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MICROECONOMETRIC DEMAND SYSTEMS WITH BINDING
NONNEGATIVITY CONSTRAINTS: THE DUAL APPROACH

By LunG-FEI LEE AND MARK M. PrtT!

This paper considers the problem of specifying and estimating demand systems for
samples which contain a significant proportion of observations with zero consumption of
one or more goods. Our approach uses virtual prices, which are dual to the Kuhn-Tucker
conditions, to select the set of goods consumed—the demand regime—and to transform
binding nonnegativity constraints into nonbinding constraints. It has the advantage of
permitting the use of indirect cost and utility functions such as the translog, and the analytic
decomposition of demand effects for goods at the nonnegativity limit.
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1. INTRODUCTION

RECENTLY, Wales and Woodland (1983) have considered the problem of estimat-
ing consumer demand systems for samples which contain a significant proportion
of observations with zero consumption of one or more goods. Their econometric
model is derived by maximizing a random direct utility function subject to budget
and nonnegativity constraints. The Kuhn-Tucker conditions determine the set
of nonconsumed goods. In this paper, we propose an alternative approach to the
zero corner solution problem based upon the use of virtual prices. This approach,
which is dual to that of Wales and Woodland, allows the use of indirect utility
and cost functions such as the translog.

2. THE FRAMEWORK
Let H(v; 0, €) be an indirect utility function defined as
(1) H(v; 6, ¢)=max {U(q; 0, £)|vg =1}
q

where U( ; 6, €) is a strictly quasi-concave utility function defined on K com-
modities, v is a vector of normalized market prices, § a vector of unknown
parameters, and ¢ a vector of random components. Applying Roy’s Identity, the
notional demand equations D(v; 6, ) for a set of K goods are

oH(v;0,¢) /X 0H(v;0,¢)
T
v; j=1 9

(2) (i=1,...,K).
These demand equations are deemed notional because they may take negative
values since the problem (1) does not include nonnegativity constraints. The
notional demands g; are thus latent variables which correspond to a vector of
nonnegative observed demands (x;) as follows. There exist vectors of positive
virtual prices 7 which can exactly support these zero demands (or any other
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allocation) as long as the preference function is strictly quasi-concave, continuous,
and strictly monotonic (Neary and Roberts (1980)). Virtual prices have heretofore
been used mostly in analyzing the effects of rationing on consumer behavior.
Although analytically deriving virtual price functions when demands are rationed
has been shown to be difficult for many popular functional forms (Deaton and
Muellbauer (1981)), the problem is enormously simplified when the “ration” is
zero, in which case the denominator in Roy’s Identity (2) drops out of the virtual
price function. If demands for the first ! goods are zero, the virtual prices
(V141 - - - , V) are solved from the equations

3) 0=90H(m(D),...,m(D), T; 6, )/dv; (i=1,...,D

where ;(¥) is the virtual price of the ith good and 7 is the set of market prices
of the positively consumed goods /+1 to K. The market prices ¥ are also virtual
prices as they exactly support the observed positive demands of goods /+1 to
K. The remaining (positive) demands are

@) X =6H(7r1(ﬁ), ..., m(D), D; 6, a)/§ vjaH(m(ﬁ), e, m(D), D; 6, €)
av; j=1 avj
(i=1+1,...,K).

The equations (4) are estimable and the parameters of the notional demand
equations (2) can be identified by estimating this conditional demand system.’
Comparisons of virtual and market prices can select among demand regimes,
defined as the set of positively consumed goods at the optimum. The regime in
which the first / goods are not consumed is characterized by the conditions

(5) m(D)<uv (i=1,...,1]).

