Hall sensor ( green ) . 10 nm ) C040F440B20 ( 0.9 nm ) ( square dots ) and Co40F40B20 / 
a = 0 ° ( 90 ° ) means that the Hip was applied parallel ( perpen ( 0.9 nm ) / Ta ( 0.7 nm ) / C040Fe40B20 ( 0.9 nm ) ( circle dots ) , 

respectively . 
dicular ) to the current flow direction . The insert is the partial FIG . 5C is an exemplary graph of the intrinsic noise as a enlarged figure . Error bars were derived from multiple function of the perpendicular magnetic field H , for magnetic 
measurements . 15 thin films of C040Fe40B20 ( 0.9 nm ) / Ta ( 0.6 nm ) / C040Fe40B20 The interlayer exchange - coupled magnetic thin film ( 0.9 nm ) ( square dots ) and C040Fe40B20 ( 0.9 nm ) / Ta ( 0.7 
based anomalous hall sensor has an outstanding perfor- nm ) / C040F240B20 ( 0.9 nm ) ( circle dots ) , respectively . 
mance with both high detectability and high stability . To FIG . 5D is an exemplary graph of the magnetic field 
achieve the best performance of anomalous Hall sensors , we detectability as a function of the perpendicular magnetic 
have also performed transport and noise measurements of 20 field H , for magnetic thin films of Co40Fe40B20 ( 0.9 nm ) / Ta 
magnetic thin films with different magnetic layer thicknesses ( 0.6 nm ) / C020FeB2 . ( 0.9 nm ) ( square dots ) and 
and tta . Magnetic layer thicknesses ( t ; = 0.8 , 0.9 and 1.0 nm ) C040F240B20 ( 0.9 nm ) / Ta ( 0.7 nm ) / C040F240B20 ( 0.9 nm ) 
have ignorable influences on the performance of anomalous ( circle dots ) , respectively . 
Hall sensors . The tta controls the IEC strength . FIG . 5A The anomalous Hall angle @ AHEPH / Px was calculated to 
shows anomalous Hall curves of interlayer exchange- 25 characterize the efficiency of anomalous Hall sensors . Ph is 
coupled magnetic thin films with tra = 0.6 and 0.7 nm , the anomalous Hall resistivity , and Pxx is the longitudinal 
respectively . In both magnetic thin films , the two ferromag- resistivity . For the magnetic thin film of Co 40Fe40B20 / Ta / 
netic layers are antiferromagnetically coupled . The satura- C040Fe40B20 , the anomalous Hall angle was determined to 
tion field for the magnetic thin film with tra = 0.7 nm is be about 0.7 % . One expects that , by replacing C040Fe40B20 
smaller than the saturation field for the magnetic thin film 30 with other magnets , such as FePt , with larger anomalous 
with tra = 0.6 nm . This infers that the IEC strength of the Hall angles , the efficiency of anomalous Hall sensors can be 
magnetic thin film with tra = 0.7 nm is weaker than the IEC improved . Anomalous Hall sensors with different material 
strength of the magnetic thin film with tra = 0.6 nm . FIG . 5B compositions remain to be explored . 
shows the H - dependence of the sensitivity . For the magnetic Among magnetic sensors with miniaturized sizes , besides 
thin film with tra = 0.6 nm , two peaks are observed near the 35 Hall sensors , the giant magnetoresistance ( GMR ) sensor and 
positive and negative saturation fields . The H -dependence tunneling magnetoresistance ( TMR ) sensor have also been 
of the sensitivity well follows the variation trend of the Hall attracting great interest . Nevertheless , both GMR and TMR 
slope as a function of H , that with increasing the perpen- sensors are fabricated with much more complex fabrication 
dicular magnetic field from the negative saturation field to processes . The GMR sensor performs with a high power 
positive saturation field , the Hall slope increases first , and 40 consumption . A better magnetic sensing detectability can be 
then decreases around zero field , and then increases near the achieved in TMR sensors based on magnetic tunnel junc 
positive saturation field . The two peaks disappear for the tions ( MTJs ) . However , TMR sensor usually suffers from 
magnetic thin film with tra = 0.7 nm . This is possibly owing large 1 / f noise , which scales inversely with junction areas 
