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Abstract. In this paper, we present the L2-norm stability analysis and error estimates for
the explicit single-step time marching discontinuous Galerkin (DG) method with stage-dependent
flux parameters, when solving a linear constant-coefficient hyperbolic equation in one dimension.
Two well-known examples of this method include the Runge–Kutta DG method with the downwind
treatment for the negative time marching coefficients, as well as the Lax–Wendroff DG method
with arbitrary numerical flux parameters to deal with the auxiliary variables. The stability analysis
framework is an extension and an application of the matrix transferring process based on the temporal
differences of stage solutions, and a new concept, named as the averaged numerical flux parameter,
is proposed to reveal the essential numerical viscosity in the fully discrete status. Distinguished from
the traditional analysis, we have to present a novel way to obtain the optimal error estimate in both
space and time. The main tool is a series of space-time approximation functions for a given spatial
function, which preserve the local structure of the fully discrete schemes and the balance of exact
evolution under the control of the partial differential equation. Finally some numerical experiments
are given to validate the theoretical results proposed in this paper.
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1. Introduction. In this paper we would like to present the L2-norm stability1

analysis and obtain error estimate for the explicit single step time marching discontin-2

uous Galerkin (ESTDG) method. Two well-known examples of this method include3

the RKDG method and the LWDG method, which respectively employ the Runge–4

Kutta time marching [5, 6, 7, 8, 9], and the Lax-Wendroff time marching [13, 22].5

Many applications have shown that these methods are good at solving nonlinear con-6

servation laws, due to good stability, high order accuracy and the ability for capturing7

shocks sharply. For more details, we refer to the review papers [10, 14, 19, 20] and8

the references therein.9

Besides the time marching algorithms, the major concepts in these methods are10

the numerical fluxes in the DG spatial discretization. We remark that, in numerical11

applications, nonlinear limiters are also used to improve the numerical performance12

when shocks appear. However, in this paper we do not consider the limiters and13

only pay attention to the numerical fluxes. In most numerical experiments, numerical14

fluxes are often taken as the same type or with the same parameter at any element15

boundaries and any time stage. However, they are allowed to be changed and this16

strategy is also widely applied. A well-known example is the downwind treatment in17

high order RKDG methods to deal with the negative time marching coefficients [7, 10],18

which ensures the total variation diminishing in the means (TVDM) property (coupled19
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with a suitable limiter) under the strong-stability-preserving (SSP) framework [11]20

such that a good numerical performance might be obtained nearby the shock. This21

treatment is necessary because the Runge-Kutta algorithm for nonlinear problems22

must have negative time marching coefficients to achieve fifth or higher orders of time23

accuracy, or fourth order accuracy with only four stages [12, 16]. We would like to24

mention that the downwind treatment is also used in many high order numerical25

methods with, for instance, the Runge–Kutta algorithms [12, 15, 17, 21] and the26

multistep algorithms [18].27

As far as the authors know, till now there is not any theoretical analysis of the28

ESTDG method with stage-dependent numerical flux functions, even for a simple29

model equation. To fill in this gap, we would like in this paper to consider the linear30

constant-coefficient hyperbolic equation in one dimension31

(1.1) ∂tU + β∂xU = 0, x ∈ I = (0, 1), t > 0,

which is equipped with the initial condition U(x, 0) = U0(x). For simplicity, we take32

the periodic boundary condition and assume β to be a positive constant. In this33

paper, we will carry out the L2-norm stability analysis and establish optimal error34

estimates of the ESTDG method in a unified framework. Different from the special35

case that numerical flux parameters are the same, we have to spend extra effort and36

propose a new strategy to carefully handle the analysis difficulties resulted from the37

perturbation of the numerical flux parameters.38

There are two major difficulties to carry out the L2-norm stability analysis. On39

one hand, it is well known [2] that the DG method coupled with the forward Euler40

time-marching is unstable for any fixed CFL number if the polynomial space is not41

piecewise constant. That is to say, the L2-norm stability of ESTDG methods can not42

be derived under the SSP framework. We have to set up a facilitating energy equation43

to carry out the energy analysis. However, it is hardly accomplished for the high order44

in time fully discrete DG methods. Recently this trouble is systematically settled by45

the technique of matrix transferring process based on the temporal differences of stage46

solutions, which can automatically achieve the expected energy equation step by step.47

This technique has been successfully applied for the RKDG methods when numerical48

flux parameters are the same; see the references [1, 24, 25, 26, 27, 28]. On the other49

hand, in this paper we have to overcome the new difficulty resulting from the stage-50

dependent numerical flux parameters. As a main highlight of this paper, we make an51

extension and an application of the matrix transferring process and put forward an52

important quantity, named as the averaged numerical flux parameter. This quantity53

must be greater than one half and it reveals the overall upwind effect in every step54

time-marching. Further, we point out a strategy to enlarge this quantity by adjusting55

the numerical flux parameters, such that the stability performance of ESTDG methods56

can be improved from the strong stability to the monotonicity stability. For more57

detailed concepts and statements, see Section 3.58

Unfortunately, for the ESTDG method with stage-dependent numerical flux pa-59

rameters, the optimal error estimate becomes difficult, although the suboptimal error60

estimate is trivial by traditional treatments. If the numerical flux parameters are the61

same, this purpose has been achieved for the RKDG methods [25, 29, 30] by virtue of62

the above stability analysis and the generalized Gauss-Radau (GGR) projection with63

a fixed parameter. However, this proof strategy does not work well for the general64

case that numerical flux parameters are changed at different occurrence. The main65

reason is that the element boundary errors at different stages can not been simultane-66

ously eliminated by a fixed GGR projection. To overcome this difficulty, we propose67
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in this paper a new tool, named as a series of space-time approximation functions for68

a given spatial function. They preserve the local structure of the fully discrete scheme69

and the local balance of exact evolution under the rule of the considered differential70

equation. Hence, they are able to provide a group of good reference functions be-71

longing to the finite element space, such that the error accumulation in time of the72

fully discrete scheme is elaborately scattered over the gap between the head function73

and the tail function (the first and the last one in this series). With the help of the74

results and the techniques proposed in the stability analysis, the difficulty to obtain75

the optimal error estimate is shifted to how to prove the optimal estimate to a series76

of space-time approximation functions. From our point of view, this analysis line is77

specifically designed for the fully discrete scheme and thus is remarkably distinguished78

to the traditional analysis line, which is used to start from the semi-discrete scheme79

in either time or space (in most literatures).80

Because a series of space-time approximation functions are not regarded as the81

traditional projection, we are bound to encounter serious difficulties in proving the82

optimal approximation property; see Lemma 4.1. Fortunately, this aim can be accom-83

plished by the aid of those techniques and concepts proposed in the matrix transferring84

process. Here we would like to emphasize that the averaged numerical flux parameter85

plays an important role in the entire analysis. To fully dig out the contribution of86

this quantity, we have to make a deep investigation on the matrix transferring process87

and make more efforts to establish the subtle relationship among the one-step time88

marching and the multistep one. This procedure involves many manipulations of ma-89

trices, including the Kronecker products of matrices. After some tedious and rigorous90

calculations, we discover a hidden zero restriction related to the averaged numerical91

flux parameter; see Proposition 4.1 or the equivalent identity (7.21). In fact, this92

hidden zero restriction is used almost everywhere in this paper. For example, it can93

help us to prove that the concerned submatrix in the multistep spatial matrix is close94

to a symmetric positive definite (SPD) matrix congruent to the Hilbert matrix such95

that the distance is reciprocal to the multistep number; see Lemma 3.4 and its proof96

in the appendix. Besides the above techniques, in this paper we also make use of97

the GGR projection and the flux lifting function (see Subsection 4.2) to complete the98

proof of Lemma 4.1.99

The rest of paper is organized as follows. In Section 2 we describe the ESTDG100

method and then present two well-known examples. In Section 3 we present a frame-101

work to carry out the L2-norm stability analysis, where the averaged numerical flux102

parameter is proposed. Section 4 is devoted to obtaining the optimal error estimate103

in L2-norm, where a series of space-time approximation functions are proposed and104

analyzed. Some numerical experiments are given in Section 5 to verify the theoretical105

results. The concluding remarks and some technical proofs are respectively presented106

in Section 6 and the appendix.107

2. The ESTDG method. In this section we present the detailed definition of108

the ESTDG methods to solve the model equation (1.1) and show two well-known109

examples including the RKDG method and the LWDG method.110

2.1. The semidiscrete DG method. Let J be any positive integer and 0 =111

x1/2 < x3/2 < · · · < xJ−1/2 < xJ+1/2 = 1 be a quasi-uniform partition Ih of the112

spatial interval I. Each element Ij = (xj−1/2, xj+1/2) has the length hj = xj+1/2 −113

xj−1/2 for j = 1, 2, . . . , J , and we denote h = max1≤j≤J hj . Then we define the114
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discontinuous finite element space by115

(2.1) Vh = { v ∈ L2(I) : v|Ij ∈ Pk(Ij), j = 1, 2, . . . , J },

where Pk(Ij) is the polynomial space in Ij of degree at most k ≥ 0. As usual we116

denote by v+ and v− the limits of v from two sides, and denote by117

{{v}}θ = θv− + (1− θ)v+, [[v]] = v+ − v−

the θ-weighted average and the jump at the element boundary, respectively.118

The semidiscrete DG method to solve hyperbolic equation (1.1) is often defined119

as follows: find a map u(t) : [0, T ]→ Vh such that it satisfies120

(2.2)
(
∂tu, v

)
Ih

= Hθ(u, v), ∀ v ∈ Vh, t ∈ (0, T ],

with a well-defined initial solution u(0) ∈ Vh, where Hθ(u, v) is the so-called spatial121