This characterization follows directly from the Kuhn-Tucker conditions and the
concept of virtual prices. The Lagrangean function with utility maximization
subject to nonnegativity constraints is

L=U(q)+A(1-vq)+yq
where A and ¢ are Lagrange multipliers and the parameters 6 and ¢ are suppressed

for notational simplicity. The Kuhn-Tucker conditions that characterize the
demands (x;) with x;=0 (i=1,...,l) and x,>0 (i=I1+1,..., K) are

U
—('x_)._Avi-{-l/ji:O’ (/1'20 (i=1,...,l),
ag;
U
(6) —(x—)—)wj=0 (=1+1,...,m),
9g;

Y vx=1, A>0.

j=I+1

2 Browning (1983) has shown that the unconditional cost function can theoretically be recovered
from a conditional cost function. The necessary conditions for the conditional cost function are also
sufficient for the recovery of the unconditional cost function when the rationed quantities are positive.
Our approach starts with the unconditional functions. Identification in this paper refers to parameter
identification given functional forms for the unconditional functions.
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The virtual price for good i (i=1,...,1) at x is simply

(@) =29C) /)

3 aU(x)/aU(x)
=, —— 0

Hence the Kuhn-Tucker conditions are equivalent to the conditions (5) and x; >0
(i=1+1,..., m). The regime switching conditions (5) are intuitively appealing.
Virtual prices can be thought of as reservation or shadow prices. Goods are not
consumed unless their reservation price exceeds their market price.

3. APPLICATION TO THE TRANSLOG INDIRECT UTILITY FUNCTION

An advantage of this dual approach over the primal approach of Wales and
Woodland is that it is possible to explicitly state demand equations for each
possible demand regime. This is particularly useful if one is interested in studying
the effects of nonconsumed goods—the demand regime—on the demand for
consumed goods, or how switching occurs in response to changes in prices,
income, or household characteristics. For example, consider the effects of a
change in the price of consumed good i on its own demand:

i}ﬁ_aD,-('fr, 7; 6, £)+ Z am;(0; 6, €) oD;( 7, ¥ 6, s)

dv; v; ; am;

where 7 is the vector of virtual prices of nonconsumed goods. Note that each
nonconsumed good adds a term to adjust the derivative of the unconditional
demand equation for its absence from the demand regime. These terms, which
are readily decomposable analytically, allow one to determine the levels of prices,
income, or household characteristics which just induce the consumption of goods
of interest. In addition it is easier to specify demand, cost, or indirect utility
functions than direct utility functions. In particular, our approach allows for the
use of certain popular flexible functional forms. The advantages of the dual
approach for the analysis of quantity rationing have been emphasized by Deaton
(1981).

To illustrate this approach, consider the translog indirect utility function of
Christensen, Jorgenson, and Lau (1975):

K

(7) H(v;6,e)=Y a;lny;+3 Z ZB,,lnv,lnv+Z & In v,

i=1 i=1j=1 i=
where ¢ is a K-dimensional vector of normal variables N(0, X).> A convenient
normalization is ¥ X, a;=-1 and Y%, ¢ =0.* The notional share equations

3 One can also specify other distributions if they are of interest. Normality is attractive because
of its additive property.

*It is necessary to specify ¥ i, ¢; =0, since, for the homogenous case, ¥, B; =0 so that D=—1
in the share equations (8) and the sum of the shares is unity.
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derived from Roy’s Identity are

a+2ﬂ,}lnv+s,

(8) vq; = = D (i=1,...K),

where D=-1+Y, Y%, B,, In v;. For the regime for which the quantity deman-
ded for one of the goods is zero and positive for all others, i.e., x; =0, x,>
0,...,xx >0, the virtual price m as a function of v,,..., vk, is

K
ln m = _<a1+ Z Blj ln Uj+€1)/311.
j=2
The remaining positive share equations are

B!l gtl)ln Dj+8i_"ﬁ_’€1
Bll 11 11 (i=2,...,K),

zjK=2(BJ ~Ba Z?) In vj—<1+311 P 1) _Z[:—l:sl

where B.; =Y, B, Note from the above equations that ¢; can be expressed as
functions of x; and &,. The switching conditions for this demand regime are

K
€= —(a1+ 2 Byln v,-)

Jj=1

Bix

.——al

+Z] 2<By Bl_r

9) UiX; =

and x;,>0 (i=2,..., K).