to the irreversible curves near the saturation field . The and limits its performance with small sizes . In a TMR sensor 
irreversible curves not only decrease the sensitivity , but also 45 with superparamagnetic free layer , the achieved magnetic 
increase the intrinsic noise , as presented in FIG . 5C . Even field detectability is 40 nT / VHz at 1 Hz , one third of that of 
though , in the region around zero field , the anomalous Hall the anomalous Hall sensors in this work , yet the sensing area 
curve becomes linear and reversible with a small coercivity , is 14 times larger . If the same sensing area is used , one may 
which can be employed for magnetic field sensing . The expect that the anomalous Hall sensor performs comparably 
electronic noises for two samples are presented in FIG . 5C . 50 or even outperforms TMR sensor in the low - frequency 
In the sensing region , the electronic noise for the magnetic region . 
thin film with tra -0.6 nm is smaller than the electronic noise In general , we have succeeded in fabricating high - per 
for the magnetic thin film with tra = 0.7 nm . The electronic forming anomalous Hall sensors with both high detectability 
noise increases near the saturation fields for both samples . and high stability , exploiting the interlayer exchange 
For the magnetic thin film with tra = 0.6 nm , this is because 55 coupled magnetic thin film of C040F240B20 / Ta / C040F240B20 . 
of the increase in the sensitivity . For the magnetic thin film We performed transport and noise measurements to charac 
with tra = 0.7 nm , this is because of the irreversible curves . terize the magnetic sensing capability of anomalous Hall 
We calculated the detectability and plotted it in FIG . 5D . At sensors . By tuning the IEC and perpendicular magnetic 
zero field , the detectability reaches 577.1 nT / Hz at 1 Hz for anisotropy , at room temperature , the best magnetic sensing 
the magnetic thin film with tra -0.6 nm , and it reaches 417.7 60 detectability reaches 126 nT / VHz at 1 Hz and 4.5 nT / VHz at 
nT / Hz at 1 Hz for the magnetic thin film with tra = 0.6 nm . 1 kHz . The interlayer exchange - coupled magnetic thin film 
The magnetic field detectabilities for both samples are larger with the best performance has a Ta spacer with the spacer 
than that of magnetic thin films with tta = 0.8 nm . Even thickness of 0.8 nm , two ferromagnetic C040Fe40B20 layers 
though , the antiferromagnetic coupling structures have the that sandwich the Ta spacer , and the other two MgO layers 
low stray field and are expected to possess a better tempera- 65 that sandwich the trilayer structure comprising the two 
ture stability and a lower cross - field error . By tuning the IEC ferromagnetic C040Fe40B20 layers and the Ta spacer . The 
and perpendicular magnetic anisotropy to moderate values , anomalous Hall sensor with such a structure has a large 
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dynamic range of 197 Oe and a large dynamic reserve of dioxide , gallium arsenide , magnesium oxide , a - sexithi 
103.0 dB . The anomalous Hall sensors outperform the phene , and alloys or compounds composed of any two 
conventional semiconductor Hall sensors in both sensitivity or more above materials . 
and detectability . Temperature - dependent studies were con- 3. The structure of claim 1 , wherein the magnetic layers 
ducted . Benefiting from the IEC in interlayer exchange- 5 comprise at least one of the following properties : 
coupled magnetic thin films , the anomalous Hall sensor has an anomalous Hall angle is selected from the group 
a low temperature coefficient of sensitivity of 530 ppm / K . consisting of : at least 0.1 % , at least 0.5 % , at least 1 % , 
The low temperature coefficient of the anomalous Hall at least 5 % , at least 10 % , at least 15 % , at least 20 % , at 
sensor suggests it is possible to work within a broad tem least 25 % , at least 30 % , at least 35 % , at least 40 % , at 