DG discretization in the form122

Hθ(u, v) =
∑

1≤j≤J

∫
Ij

βu∂xvdx︸ ︷︷ ︸
(βu,∂xv)Ih

+
∑

1≤j≤J

β{{u}}θj+ 1
2
[[v]]j+ 1

2︸ ︷︷ ︸
〈β{{u}}θ,[[v]]〉Γh

.
(2.3)

Here θ is called as the numerical flux parameter in this paper, and it is often assumed123

to be independent of time t and greater than 1/2 in order to provide the upwind124

mechanism. In (2.3), the inner product in L2(Ih) and L2(Γh) are respectively denoted125

by (·, ·)Ih and 〈·, ·〉Γh . The associated norms are ‖ · ‖L2(I) = ‖ · ‖L2(Ih) and ‖ · ‖L2(Γh),126

respectively. Here Ih is the partition and Γh denotes all element boundaries.127

The following properties [27] for the DG discretization (2.3) will be used. Let128

u and v be any functions in Vh below. A simple application of integration by parts129

yields the approximating skew-symmetric property130

(2.4a) Hθ(u, v) +Hθ(v, u) = −β(2θ − 1)
〈

[[u]], [[v]]
〉
Γh
,

which implies the nonpositive property (if θ > 1/2)131

(2.4b) Hθ(u, u) = −1

2
β(2θ − 1)‖[[u]]‖2L2(Γh)

,

to explicitly show the numerical viscosity in the spatial discretization. Moreover, we132

also have the weak boundedness property (with bounded parameter θ)133

(2.4c) |Hθ(u, v)| ≤ Cβh−1‖u‖L2(I)‖v‖L2(I),

where the bounding constant C > 0 depends on θ and the inverse constant µ in the134

following inequalities [4, 14]: for any v ∈ Vh there hold135

(2.5) ‖∂xv‖L2(I) ≤ µh−1‖v‖L2(I), ‖v±‖L2(Γh) ≤ µh
− 1

2 ‖v‖L2(I),

where µ > 0 is independent of v and h.136
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2.2. The ESTDG methods. For simplicity, let N > 0 be any positive integer137

and {tn = nτ : 0 ≤ n ≤ N} be a uniform partition of the time interval [0, T ], where138

τ = T/N is the time step. In this paper we would like to seek the numerical solution139

at time level tn, denoted by un ∈ Vh, by employing an explicit single-step algorithm140

to solve the semidiscrete DG method (2.2).141

Suppose that un has been obtained at the current time, we are able to seek un+1
142

at the next time level through s intermediate (or generalized stage) solutions. The143

detailed procedure is often described in the Shu–Osher form as follows:144

1. Let un,0 = un.145

2. For ` = 0, 1, . . . , s−1, successively find the generalized stage solution un,`+1 ∈146

Vh through the variational formula147

(2.6)
(
un,`+1, v

)
Ih

=
∑

0≤κ≤`

[
c`κ

(
un,κ, v

)
Ih

+τd`κHθ`κ(un,κ, v)
]
, ∀ v ∈ Vh.

Here the time-marching parameters, c`κ and d`κ, are inherited from the r-th148

order explicit single-step algorithm. In this paper we demand d`` 6= 0 and149

c`κ ≥ 0 for any ` and κ. Note that s ≥ r in general.150

3. Let un+1 = un,s.151

The initial solution u0 ∈ Vh can be set as any approximation of U0. In this paper we152

define it by the local L2-projection Ph, namely153

(2.7)
(
u0, v

)
Ih

=
(
U0, v

)
Ih
, ∀ v ∈ Vh.

Till now we have completed the definition of the fully discrete method, which is named154

as the ESTDG(s, r, k) method in this paper for convenience.155

We remark again that the numerical flux parameters in (2.6) are allowed to be156

changed at every stage. Compared with the special case that the numerical flux157

parameters are the same [27], the ESTDG methods provide a chance to improve the158

numerical performance by adjusting the numerical flux. To show that, we give two159

well-known examples in what follows.160

Example 2.1. Consider the RKDG(4, 4, k) method with the downwind treatment161

[21] to deal with the negative time-marching coefficients in162

(2.8) {c`κ} =


1

1/2 1/2

1/9 2/9 2/3

0 1/3 1/3 1/3

 , {d`κ} =


1/2

−1/4 1/2

−1/9 −1/3 1

0 1/6 0 1/6

 ,

where ` and κ are taken from {0, 1, 2, 3} in the natural order. To be more general,163

we would like in this paper to take the numerical flux parameters to be as follows: let164

θ`κ > 1/2 if d`κ ≥ 0 and θ`κ < 1/2 otherwise.165

Example 2.2. The LWDG(r, k) method adopts the rth order Lax–Wendroff time166

marching, which has been discussed in [13, 22] for r ≤ 3 with some special numerical167

flux parameters. More specifically, the original definition of the second order LWDG168

method [22] is given in the form169 (
pn, v

)
Ih

= −Hθ00(un, v),(
un+1, v

)
Ih

=
(
un, v

)
Ih

+ τHθ10(un, v)− 1

2
τ2Hθ11(pn, v),

(2.9)
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where θ00 = θ10 = 1 and θ11 is 0 or 1. Here p is the approximation of the auxiliary170

variable β∂xU . Defining the stage solution un,1 = −τpn, we can write (2.9) into the171

ESTDG method.172

Actually, the above statement is true for any r. Namely, the LWDG(r, k) method173

can be understood as an ESTDG(r, r, k) method with the contributory (or nonzero)174

parameters175

(2.10) cr−1,0 = 1; d`` = 1, 0 ≤ ` ≤ r − 2; dr−1,κ =
1

(κ+ 1)!
, 0 ≤ κ ≤ r − 1.

Due to the technical limitation, the numerical flux parameters are required to satisfy176

some conditions in [22], for example, θ00 = θr−1,0 sometimes. In this paper we would177

like to relax the above restrictions and investigate the generalized LWDG method.178

3. Stability analysis. In this section we will analyze the L2-norm stability for179

the ESTDG methods. This analysis framework can be looked upon as an applica-180

tion and an extension of the technique of the matrix transferring process [27] when181

numerical flux parameters are the same.182

3.1. The matrix transferring process. In order to accurately understand183

the stability performance, we have to investigate the scheme for every multistep time-184

marching. For this purpose, we follow [25, 27] and introduce the generalized notations185

for stage solutions. Namely, for any nonnegative integers n, i and j, denote186

(3.1) un,si+j = un+i,j .

Remark that this notational rule has been used in the scheme’s description.187

Let m ≥ 1 be a multistep number. It is evident for the ESTDG(s, r, k) method188

that every m-steps marching with time step τ can be regarded as one-step marching189

of an ESTDG(ms, r, k) method with time step mτ . Namely, for 0 ≤ ` ≤ ms− 1, the190

stage solutions satisfy the following variation formula: for any v ∈ Vh,191

(3.2)
(
un,`+1, v

)
Ih

=
∑

0≤κ≤`

[
c`κ(m)

(
un,κ, v

)
Ih

+mτd`κ(m)Hθ`κ(m)(un,κ, v)
]
.

Let `′ = ` (mod s) and κ′ = κ (mod s). The contributory parameters in (3.2) only192

emerge at those ` and κ satisfying `− `′ = κ− κ′, such that193

(3.3) c`κ(m) = c`′κ′ , d`κ(m) =
1

m
d`′κ′ , θ`κ(m) = θ`′κ′ .

Here `′ and κ′ are both taken from {0, 1, . . . , s− 1}.194

3.1.1. Temporal differences of stage solutions. For 1 ≤ i ≤ ms, we would195

like to follow [27, 25] and define the ith order temporal difference of stage solutions196

in the form197

(3.4) Di(m)un =
∑

0≤j≤i

σij(m)un,j ,

where σij(m) are undetermined combination coefficients independent of stage solu-198

tions. For convenience, we denote D0(m)un = un and σ00(m) = 1 throughout this199

paper.200

The combination coefficients in (3.4) can be inductively defined. Assuming the201

temporal differences of stage solutions up to the ith order have been well defined, we202
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would like to write the next one Di+1(m)un as a linear combination of the previous203

stage marching, independent of the spatial discretization, namely204

(3.5) Di+1(m)un =
∑

0≤`≤i

φi`(m)
[
un,`+1 −

∑
0≤κ≤`

c`κ(m)un,κ
]
,

where φi`(m) are combination coefficients given by the next procedure.205

Let ϑ be any arbitrary fixed constant. Due to (3.2) and (3.5), after a changing of206

summation orders we yield207

(3.6)
(
Di+1(m)un, v

)
Ih

= mτΦi(v) +mτΨi(v),

where

Φi(v) =
∑

0≤κ≤i

∑
κ≤`≤i

φi`(m)d`κ(m)Hϑ(un,κ, v),(3.7a)

Ψi(v) =
∑

0≤κ≤i

∑
κ≤`≤i

φi`(m)d`κ(m)
[
Hθ`κ(m)(un,κ, v)−Hϑ(un,κ, v)

]
.(3.7b)

We first start from the main term (3.7a). Since every diagonal entry dκκ(m) is nonzero,208

the triangular system of linear equations209

(3.8)
∑
κ≤`≤i

φi`(m)d`κ(m) = σiκ(m), κ = 0, 1, . . . , i

uniquely determines φi`(m) for 0 ≤ ` ≤ i. Substituting this into (3.7a), we can achieve210

the same expression as that in [25]211

(3.9) Φi(v) = Hϑ(Di(m)un, v).