Let f (£,) be the density function of &, and g(e,, ..., ex_,| €,) be the conditional
density function, conditional on &,. The Jacobian transformation J;(x, ¢,) from
(e2,...,€x_1) to (x5, ..., Xk_1), which can be derived from (9), is a function of
x and &,. The likelihood function for this demand regime for one observation is

.[ Ji(x, 81)8(52,---,EK—llel)f(f‘?l)dEl

_(al+):jx=151jlnvj)
where ¢; (i=2,..., K —1), are functions of x and &, from (9). For the demand
regime in which the demands for the first two commodities are zero and all
remaining demands are positive, the virtual prices 7; and ,, functions of
vs, ..., Uk, can simply be obtained by matrix inversion as

(ln 771) _ _B_1(¢11+Zjl(=3 BijIn Uj) _B—l(el)
In m, a,+3 /3B In v &2

B = (Bll 312) .
EZI ﬁ22
The remaining positive shares are

a,-+B,~1 ln 7T1+Bi2 ln 7T2+Z]K=3Blj ln vj+€i
—1+B,Inm+B,lnm+Y 58, Iny

where

(10) UX; =
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The €(i=3,..., K), can be expressed (from (10)) as functions of x, ¢, and e,.
The regime switching conditions are

B_l(sl) - _(ln v1> _B_l(a1+ZjK=3 By, In vj)
€5 In v, a,+ Y5 By Iny;)

(-
M2 253

Furthermore, let g(es,..., ex_1| M1, 12) be the conditional density function of
(&3, ..., Ex_1), conditional on 7, and 7,, and f(7,, n,) be the marginal density
of 1; and 7,. The Jacobian transformation J,(x, n;, 7,) from (es,..., ex_;) to

(xs,...,Xk_1) can be derived from (10) and is a function of x and 7,, n,. The
likelihood function for this regime for one observation is

Let

J‘ J- D(x, 1, m2)g(es, .. ., 8K—1|711, 12).f (M1, 2) dny dm,

52 51

<s1) _ _<ln vl) B B_1<a1+ZjK=3 By In vj)
5z In v, a,+Y 55 By In
and &’s are functions of x and #,, 7, derived from (10). The likelihood function
for other regimes can similarly be derived.

Let I;(c) be a dichotomous indicator such that I;(¢) = 1 if the observed consump-
tion pattern for individual i is the demand regime ¢, zero otherwise. Let I.(x;; 0)

denote the likelihood function for regime ¢ for sample i. The likelihood function
for an independent sample with N observations is

L= Hrlil Hc[lc(xi; 0)]11(0)'

The method of maximum likelihood can be applied to the estimation of this model.

where

4. SOME EXTENSIONS AND PROBLEMS

The analysis above has focused on the nonnegativity constraints of the con-
sumer’s problem, but can readily be extended to a wide class of problems involving
kink points in the choice set of consumers or producers. Binding nonnegativity
constraints are just a special case of kink points on the boundary choice set.
Kink points that arise from quantity rationing or increasing block pricing can be
analyzed within the same framework (Lee and Pitt (1984), Deaton (1981), Burtless
and Hausman (1978)).

The empirical implementation of this approach however is troubled by the
computational complexity of maximizing the likelihood function. For example,
in the case of the translog demand system discussed above, estimation would
require numerical integration involving multiple probability distributions. The
problem is somewhat simpler for the case of production. With a translog (or
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other) cost function, the linearity of the derived demand equations allows for
additive and normal errors. Estimation of a translog cost function with three
inputs has been accomplished in Lee and Pitt (1984). Evaluation of multiple
integrals even in the normal case has currently been accomplished only for small
numbers of goods. Computation with many commodities is as difficult as the
multivariate probit model. However, improved computational algorithms, super-
computers, and the possibility of devising functional forms for the stochastic
model with computational ease as a primary attribute, suggest that these methods
may be available for applied research in demand analysis in the future.
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