least 45 % , at least 50 % ; perature interval . The IEC also improves the tolerance of has the anomalous Hall resistivity selected from the group anomalous Hall sensors to orthogonal magnetic fields . The 
high stability against both temperature and in - plane mag consisting of : at least 0.1 micro - Ohm centimeters ( u22 
netic fields allows the anomalous Hall sensor to be applied cm ) , at least 0.5u12 cm , at least lul2 cm , at least 5u22 

cm , at least 10u22 cm , at least 5042 cm , at least 100 u22 in magnetic sensing under wide - ranging environmental con cm ; 
ditions . The high - performing anomalous Hall sensors with has a saturation field selected from the group consisting 
the miniaturized size have great potential in applications of of : at least 0.1 Oersted unit ( Oe ) , at least 1 Oe , at least 
micro sensing such as detection of biomolecules and mag 10 Oe , at least 100 Oe , at least 1000 Oe , at least 10000 
netic imaging . If combining anomalous Hall sensors and Oe ; 
GMR or TMR sensors together , one expects to detect are ferromagnetic films or ferrimagnetic films ; 
three - dimensional magnetic field with high field resolution . have perpendicular magnetic anisotropies near the spin 

It would be appreciated by those skilled in the art that reorientation transition or have in - plane anisotropies ; 
various changes and modifications can be made to the and 
illustrated embodiments without departing from the spirit of the ferromagnetic film the alloy of Cobalt - Iron - Boron 
the present invention . All such modifications and changes 25 with x , y , and 100 - x - y as atomic percentage of Cobalt , 
are intended to be within the scope of the present invention Iron and Boron atoms ( Co , FeyB100 - x - y ) wherein except as limited by the scope of the appended claims . 0 < x < 100 and 0 < y < 100 ( atomic percent ) ; 

have interfaces with oxide layers , with other non - mag 
What is claimed is : netic layers , or have no interfaces with any other 
1. A magnetic field sensing device comprising : materials . 
a magnetic field sensing element with a Hall measurement 4. The structure of claim 1 , wherein the oxide layers 

configuration for Hall - signal detection and analysis , the comprise at least one of the following properties : 
magnetic field sensing element fabricated with an inter- have interfaces with magnetic layers ; and 
layer exchange - coupled magnetic multilayer structure are at least one oxide selected from the group consisting 
comprising : of : magnesium oxide , aluminum oxide , tantalum oxide , 

a spacer that couples two magnetic layers that sandwich ruthenium oxide , chromium oxide , tungsten oxide , 
the spacer , the spacer thickness determining either the platinum oxide , silicon oxide , niobium oxide , molyb 
ferromagnetic coupling or the antiferromagnetic cou denum oxide , vanadium oxide , rhenium oxide , iridium 
pling between the two magnetic layers ; oxide , copper oxide , rhodium oxide , scandium oxide , 

two magnetic layers that sandwich the spacer , the two 40 titanium oxide , yttrium oxide , zirconium oxide , palla 
magnetic layers having tunable perpendicular magnetic dium oxide , hafnium oxide , osmium oxide , gold oxide , 
anisotropies near a spin - reorientation transition ; gallium oxide , germanium oxide , arsenic oxide , sele 

two oxide layers or other non - magnetic layers that sand- nium oxide , indium oxide , tin oxide , antimony oxide , 
wich the two magnetic layers and the spacer , the two tellurium oxide , thallium oxide , lead oxide , bismuth 
oxide layers or other non - magnetic layers having inter- 45 oxide ; 
faces with the two magnetic layers , the interfaces are replaced by other non - magnetic layers selected from 
determining the perpendicular magnetic anisotropies of the group consisting of : tantalum , tungsten , niobium , 
the two magnetic layers ; and molybdenum , vanadium , chromium , rhenium , ruthe 

a capping layer to prevent underlying layers from further nium , iridium , copper , rhodium , scandium , titanium , 
oxidization on exposure to the atmosphere . yttrium , zirconium , palladium , hafnium , osmium , plati 

2. The structure of claim 1 wherein the spacer comprises num , gold , gallium , germanium , arsenic , selenium , 
at least one of the following properties : indium , tin , antimony , tellurium , thallium , lead , bis 

the strength of the interlayer exchange coupling is muth , silicon , and alloys or compounds composed of 
selected from the group consisting of : at least 0.0001 any two or more above materials . 
milli - joule divided by square - meters ( [ mJ / m ? ) at least 55 5. The structure of claim 1 , further comprising a capping 
0.0005 mJ / m² , at least 0.001 mJ / m ?, at least 0.005 layer or overlayer to prevent from further oxidization on 
mJ / m² , at least 0.01 mJ / m² , at least 0.05 mJ / m² , at least exposure to the atmosphere . 
0.1 mJ / m² , at least 0.5 mJ / m² , at least 1 mJ / m² , at least 6. The structure of claim 1 , further comprising inserted 
5 mJ / m² ; layers between any two layers to improve magnetic or 

is at least one metal , semiconducting , insulating or 60 electronic properties of magnetic multilayers for magnetic 
organic material selected from the group consisting of : sensing devices . 
tantalum , tungsten , niobium , molybdenum , vanadium , 7. The structure of claim 1 , wherein the multilayer com 
chromium , rhenium , ruthenium , iridium , copper , rho- positions are annealed to obtain appropriate interlayer 
dium , scandium , titanium , yttrium , zirconium , palla- exchange coupling and perpendicular magnetic anisotropies 
dium , hafnium , osmium , platinum , gold , gallium , ger- 65 for magnetic sensing devices . 
manium , arsenic , selenium , indium , tin , antimony , 8. The structure of claim 1 , wherein the multilayer com 
tellurium , thallium , lead , bismuth , silicon , vanadium positions are annealed at an annealing temperature selected 
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from the group consisting of : at least 20 degrees Celsius ( º 
C. ) at least 50 ° C. , at least 100 ° C. , at least 150 ° C. , at least 
200 ° C. , at least 250 ° C. , at least 300 ° C. , at least 350 ° C. , 
at least 400 ° C. 

9. The structure of claim 1 , wherein the multilayer com 
positions are annealed under a magnetic field perpendicular 
to or in the plane of the multilayer composition having a 
strength selected from the group consisting of : at least 0.01 
Tesla ( T ) , at least 0.1 T , at least 1.0 T , at least 10 T , at least 
20 T. 

10. The structure of claim 2 , wherein the spacer has a 
thickness selected from a range of 0.1 nanometers ( nm ) to 10 
nm , for example , 0.1 nm to 1.0 nm , 0.6 nm to 1.4 nm , 0.5 
nm to 5.0 nm , or 5.0 nm to 10.0 nm . 
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