At this moment, by (3.5) and (3.4) we are able to define212

(3.10a) σi+1,κ(m) = φi,κ−1(m)−
∑
κ≤`≤i

φi,`(m)c`κ(m), κ = 0, 1, . . . , i,

with the supplemental notation φi,−1(m) = 0, and213

(3.10b) σi+1,i+1(m) = φii(m) =
σii(m)

dii(m)
6= 0.

By these data we now get the definition of Di+1(m)un. Note that the above manipu-214

lations do not depend on the numerical flux parameters, hence the above σij(m) are215

the same as those in [25].216

Next we turn to the perturbation term (3.7b), which is equal to zero if θ`κ ≡ ϑ.217

We can uniquely determine qi`(m;ϑ), for 0 ≤ ` ≤ i, by the triangular system of linear218

equations219

(3.11)
∑
κ≤`≤i

qi`(m;ϑ)σ`κ(m) = −
∑
κ≤`≤i

φi`(m)d`κ(m)(ϑ− θ`κ(m)), κ = 0, 1, . . . , i,

because every diagonal entry is nonzero, due to (3.10b). Since a simple manipulation220

gives221

Hθ(w, v)−Hϑ(w, v) = β(ϑ− θ)〈[[w]], [[v]]〉Γh ,
7



by substituting (3.11) into (3.7b) and changing the summary order, we can deduce222

Ψi(v) = β
∑

0≤κ≤i

∑
κ≤`≤i

φi`(m)d`κ(m)(ϑ− θ`κ(m))
〈

[[un,κ]], [[v]]
〉
Γh

= − β
∑

0≤κ≤i

∑
κ≤`≤i

qi`(m;ϑ)σ`κ(m)
〈

[[un,κ]], [[v]]
〉
Γh

= − β
∑

0≤`≤i

qi`(m;ϑ)
〈

[[D`(m)un]], [[v]]
〉
Γh
,

(3.12)

where (3.4) is used also at the last step. Substituting (3.9) and (3.12) into (3.6), we223

eventually achieve the relationship among the temporal differences of stage solutions:224

for any v ∈ Vh, there holds225

(3.13)(
Di+1(m)un, v

)
Ih

= mτHϑ(Di(m)un, v)−mτβ
∑

0≤`≤i

qi`(m;ϑ)
〈

[[D`(m)un]], [[v]]
〉
Γh
.

This formula obviously degenerates to that in [27] if θ`κ ≡ ϑ, since qi`(m;ϑ) = 0 now.226

It is worthy to mention again that the right hand side of (3.13) is independent of227

the choice of ϑ. To show that, we would like to denote228

(3.14) q̃i`(m;ϑ) = qi`(m;ϑ) + δi`ϑ,

where δi` is a Kronecker symbol, being 1 if i = ` and otherwise 0. In fact, these229

quantities satisfy the triangular system of linear equations230 ∑
κ≤`≤i

q̃i`(m;ϑ)σ`κ(m) =
∑
κ≤`≤i

φi`(m)d`κ(m)θ`κ(m), κ = 0, 1, . . . i,

due to (3.11) and (3.8). Hence q̃i`(m;ϑ) is independent of ϑ and is therefore denoted231

by q̃i`(m) in this paper. With this notation, we can write (3.13) into an equivalent232

form233

(3.15)(
Di+1(m)un, v

)
Ih

= mτH0(Di(m)un, v)−mτβ
∑

0≤`≤i

q̃i`(m)
〈

[[D`(m)un]], [[v]]
〉
Γh
,

which shows its independence of ϑ.234

3.1.2. Derivation of energy equations. After all the temporal differences of235

stage solutions have been defined by (3.4), the inversion manipulation yields the linear236

equivalence of two function sequences {un,0, un,1, . . . , un,ms} and {D0(m)un,D1(m)un,237

. . . ,Dms(m)un}. Specially, there holds the evolution identity238

(3.16) un+m =
∑

0≤i≤ms

αi(m)Di(m)un,

where the evolution coefficient αi(m) only depends on the time-marching coefficients,239

c`κ and d`κ. The detailed relationship will be discussed in the appendix.240

Remark 3.1. In [25, 27], we have written (3.16) in the form241

α0(m)un+m =
∑

0≤i≤ms

αi(m)Di(m)un,

where α0(m) > 0 is introduced only for scaling. In this paper we always take α0(m) =242

1 for convenience.243
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It is proved in [24, Lemma 2.2] that244

(3.17) α`(m) = 1/`!, 0 ≤ ` ≤ r,

which will be frequently used, especially for ` = 0, 1.245

Along the same line as that in the previous works [24, 27], we can carry out the246

matrix transferring process to automatically achieve a perfect energy equation for the247

considered ESTDG method, through a sequence of energy equations248

(3.18) ‖un+m‖2L2(I) − ‖u
n‖2L2(I) = TM(`;m) + SP(`;m).

Here ` ≥ 0 stands for the sequence number, and

TM(`;m) =
∑

0≤i≤ms

∑
0≤j≤ms

a
(`)
ij (m)

(
Di(m)un,Dj(m)un

)
Ih
,(3.19a)

SP(`;m) = −mτβ
∑

0≤i≤ms

∑
0≤j≤ms

b
(`)
ij (m)

〈
[[Di(m)un]], [[Dj(m)un]]

〉
Γh
,(3.19b)

respectively express the temporal information and spatial information. For conve-249

nience, we abbreviate (3.19) by two symmetric matrices250

(3.20) A(`)(m) = {a(`)ij (m)}0≤i,j≤ms, B(`)(m) = {b(`)ij (m)}0≤i,j≤ms.

For ` = 0, the initial energy equation can be derived from the evolution identity251

(3.16) by squaring and integrating. It deduces the initial matrices with252

(3.21) a
(0)
ij (m) =

{
0, i = j = 0,

αi(m)αj(m), otherwise;
and b

(0)
ij (m) = 0.

This energy equation does not reflect any contribution of the spatial discretization.253

For this reason, we transfer the temporal information into the spatial information step254

by step, in order to look for more contribution of the spatial information in each step.255

In this process, the major object is the joint of two temporal information terms256

(3.22) J (i, j) =
(
Di+1(m)un,Dj(m)un

)
Ih

+
(
Di(m)un,Dj+1(m)un

)
Ih
,

which satisfies the following lemma.257

Lemma 3.1. For 0 ≤ i, j ≤ ms− 1, there holds258

(3.23) J (i, j) = −mτβ
[
− P(i, j) +

∑
0≤i′≤i

q̃ii′(m)P(i′, j) +
∑

0≤j′≤j

q̃jj′(m)P(i, j′)
]
,

where P(i′, j′) = 〈[[Di′(m)un]], [[Dj′(m)un]]〉Γh is the essential ingredient of the spatial259

information.260

Proof. This lemma follows from (3.15) and (2.4a).261

Remark 3.2. For θ`κ ≡ θ, it is easy to see q`κ(m; θ) = 0 and262

J (i, j) = −mτβ(2θ − 1)P(i, j),

from the above lemma. This result is the same as that in [27].263
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Below we are going to describe the detailed transform in each step. By induction,264

assume for ` ≥ 1 that we have obtained two matrices265

A(`−1) =


O O O · · ·

O a
(`−1)
`−1,`−1 a

(`−1)
`−1,` · · ·

O a
(`−1)
`,`−1 a

(`−1)
`−1,`−1 · · ·

...
...

...
. . .

 , B(`−1) =


? ? ? · · ·

? b
(`−1)
`−1,`−1 b

(`−1)
`−1,` · · ·

? b
(`−1)
`,`−1 0 · · ·

...
...

...
. . .

 ,

where O remarks the zero block and ? remarks the transformed (nonzero) region.266

Here and below (m) is dropped for convenience unless otherwise stated.267

The next action depends on the leading element a
(`−1)
`−1,`−1 in the temporal matrix.268

If it is equal to zero, we carry out the `-th step transform. Associated with the269

temporal matrix A(`−1)(m), we successively eliminate every entry at the (` − 1)-th270

row and column by transforming the related joint of temporal information (i.e., those271

entries at the `-th row and column) into spatial information. This purpose can be272

achieved by an application of Lemma 3.1.273

More specifically, the new temporal matrix is denoted by A(`)(m), whose entries274

at the lower triangular region are defined as275

(3.24) a
(`)
ij =



0, `− 1 ≤ i ≤ ms and j = `− 1,

a
(`−1)
ij − 2a

(`−1)
i+1,j−1, i = ` and j = `,

a
(`−1)
ij − a(`−1)i+1,j−1, `+ 1 ≤ i ≤ ms− 1 and j = `,

a
(`−1)
ij , otherwise.

Since A(`)(m) is symmetric, the upper triangular entry is easily filled in. We re-276

mark that the only difference between the second line and the third line results from277

whether the basic elimination (with respect to one entry) along the row and column278

is superimposed on the same position.279

The above operation is accompanied by the changing of the spatial matrix. For280

each basic elimination, the modified entries spread over at one row and column, due281

to Lemma 3.1. As a result, it is hard to present a short unified formulas for calcu-282

lating each entry of B(`)(m). However, this manipulation process can be conveniently283

expressed in the pseudo-code and summarized as Algorithm 1.284

Algorithm 1. Generate the spatial matrix B(`) = {b(`)ij } for the given `.

Step 1. Initialization: set gij = 0 for any 0 ≤ i, j ≤ ms;
Step 2. Modification: for κ = `− 1, . . . ,ms− 1, do

if κ = `− 1 then let ν = 1/2; otherwise, ν = 1;

compute gκ,`−1 ← gκ,`−1 − νa(`−1)κ+1,`−1;

compute gi,`−1 ← gi,`−1 + νa
(`−1)
κ+1,`−1q̃κ,i for i = 0, . . . , κ;

compute gκ,j ← gκ,j + νa
(`−1)
κ+1,`−1q̃`−1,j for j = 0, . . . , `− 1;

Step 3. Generation: define b
(`)
ij = b

(`−1)
ij + gij + gji for 0 ≤ i, j ≤ ms.

285

Otherwise, if a
(`−1)
`−1,`−1 is not equal to zero, we stop the entire transform process and286

name this entry as the central objective. At the same time, we output the termination287
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index of time marching288

(3.25) ζ(m) = `− 1,

as well as the ultimate temporal matrix A(m) = A(ζ(m))(m) and the ultimate spatial289

matrix B(m) = B(ζ(m))(m).290

Till now we have completed the description of the matrix transferring process.291

3.1.3. Some important quantities. Since the ultimate temporal matrix A(m)292

solely depends on the time marching coefficients, we have the same conclusions as293

those in [24].294

Lemma 3.2. For m ≥ 1, the termination index of time marching satisfies ζ(m) =295

ζ, and moreover, the central objective aζζ(m) preserves the sign.296

The ultimate spatial matrix B(m) depends on not only the time marching but297

also the numerical flux parameters. Motivated by the previous work [27], it is also298

important to find the largest order of the sequential principal submatrix to be SPD.299

In this paper, this quantity300

(3.26) ρ(m) = max
{
κ : 1 ≤ κ ≤ ζ and {bij(m)}0≤i,j≤κ−1 is SPD

}
is also named as the contribution index of the spatial discretization. If b00(m) ≤ 0,301

we define ρ(m) = 0 as a supplement.302

From the practical viewpoint, we would like in this paper to assume we always303

have ρ(m) ≥ 1. This assumption is equivalent to that the averaged numerical flux304

parameter for every m-step time marching305

(3.27) Θ(m) ≡ 1

2

[
b00(m) + 1

]
is always greater than 1/2. From Algorithm 1, it is easy to see that306

b00(m) ≡ b(1)00 (m) = −a(0)10 (m) +
∑

0≤`≤ms−1

2a
(0)
`+1,0(m)q̃`,0(m),

which is determined at the first step of the matrix transferring process. Noticing307

(3.21) and α1(m) = 1, it follows from (3.27) that308

(3.28) Θ(m) =
∑

0≤`≤ms−1

α`+1(m)q̃`,0(m).

If all the numerical flux parameters are the same, i.e., θ`κ = θ, it is easy to get309

Θ(m) = θ for all m ≥ 1. Actually, this property for the special case can be generalized310

to variant numerical flux parameters.311

Lemma 3.3. Θ(m) is independent of m, and is therefore denoted by Θ in this312

paper.313

We postpone the proof of this lemma to the appendix, since it shares many314

materials in the proof of the next lemma.315

Lemma 3.4. If Θ > 1/2, then there exists an m? ≥ 1 such that ρ(m) = ζ for316

m ≥ m?.317
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The proof line is the same as that for the special case that the numerical flux318

parameters are fixed [24]. However, the detailed process involves many matrix ma-319

nipulation and looks more lengthy and technical. Hence we also postpone the proof320

of this lemma to the appendix.321

Owing to Lemma 3.3, we name Θ as the averaged numerical flux parameter of322

the ESTDG method. We think that this quantity gives a more accurate description323

on the numerical viscosity for the fully discrete method. We would like to mention324

again that the assumption throughout this paper325

Θ > 1/2

means the upwind mechanism, at least in the average sense. This assumption will326

play an important role in the whole analysis of this paper.327

In terms of the commonly accepted concept that the greater numerical viscosity328

ensures the better stability performance, we want to enlarge Θ to improve the stability329

performance of the ESTDG methods. This can be implemented by using the following330

two propositions, whose proofs will be given in the appendix.331

Proposition 3.1. As a linear function of the numerical flux parameters, Θ is332

monotonically increasing with respect to θ`κ if d`κ > 0 and monotonically decreasing333

otherwise.334

For the RKDG method, the averaged numerical flux parameter often depends on335

every numerical flux parameter. For example, the RKDG(4, 4, k) method (2.8) has336

Θ =
37

108
θ00 −

5

36
θ10 +

5

18
θ11 −

1

27
θ20 −

1

9
θ21 +

1

3
θ22 +

1

6
θ31 +

1

6
θ33.

However, it is a little different for the LWDG method.337

Proposition 3.2. For the LWDG(r, k) method we always have Θ = θr−1,0.338

Together with Θ > 1/2, Proposition 3.2 gives a theoretical support to the upwind339

requirement θr−1,0 > 1/2 for the LWDG method, which has been implicitly stressed340

in [13, 22]. This proposition also shows that only this term must be discretized with341

the upwind mechanism, and the other terms can be arbitrarily done.342

3.2. Energy analysis and main conclusions. By the matrix transferring343

process, we obtain the final energy equation (3.18) with ` = ζ, as well as the cen-344

tral objective and the contribution index of the spatial discretization. By the energy345

analysis, we are able to conclude the L2-norm stability performance along the same346

line as that in [27].347

The stage-dependent numerical flux parameters do not cause any essential diffi-348

culty in the stability analysis, since the increment every m steps is still bounded in349

the form350

(3.29) ‖un+m‖2L2(I) − ‖u
n‖2L2(I) ≤ a

(ζ)
ζζ (m)‖Dζ(m)un‖2L2(I) + ∆1 + ∆2 + ∆3,

where

∆1 = − ε?(m)mτβ
∑

0≤`<ρ(m)

‖[[D`(m)un]]‖2L2(Γh)
,

∆2 = C(m)
∑

i,j≥ζ except i=j=ζ

∣∣∣(Di(m)un,Dj(m)un
)
Ih

∣∣∣,
∆3 = C(m)

∑
max(i,j)≥ρ(m)

τ
∣∣∣〈[[Di(m)un]], [[Dj(m)un]]

〉
Γh

∣∣∣,
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with ε?(m) being the smallest eigenvalue of the SPD submatrix {bij(m)}0≤i,j≤ρ(m)−1.351

All terms in ∆2 and ∆3 (using the inverse inequality) can be easily controlled by the352

relationship353

‖Di+1(m)un‖L2(I) ≤ Cλ‖Di(m)un‖L2(I) + C(τβλ)
1
2

∑
0≤`≤i

‖[[D`(m)un]]‖L2(Γh),

which is gotten by taking v = Di+1(m)un in (3.13) and using (2.4c). Here λ = |β|τ/h354

is the CFL number and the last sum on the right hand side originates from the per-355

turbation of the numerical flux parameters. This sum causes the only difference that356

we must encounter some terms involved the jumps of lower order temporal differences357

in order to bound each term in ∆2 and ∆3; however, they are still well controlled358

with the help of ∆1. Hence the final stability results are the same just like before, if359

they are not specified for the detailed scheme. We would like to assert them without360

proofs, in order to shorten the length of this paper.361

The next theorem is easily obtained by Lemma 3.4 and the rough estimate362

‖un+m‖2L2(I) ≤
[
1 + Cλmin(2ζ,2ρ(m)+1)

]
‖un‖2L2(I),

due to the above two inequalities together with the inverse inequality. This result363

does not consider the effect of the sign of the central objective.364

Theorem 3.1. The ESTDG method (2.6) has the weak(2ζ) stability. Namely,365

for sufficiently small h, there holds366

(3.30) ‖un‖L2(I) ≤ C‖u0‖L2(I), n ≥ 0,

under a stronger temporal-spatial condition τ ≤ Mh
2ζ

2ζ−1 for sufficiently small h.367

Here M is any given positive constant, and the bounding constant C = C(T,M) is368

independent of n, h and τ .369

We would like to pay more attention on the stability results under suitable CFL370

conditions. To do that, we introduce an important quantity371

(3.31) n? = min
{
m : ρ(m) = ρ(m+ 1) = · · · = ρ(2m− 1) = ζ

}
,

which satisfies n? ≤ m? due to Lemma 3.4. Note that the negative central objective372

plays a pivotal role in the next theorem.373

Theorem 3.2. If the central objective keeps negative, the method (2.6) has the374

strong(n?) stability for k ≥ 0, namely, there exists a maximal CFL number λmax > 0375

such that376

(3.32) ‖un‖L2(I) ≤ ‖u0‖L2(I), n ≥ n?,

holds under the CFL condition λ ≤ λmax. Furthermore, if n? = 1 is allowed, the377

method actually has the monotonicity stability, since378

(3.33) ‖un+1‖L2(I) ≤ ‖un‖L2(I), n ≥ 0.

Along the same line as that in [24, 27], we can similarly obtain a nice control379

among the temporal differences of stage solutions, for instance380

‖Di+1(m)un‖L2(I) ≤ C‖(mτβ∂x)Di(m)un‖L2(I) + C(τβλ)
1
2

∑
0≤`≤i

‖[[D`(m)un]]‖L2(Γh).
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The derivative operation on the right hand side helps us to enhance the stability381

performance for piecewise polynomials of lower degree. The related conclusions are382

stated in the next theorem.383

Theorem 3.3. The method (2.6) has the strong(n?) stability for k < ζ, if the384

central objective keeps positive. The method has the monotonicity stability for k < ρ(1)385

no matter whether the central objective is positive or negative.386

From the last two theorems we are happy to find out an opportunity to enlarge387

the contribution index of spatial discretization so that the strong stability is improved388

to the monotonicity stability, by means of suitably adjusting the numerical flux pa-389

rameters. In the next subsections we give some examples to show that.390

3.2.1. The RKDG method. Consider the RKDG(4, 4, k) method proposed in391

Example 2.1. As an example, the numerical flux parameters are defined as392

(3.34)
{
θ`κ −

1

2

}
= ε


1

−1 1

−1 −y 1

1 1

 ,

where ε and y are two positive constants. Three negative entries in the right matrix393

correspond to the so-called downwind treatment.394

We begin the stability analysis with m = 1. The temporal differences of stage395

solutions are defined as396

{σij(1)} =



1

−2 2

0 −4 4

4 0 −8 4

8 0 −16 −16 24


, 0 ≤ i, j ≤ 4,

and the numerical flux parameters lead to397

{
q̃ij(1)− 1

2
δij

}
= ε


1

2 1

−4/9 + 4y/3 2/3 + 2y/3 1

−100/9− 8y/3 −4/3− 4y/3 0 1

 , 0 ≤ i, j ≤ 3.

The matrix transferring process gives two matrices. The first one is the ultimate398

temporal matrix399

A(1) =


O3

−1/72 1/144

1/144 1/576

 ,

where O3 is third order zero matrix. This matrix implies that the termination index400

of time marching is ζ = 3 and the central objective satisfies aζζ(1) = −1/72 < 0. The401
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second one is the ultimate spatial matrix402

B(1) = ε



2y/9 + 79/27 y/9 + 65/54 1/3 y/36 + 17/108 0

y/9 + 65/54 y/18 + 13/18 1/4 y/72 + 7/72 0

1/3 1/4 1/12 1/24 0

y/36 + 17/108 y/72 + 7/72 1/24 0 0

0 0 0 0 0


,

of which the first three leading principle determinants are403

(3.35) ε
(2y

9
+

79

27

)
, ε2

( y
18

+
1937

2916

)
, ε3

( y

324
− 125

17496

)
.

For y > 125/54, these three quantities are all positive and hence ρ(1) = 3 = ζ. Now404

we can claim the monotonicity stability for k ≥ 0 by Theorem 3.2.405

For y < 125/54, the stability performance becomes weaker. To show that, we take406

y = 1 as an example and thus θ21 becomes bigger. From the first quantity in (3.35),407

we know that the averaged numerical flux parameter indeed satisfies Proposition 3.1.408

In this case, only the first two quantities in (3.35) are positive, and thus ρ(1) = 2409

becomes smaller as we have predicted in the theory. A series of matrix transform410

process for multisteps time-marching yields ρ(2) = ρ(3) = 3 = ζ. By Theorems411

3.2 and 3.3 we can claim the strong(2) stability for any k ≥ 0 and can not claim412

the monotonicity stability for k ≥ 2. This statement looks a little weaker than the413

previous case, however, its sharpness will be shown in the numerical experiments.414

3.2.2. The LWDG method. We now turn to the LWDG(r, k) method with415

r ≤ 5; see Example 2.2. For simplicity, numerical flux parameters are taken to416

be 1/2 ± ε, where ε is a positive constant. Due to Proposition 3.2, we must set417

θr−1,0 = 1/2 + ε for all cases.418

Take the second order (r = 2) LWDG method as an example. By the matrix419

transferring process we can obtain420

{σij(1)}0≤i,j≤2 =


1

0 1

−2 −2 2

 and A(1) =


0

0

1/4

 ,

and get ζ = 2 and aζζ(1) = 1/4. Due to Theorem 3.1, we claim that this method has421

at least the weak(4) stability for k ≥ 0.422

Due to Theorem 3.3, we can get the strong stability for lower degree k. For every423

combination of θ00 and θ11, we may achieve different value of n? by calculating the424

contribution index of spatial discretization as m increases. The detailed conclusions425

are listed as follows.426

• Let θ00 = θ11 = 1/2 + ε. We get ρ(1) = 2 = ζ, since427

{q̃ij(1)}0≤i,j≤1 =

1/2 + ε

1/2 + ε

 , {bij(1)}0≤i,j≤1 = ε

2 1

1 1

 .

Hence we conclude the monotonicity stability for k ≤ 1.428
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• Let θ00 = 1/2 + ε and θ11 = 1/2− ε. Let m = 1 and we get

{q̃ij(1)}0≤i,j≤1 =

1/2 + ε

1/2− ε

 , {bij(1)}0≤i,j≤1 = ε

2 0

0 −1

 ,

which implies ρ(1) = 1 and hence the monotonicity stability for k = 0. By429

carrying out the matrix transferring process for increasing multistep, we have430

ρ(3) = ρ(4) = ρ(5) = 2 = ζ and then conclude the strong(3) stability for431

k ≤ 1.432

• The other cases can be studied similarly.433

The stability results for the LWDG(2, k) method are gathered in Table 3.1, where ±434

stands for 1/2± ε here and below.435

Table 3.1
Stability results for the LWDG(2, k) methods.

parameters n?: strong(n?) stability

θ00 θ10 θ11 k ≥ 2 k = 1 k = 0

+ + +

weak(4)

1

1
+ + − 3

− + + 3

− + − 4

For r = 3 and 4, we are able to similarly find ζ = r − 1 and the central objective436

is negative. Hence we can claim the strong stability for k ≥ 0, due to Theorem 3.2.437

The detailed results are collected in Tables 3.2 and 3.3.438

Table 3.2
Stability conclusions for the LWDG(3, k) method.

parameters n?: strong(n?) stability

θ00 θ11 θ20 θ21 θ22 k ≥ 1 k = 0

+ ± + + ± 1

1

+ − + − ± 3

− − + ± ± 3

+ + + − ± 4

− + + ± ± 4

For r = 5, we get ζ = 3 and the central objective is positive, which implies the439

strong stability for k ≤ 2 due to Theorem 3.3 and the weak(6) stability for k ≥ 3 due440

to Theorem 3.1. The detailed results are collected in Table 3.4.441

Remark 3.3. In the above four tables, the first row gives the numerical flux pa-442

rameters to ensure the monotonicity stability for some k. For r 6= 4, it is acceptable to443

take θ`κ ≡ 1/2 + ε for any ` and κ. However, for r = 4, we have to take θ22 = 1/2− ε444

and take the others to be θ`κ ≡ 1/2 + ε.445

Remark 3.4. The LWDG(2, 1) method with θ00 = θ10 = 1 and θ11 = 0 (taking446

the second row in Table 3.1 with ε = 1/2) has been studied in [22], where the authors447
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Table 3.3
Stability conclusions for the LWDG(4, k) method.

parameters n?: strong(n?) stability

θ00 θ11 θ22 θ30 θ31 θ32 θ33 k ≥ 2 k = 1 k = 0

+ + − + + + ± 1 1

1

+ ± + + + + ± 2 1

+ − − + + ± ± 2 1

+ + ± + + − ± 3 1

+ − + + + − ± 3 1

+ − ± + − + ± 5 3

+ − ± + − − ± 6 3

− − ± + + ± ± 6 3

− − ± + − ± ± 7 3

+ + ± + − ± ± 7 3

− + ± + + ± ± 7 3

− + ± + − ± ± 8 4

Table 3.4
Stability results for the LWDG(5, k) method.

parameters n?: strong(n?) stability

θ00 θ11 θ22 θ33 θ40 θ41 θ42 θ43 θ44 k ≥ 3 k = 2 k = 1 k = 0

+ + ± ± + + + ± ±

weak(6)

1 1

1

+ − − ± + + ± ± ± 2 1

+ − + ± + + + ± ± 2 1

+ − + ± + + − ± ± 3 1

+ + ± ± + + − ± ± 3 1

+ − ± ± + − + ± ± 5 3

+ − ± ± + − − ± ± 6 3

− − ± ± + + ± ± ± 6 3

+ ± ± ± + − ± ± ± 7 3

− + ± ± + + ± ± ± 7 3

− + ± ± + − ± ± ± 8 4

gave the stability result (un,1 = −τpn)448

‖un‖2L2(I) + ‖un,1‖2L2(I) ≤ ‖u0‖
2
L2(I) + ‖u0,1‖2L2(I),

which implies ‖un‖L2(I) ≤ C‖u0‖L2(I) with a constant C > 1. In this paper we claim449

the strong(3) stability and then get ‖un‖L2(I) ≤ ‖u0‖L2(I) for n ≥ 3.450

So does for the LWDG(3,k) method [22] when the numerical flux parameters are451

taken from the second row in Table 3.2 with ε = 1/2.452

4. Optimal error estimate. In this section we are devoted to obtain the opti-453

mal L2-norm error estimate for the ESTDG method, which is stated in the following454

theorem.455
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Theorem 4.1. For the ESTDG(s, r, k) method (2.6) with the averaged numerical456

flux parameter Θ > 1/2, we have the optimal error estimate457

(4.1) ‖uN − U(tN )‖L2(I) ≤ C‖U0‖H\+1(I)(h
k+1 + τ r),

under the same type of temporal-spatial condition to ensure the L2-norm stability, as458

stated in Theorems 3.1 through 3.3. Here \ = max(k+1, r) and the bounding constant459

C > 0 is independent of h, τ and U0.460

For the special case that the numerical flux parameters are the same, this theorem461

has been proved in [25] for the fourth order in time RKDG method. Besides the above462

stability analysis, the major techniques to prove this theorem are the standard GGR463

projection with a fixed parameter and the good definition of the reference functions464

which are related to the local time marching of the exact solutions. However, this465

strategy does not work well for the ESTDG method with stage-dependent numerical466

flux parameters, because the GGR projection with the fixed parameter can not si-467

multaneously eliminate the projection error at boundary endpoints and different time468

stage. We have to find a new approach to prove this theorem and obtain the optimal469

error estimate in both space and time.470

4.1. Proof of Theorem 4.1. In this paper we propose a new analysis tool,471

named as a series of space-time approximation functions for any given spatial function,472

in order to set up a group of good reference functions and delicately define the stage473

errors for the fully discrete scheme. All approximation functions belong to the finite474

element space and are endowed with two properties. They perfectly match the local475

structure of the fully discrete method, and preserve the balance of the exact evolution476

under the control of the partial differential equation (PDE).477

Definition 4.1. Let W (x) ∈ L2(I) be a given periodic function. Associated with478

the fully discrete ESTDG(s, r, k) method of the time step τ > 0 and the finite element479

space Vh, there exists a series of space-time approximation functions, denoted by480

W `
h = Q`h,τW (x) ∈ Vh, ` = 0, 1, . . . , s,

such that the following conditions hold:481

• Preserving the local structure of the fully discrete scheme, namely482

(4.2a)(
W `+1
h , v

)
Ih

=
∑

0≤κ≤`

[
c`κ

(
Wκ
h , v

)
Ih

+ τd`κHθ`κ
(
Wκ
h , v

)]
, ∀ v ∈ Vh,

holds for 0 ≤ ` ≤ s− 1;483

• Preserving the balance of the exact evolution under the control of (1.1),484

namely485

(4.2b)
(
W s
h −W 0

h , v
)
Ih

=
(
W (x− τβ)−W (x), v

)
Ih
, ∀ v ∈ V ?h .

Here V ?h =
{
v ∈ Vh : (v, 1)Ih = 0

}
is the orthogonal complementary space of486

span{1};487

• Conserving the overall mean for the head function W 0
h , namely488

(4.2c)
(
W 0
h , 1
)
Ih

=
(
W (x), 1

)
Ih
.
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Note that the last one W s
h is named as the tail function.489

In what follows we give some remarks to this definition. First of all, we point490

out that condition (4.2a) can be well understood by making full use of those concepts491

proposed in the matrix transferring process, for instance, the temporal differences of492

stage solutions and the associated evolution equation. That is to say, we have493

(4.3) W s
h =

∑
0≤`≤s

α`D`Wh with D`Wh =
∑

0≤κ≤`

σ`κW
κ
h ,

where α` = α`(1) and σ`κ = σ`κ(1) have been defined in (3.16) and (3.4), respectively.494

Analogously, we also have for 0 ≤ ` ≤ s− 1 that495

(4.4)
(
D`+1Wh, v

)
Ih

= τHϑ(D`Wh, v)− τβ
∑

0≤κ≤`

q`,κ(ϑ)
〈

[[DκWh]], [[v]]
〉
Γh
, v ∈ Vh,

where q`,κ(ϑ) = q`,κ(1;ϑ) has been defined in (3.11). Since Hϑ(D`Wh, 1) = 0, by496

taking v = 1 in (4.4) we can inductively derive that497

(4.5)
(
D`Wh, 1

)
Ih

= 0, ` ≥ 1.

Together with (4.3), this equality yields (W s
h −W 0

h , 1)Ih = 0. Due to the periodic498

boundary condition, we also have (W (x− τβ)−W (x), 1)Ih = 0. Consequently, con-499

dition (4.2b) can be extended to the whole finite element space, i.e.,500

(4.6)
(
W s
h −W 0

h , v
)
Ih

=
(
W (x− τβ)−W (x), v

)
Ih
, ∀ v ∈ Vh.

In the other words, condition (4.2c) ensures the uniqueness if the definition is made501

up of (4.2a) and (4.6).502

It is worthy to emphasize that any space-time approximation function in Defini-503

tion 4.1 is not a projection, even when the numerical flux parameters are the same.504

Below we give an example to show that. Let Ih be a given uniform mesh, and consider505

the function506

W (x) =
∑

1≤j≤J

Lj,1(x) ∈ Vh,

where Lj,1(x) = (2x − xj−1/2 − xj+1/2)/h is the linear Legendre polynomial in Ij507

(with zero extension). Associated with the classical second order RKDG method [27]508

with θ`κ ≡ 1, we can yield the head function (with λ = |β|τ/h)509

W 0
h =

λ− 1

3λ− 1
W 6= W.

This distinct property is bound to cause difficulties in obtaining the following lemma510

with respect to the approximation property.511

Lemma 4.1. For sufficiently small λ = |β|τ/h, a series of the space-time approx-512

imation functions associated with the ESTDG(s, r, k) method are well defined, and513

further, if514

W (x) ∈ Hmax(k+1,r+1)(I),

the head function W 0
h satisfies the optimal error estimate515

(4.7) ‖W 0
h −W‖L2(I) ≤ C

[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
.

Here \ = max(k + 1, r) has been given in Theorem 4.1, and the bounding constant516

C > 0 is independent of h, τ and W .517
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For ease of reading, we postpone the lengthy and technical proof of this lemma518

to the next subsection and come back to prove Theorem 4.1 now. For any n ≤ N , we519

can utilize Definition 4.1 and define a series of space-time approximation functions520

(4.8) χn,` = Q`h,τU(x, tn) ∈ Vh, ` = 0, 1, . . . , s.

We remark that χn+1,0 6= χn,s in general, and the accumulation of these gaps at every521

time level forms the main error of the ESTDG method.522

The reference functions are defined by those functions in (4.8) except ` = s. For523

any n, denote the stage errors in the finite element space by524

(4.9a) ξn,` = un,` − χn,`, ` = 0, 1, . . . , s− 1,

and give a supplementary definition525

(4.9b) ξn,s = ξn+1,0 = ξn+1.

Obviously, every χn,` in (4.8) satisfies the variation form (4.2a) with W `
h = χn,`.526

Subtracting them from the fully discrete method with the same n and `, we obtain a527

series of error equations. Namely, for ` = 0, 1, . . . , s− 1, there holds528 (
ξn,`+1, v

)
Ih

=
∑

0≤κ≤`

[
c`κ

(
ξn,κ, v

)
Ih

+ τd`κHθ`κ(ξn,κ, v)
]

+ τ
(
Fn,`, v

)
Ih
, v ∈ Vh,

where the source term Fn,` is equal to zero except the last one529

(4.10) Fn,s−1 =
1

τ
(χn,s − χn+1,0).

The above error equations have the same form as those in the nonhomogeneous530

ESTDG method. Along the similar line as in Section 3, we can get531

(4.11) ‖ξN‖2L2(I) ≤ C
[
‖ξ0‖2L2(I) +

∑
0≤n<N

‖Fn,s−1‖2L2(I)τ
]
,

under the same type of temporal-spatial condition as stated in Theorems 3.1 through532

3.3, where the bounding constant C > 0 is independent of h and τ , but may depend533

on the final time T .534

It is easy to estimate each term on the right hand side of (4.11). It follows from535

the initial setting that ξ0 = PhU0−Q0
h,τU0. By using the triangle inequality, we have536

‖ξ0‖L2(I) ≤ ‖U0 − PhU0‖L2(I) + ‖U0 −Q0
h,τU0‖L2(I)

≤ C
[
hk+1‖U0‖H\(I) + τ r‖U0‖Hr(I)

]
,

(4.12)

where the well-known approximation property of Ph and Lemma 4.1 are used sepa-537

rately. Since the time step is uniform, definition (4.2) implies that538

(4.13) χn+1,0 − χn,0 = Q0
h,τ (Un+1 − Un).

It follows from (4.6) that (χn,s − χn,0, v)Ih = (Un+1 − Un, v)Ih . Hence (4.10) implies539 (
Fn,s−1, v

)
Ih

=
(Un+1 − Un

τ
, v
)
Ih
−
(
Q0
h,τ

(Un+1 − Un

τ

)
, v
)
Ih
,
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which, together with Lemma 4.1 again, yields540

‖Fn,s−1‖L2(I) ≤ C
[
hk+1

∥∥∥Un+1 − Un

τ

∥∥∥
H\(I)

+ τ r
∥∥∥Un+1 − Un

τ

∥∥∥
Hr(I)

]
.

Since U(x, t) = U0(x − βt) and Un+1 − Un =
∫ tn+1

tn
Ut(x, t

′)dt′, we can obtain from541

the above inequality that542

(4.14) ‖Fn,s−1‖L2(I) ≤ C
[
hk+1‖U0‖H\+1(I) + τ r‖U0‖Hr+1(I)

]
.

We can yield ‖ξN‖L2(I) ≤ C(hk+1 + τ r)‖U0‖H\+1(I) by substituting (4.12) and543

(4.14) into (4.11). It follows from Lemma 4.1 that544

‖UN − χN,0‖L2(I) ≤ C(hk+1 + τ r)‖U0‖H\(I).

Since uN − UN = ξN − (UN − χN,0), the above two inequalities and the triangle545

inequality complete the proof of Theorem 4.1.546

Remark 4.1. Due to (4.12), the initial solution can also be defined by the GGR547

projection and so on, provided that ‖U0 − u0‖L2(I) ≤ C‖U0‖H\(I)hk+1.548

4.2. Proof of Lemma 4.1. In Definition 4.1, the total number of the restrictions549

is equal to that of the unknowns’ degrees of freedom. Hence it is sufficient and550

necessary to prove the uniqueness and existence by verifying that there is only one551

trivial solution W 0
h = · · · = W s

h = 0 for W = 0. The proofs of this topic and (4.7) are552

almost the same, so we solely present the latter in this subsection.553

To do that, we need to introduce the GGR projection and the flux lifting function554

for any given parameter ϑ 6= 1/2. For convenience, we first give the detailed definitions555

for k ≥ 1 and then extend them to k = 0 in Remark 4.2.556

Definition 4.2. Let w(x) ∈ H1(I) be a periodic function. The GGR projection,557

Gϑw, is defined as the unique function in Vh such that for j = 1, 2, . . . , J ,558

(4.15)

∫
Ij

(Gϑw)vdx =

∫
Ij

wvdx ∀ v ∈ Pk−1(Ij), and {{Gϑw}}ϑj+ 1
2

= {{w}}ϑj+ 1
2
.

Definition 4.3. Let wb be a single-valued periodic function defined on element559

endpoints. The flux lifting function, Lϑwb, is defined as the unique function in Vh560

such that for j = 1, 2, . . . , J ,561

(4.16)

∫
Ij

(Lϑwb)vdx = 0 ∀ v ∈ Pk−1(Ij), and {{Lϑwb}}ϑj+ 1
2

= wb
j+ 1

2
.

It has been proved in [3, Lemma 3.2] that the GGR projection is well-defined and562

satisfies563

(4.17) ‖G⊥ϑw‖L2(I) + h
1
2 ‖(G⊥ϑw)±‖L2(Γh) ≤ Ch

min(ℵ,k+1)‖w‖Hℵ(I),

where G⊥ϑw = w −Gϑw is the projection error and ℵ ≥ 1 is the smoothness require-564

ment. The proof therein has implicitly used Gϑw = Phw+Lϑ{{w−Phw}}ϑ and shown565

that the flux lifting function is well-defined and satisfies566

(4.18) ‖Lϑwb‖L2(I) ≤ Ch
1
2 ‖wb‖L2(Γh).
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Furthermore, a direct application of Definitions 4.2 and 4.3 yields for any v ∈ Vh,567

(4.19) Hϑ(G⊥ϑw, v) = 0 and Hϑ(Lϑwb, v) = β
〈
wb, [[v]]

〉
Γh
,

as well as the property on the overall mean568

(4.20)
(
G⊥ϑw, 1

)
Ih

= 0 and
(
Lϑwb, 1

)
Ih

= 0.

Remark 4.2. The above two definitions can be extended to k = 0 with some569

minor modifications such that the above four conclusions also hold. The process is570

divided into two steps:571

• Define a unique function by the second condition in (4.15) and (4.16), respec-572

tively.573

• Subtract a constant to get a modified function such that (4.20) holds.574

Now we begin to prove Lemma 4.1. Since r ≤ s and W (x) ∈ Hr+1(I), we would575

like to adopt the cutting-off technique [25, 24] and define a series of functions576

(4.21) ∂`W =

{
(−τβ∂x)

`
W, 0 ≤ ` ≤ r − 1,

0, r ≤ ` ≤ s.

Every ∂`W ∈ H2(I) at least, so the continuity is followed by the Sobolev embed-577

ding theorem. Using integration by parts, after some manipulations we can get the578

consistency property579

(4.22) τHϑ(∂`W, v) =
(

(−τβ∂x)∂`W, v
)
Ih
, ∀v ∈ Vh.

Furthermore, the approximation property (4.17) with ℵ = max(k + 1− `, 1) and the580

definition (4.21) show581

(4.23) ‖G⊥ϑ (∂`W )‖L2(I) + h
1
2 ‖(G⊥ϑ (∂`W ))±‖L2(Γh) ≤ Ch

k+1‖W‖H\(I),

no matter whether k+ 1 ≥ r or not. Here and below we assume λ ≤ 1 without losing582

generality.583

Let ϑ be the parameter used in the matrix transferring process, and assume584

ϑ 6= 1/2. For 0 ≤ ` ≤ s, we define the error in the finite element space585

(4.24) Ξϑ` = D`Wh −Gϑ(∂`W ) ∈ Vh,

which leads to the decomposition D`Wh−∂`W = Ξϑ` −G⊥ϑ (∂`W ). Due to the triangle586

inequality and (4.23), it is sufficient to prove (4.7) by showing587

(4.25) ‖Ξϑ0‖L2(I) ≤ C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
,

with a special setting ϑ.588

To complete this purpose, we have to set up two lemmas. The first one shows589

that the high order term can be mainly bounded by lower order term.590

Lemma 4.2. For any ϑ 6= 1
2 , there exists a bounding constant C = C(ϑ) > 0 such591

that592

(4.26) ‖Ξϑ`+1‖L2(I) ≤ Cλ‖Ξϑ0‖L2(I) + C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
holds for 0 ≤ ` ≤ s− 1.593
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Proof. We can prove this lemma by (4.4), which is equivalent to condition (4.2a).594

By adding and subtracting some terms involving Gϑ(∂iW ) three times, we have595 (
Ξϑ`+1, v

)
Ih

= I1(v) + I2(v) + I3(v),

where

I1(v) = τHϑ
(
Ξϑ` , v

)
− τβ

∑
0≤κ≤`

q`,κ(ϑ)
〈

[[Ξϑκ]], [[v]]
〉
Γh
,

I2(v) = τHϑ(Gϑ(∂`W ), v)−
(
Gϑ(∂`+1W ), v

)
Ih
,

I3(v) = − τβ
∑

0≤κ≤`

q`,κ(ϑ)
〈

[[Gϑ(∂κW )]], [[v]]
〉
Γh
.

In what follows we are going to estimate them one by one. Using (2.4c) for the first596

term, and using the Cauchy-Schwartz inequality and the inverse inequality (2.5) for597

the second term, we have598

(4.27) I1(v) ≤ Cλ
∑

0≤κ≤`

‖Ξϑκ‖L2(I)‖v‖L2(I).

Due to (4.19) and (4.22), it follows from definition (4.21) that599

I2(v) =
(
−τβ∂x(∂`W )−Gϑ(∂`+1W ), v

)
Ih

=


(
G⊥ϑ (∂`+1W ), v

)
Ih
, 0 ≤ ` ≤ r − 2,(

−τβ∂x(∂`W ), v
)
Ih
, ` = r − 1,

0, otherwise.

Using (4.23) for the first case and (4.21) for the second case, respectively, an applica-600

tion of Cauchy-Schwartz inequality yields a unified inequality601

(4.28) I2(v) ≤ C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
‖v‖L2(I).

Since [[∂κW ]] = 0 and λ ≤ 1, we can use (4.23) and (2.5) to get602

(4.29) I3(v) = τβ
∑

0≤κ≤`

q`,κ(ϑ)
〈

[[G⊥ϑ (∂κW )]], [[v]]
〉
Γh
≤ Chk+1‖W‖H\(I)‖v‖L2(I).

Summing up the above three conclusions and taking v = Ξϑ`+1 ∈ Vh, we finally obtain603

‖Ξϑ`+1‖L2(I) ≤ Cλ
∑

0≤κ≤`

‖Ξϑκ‖L2(I) + C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
,

for 0 ≤ ` ≤ s− 1. This completes the proof of this lemma.604

Below we set up another lemma by condition (4.6). Substitute (4.3) into the left605

hand side (LHS) of this condition and expand each term by the relationship (4.4). By606

changing the summation orders for those terms on element boundaries, we can easily607

get608

LHS = τ
∑

0≤`≤s−1

α`+1Hϑ(D`Wh, v)− τβ
∑

0≤κ≤s−1

ψκ(ϑ)
〈

[[DκWh]], [[v]]
〉
Γh

= τHϑ
 ∑

0≤`≤s−1

[
α`+1D`Wh − ψ`(ϑ)Lϑ[[D`Wh]]

]
, v

 ,

(4.30)
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where the second identity in (4.19) is used at the last step, and609

(4.31) ψκ(ϑ) =
∑

κ≤`≤s−1

α`+1q`,κ(ϑ).

We remark that ψ0(ϑ) plays an important role in the remaining analysis, especially610

when ϑ is taken as the averaged numerical flux parameter Θ. The essential property611

is stated in the following proposition.612

Proposition 4.1. There holds ψ0(Θ) = 0.613

Proof. Due to Lemma 3.3 we have Θ = Θ(1). Since α1(1) = 1, we can get from614

(3.14), (3.28) and (4.31) that ψ0(ϑ) = Θ− ϑ. Hence this proposition is proved.615

Now we are going to deal with the right hand side (RHS) of condition (4.6). An616

application of the Taylor expansion up to rth order derivative yields617

(4.32) W (x− τβ)−W (x) = (−τβ∂x)

 ∑
0≤`≤r−1

1

(`+ 1)!
∂`W (x) + W̃ (x)

 ,
with the truncation function618

W̃ (x) =
1

r!(τβ)

∫ τβ

0

∂rxW (x− x̃)(x̃− τβ)rdx̃.

It is easy to see that (W̃ , 1)Ih = 0 and619

(4.33) ‖W̃‖L2(I) ≤ Cτ r‖W‖Hr(I).

By integration by part for the definition of W̃ (x), we are able to drop the derivative620

order of W (·) and get621

(4.34) ‖W̃‖H](I) ≤ Cτ r−1‖W‖H\(I), with ] = max(k + 2− r, 1).

As we have mentioned in (3.17), we know α`+1(m) = 1/(` + 1)! for ` ≤ r − 1.622

Substituting (4.32) into RHS and using the consistency property (4.22) for both ∂`W623

and W̃ , we can obtain from (4.19) that624

(4.35) RHS = τHϑ
 ∑

0≤`≤s−1

α`+1Gϑ(∂`W ) + GϑW̃ , v

 .

Here the range of summation index is expanded, since ∂`W = 0 for ` ≥ r, due to625

(4.21).626

Due to (4.30) and (4.35), it follows from condition (4.6) that627

(4.36) %ϑ
def
=

∑
0≤`≤s−1

[
α`+1Ξϑ` − ψ`(ϑ)Lϑ[[D`Wh]]

]
−GϑW̃ ∈ Vh

satisfies the variational form Hϑ(%ϑ, v) = 0 for any v ∈ Vh. By successively taking628

v = %ϑ and v = ∂x%
ϑ, we can see that %ϑ must be a constant. This concludes629

(4.37) %ϑ = 0,
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if the overall mean is equal to zero. By (4.20), we have (Lϑ[[D`Wh]], 1)Ih = 0 for ` ≥ 0,630

and631

(GϑW̃ , 1)Ih = (W̃ , 1)Ih = 0.

Furthermore, we also have (Ξϑ` , 1)Ih = 0 due to the following facts:632

• For ` = 0, condition (4.2c) implies (W 0
h , 1)Ih = (W, 1)Ih = (GϑW, 1)Ih ;633

• For ` ≥ 1, the periodicity means (Gϑ(∂`W ), 1)Ih = (∂`W, 1)Ih = 0, and (4.5)634

shows (D`Wh, 1)Ih = 0.635

Summing up the above verifications, we conclude that (4.37) is true.636

Lemma 4.3. Let ϑ = Θ, then we have637

(4.38) ‖Ξϑ0‖L2(I) ≤ C
∑

1≤`≤s−1

‖Ξϑ` ‖L2(I) + C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
.

Proof. Thanks to Proposition 4.1, we can get rid of the trouble term Lϑ[[D0Wh]]638

in (4.36). Then it follows from (4.37) and α1 = 1 that639

(4.39)

‖Ξϑ0‖L2(I) ≤ C
∑

1≤`≤s−1

‖Ξϑ` ‖L2(I) + C
∑

1≤`≤s−1

‖Lϑ[[D`Wh]]‖L2(I) + C‖GϑW̃‖L2(I).

It is easy to estimate the last two terms. Since [[D`Wh]] = [[D`Wh − ∂`W ]] = [[Ξϑ` ]] −640

[[G⊥ϑ ∂`W ]], it follows from (4.18) and the triangle inequality that641

‖Lϑ[[D`Wh]]‖L2(I) ≤ Ch
1
2 ‖[[Ξϑ` ]]‖L2(Γh) + Ch

1
2 ‖[[G⊥ϑ ∂`W ]]‖L2(Γh).

Together with (2.5) and (4.23) for each term, this deduces642

(4.40) ‖Lϑ[[D`Wh]]‖L2(I) ≤ C‖Ξϑ` ‖L2(I) + Chk+1‖W‖H\(I).

By the triangle inequality and (4.17), we have643

‖GϑW̃‖L2(I) ≤ ‖W̃‖L2(I) + ‖G⊥ϑ W̃‖L2(I) ≤ ‖W̃‖L2(I) + Ch]‖W̃‖H](I).

The two terms on the right hand side are bounded by (4.33) and (4.34), respectively.644

Since λ ≤ 1, we can get the unified inequality645

(4.41) ‖GϑW̃‖L2(I) ≤ C
[
hk+1‖W‖H\(I) + τ r‖W‖Hr(I)

]
.

Substituting (4.40) and (4.41) into (4.39) completes the proof of this lemma.646

Till now (4.25) is implied by collecting Lemmas 4.2 and 4.3 if λ is small enough.647

This completes the proof of Lemma 4.1 and ends this subsection.648

5. Numerical experiments. In this section we present some numerical exper-649

iments to verify the proposed theoretical results. Let β = 1 and T = 1 in (1.1) for all650

tests. All schemes are taken from the two examples given in Section 3.651

5.1. Verification on stability results. Take the uniform meshes with J =652

64, as an example. With standard orthogonal basis of the finite element space, the653

ESTDG method is written into ũn+1 = Kũn, where ũn is the vector made up of654

the expansion coefficients of un. The spectral norm ‖Km‖2 describes the L2-norm655

amplification every m step time marching [27].656
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5.1.1. The RKDG method. Consider the RKDG(4, 4, k) method and the nu-657

merical flux parameters are given by (3.34), where ε = 0.25, 0.50, 0.75 and y = 1, 3.658

In Figures 5.1 and 5.2 we plot659

max(‖Km‖22 − 1, 10−16)

for different λ in the logarithmic coordinates, with k = 1, 2, 3 from left to right.660

• For y = 3, this quantity is always close to 10−16 and thus implies the mono-661

tonicity stability.662

• For y = 1, the data points increase along the line of slope 5 only for k ≥ 2663

and m = 1. These numerical results show the strong(2) stability at least and664

the monotonicity stability for k ≤ 1.665

This verifies what we have stated in subsection 3.2.1.666
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(a) m = 1

Fig. 5.1. The L2-norm amplification of the RKDG(4, 4, k) solutions every m-step: k = 1, 2, 3
from left to right. Here ε = 0.25, 0.50, 0.75 and y = 3.

To show the difference between the strong stability and the monotonicity stability,667

we take k = 3 as an example and plot in Figure 5.3 the L2-norm evolution at the first668

twelve steps, where λ = 0.02 and ε = 0.50. The initial solution is taken as the first669

unit singular vector of K. For y = 1, we can see in the left picture that the L2-norm670

overshoots at the first step and decreases every two and three steps. But for y = 3,671

the monotonicity stability is clearly observed in the right picture. This verifies our672

theoretical results given in subsection 3.2.1.673

5.1.2. The LWDG method. Consider the LWDG(2, k) method. As an exam-674

ple, we take the numerical flux parameters as θ00 = θ10 = 1/2 + ε and θ11 = 1/2− ε,675

where ε = 0.25, 0.50, 0.75. We plot in Figure 5.4 some pictures for k = 0, 1, 2 and676

m = 1, 2, 3, 4, 5.677

• If k = 0, this quantity is close to 10−16 and shows the monotonicity stability.678

• If k = 1, the data points increase along the line of slope 3 for m ≤ 2 but this679

quantity is close to 10−16 for m ≥ 3. This verifies the strong(3) stability for680

k = 1.681

• If k = 2, the data points increase with slope 3 (odd) for m ≤ 2 and with slope682

4 (even) for m ≥ 3. This shows the weak(4) stability.683

The above observations well support the results listed in Table 3.1.684

In Figure 5.5, the left picture plots the L2-norm evolution of the LWDG(2, 1)685

solution at the previous twelve steps, where λ = 0.02 and ε = 0.50. The initial solution686

is taken as the first unit singular vector of K2. We can see that the monotonicity687

decreasing is lost at the first two steps and conclude that the scheme can not have688

the strong(2) stability. As a comparison, we also plot in the right picture for the689

LWDG(2,1) method with θ11 = 1/2 + ε and the others are kept the same. We can see690

the monotonicity stability for this case.691
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Fig. 5.2. The L2-norm amplification of the RKDG(4, 4, k) solutions every m-step: k = 1, 2, 3
from left to right. Here ε = 0.25, 0.50, 0.75 and y = 1.
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Fig. 5.3. The L2-norm evolution for the RKDG(4, 4, 3) method. Left: y = 1. Right: y = 3.
Here λ = 0.02 and ε = 0.50.

5.2. Verification on the error estimate. In this subsection we investigate692

the numerical accuracy of the ESTDG method with two initial solutions. Since the693

numerical results are almost the same, we only present the experiment data for the694

RKDG(4,4,k) method on nonuniform mesh, which is constructed by perturbing the695

uniform mesh nodes randomly by at most 10%. Take the time step by τ = 0.05hmin696
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Fig. 5.4. The L2-norm amplification of the LWDG(2, k) solution every m-step: θ00 = θ10 =
1/2 + ε and θ11 = 1/2 − ε. Here k = 0, 1, 2 from left to right and ε = 0.25, 0.50, 0.75.
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Here λ = 0.02 and θ00 = θ10 = 1.

in what follows, where hmin is the minimal length.697

First we consider a sufficiently smooth initial solution, for example,698

U0(x) = sin(2πx).

In Tables 5.1 and 5.2, we give the error and convergence order in the L2-norm for699

y = 3 and y = 1 respectively. We can clearly observe the optimal convergence order,700

which supports the result in Theorem 4.1.701

Table 5.1
The L2-norm errors and convergence orders of the RKDG(4, 4, k) method with the numerical

flux parameter (3.34) and y = 3. Nonuniform mesh.

J
ε = 0.25 ε = 0.50 ε = 0.75

Error Order Error Order Error Order

k = 1

160 7.32E-05 5.28E-05 4.90E-05

320 1.83E-05 2.00 1.31E-05 2.01 1.24E-05 1.98

640 4.56E-06 2.00 3.32E-06 1.99 3.09E-06 2.00

1280 1.14E-06 2.00 8.27E-07 2.00 7.73E-07 2.00

2560 2.85E-07 2.00 2.07E-07 2.00 1.93E-07 2.00

k = 2

160 2.11E-07 3.42E-07 4.91E-07

320 2.67E-08 2.98 4.27E-08 3.00 6.17E-08 2.99

640 3.34E-09 3.00 5.32E-09 3.01 7.68E-09 3.01

1280 4.18E-10 3.00 6.66E-10 3.00 9.60E-10 3.00

2560 5.23E-11 3.00 8.32E-11 3.00 1.20E-10 3.00

k = 3

160 6.03E-10 4.88E-10 5.21E-10

320 3.71E-11 4.02 2.99E-11 4.03 2.96E-11 4.14

640 2.31E-12 4.01 1.90E-12 3.98 1.83E-12 4.01

1280 1.44E-13 4.00 1.16E-13 4.03 1.16E-13 3.98

2560 8.95E-15 4.01 7.26E-15 4.00 7.34E-15 3.98

Next we investigate the smoothness requirement proposed in this paper. To do702

that, we take the initial solution703

U0(x) = [sin(2πx)]ε+2/3,

and ε is a positive integer. This function belongs to Hε+1(I), but not Hε+2(I). In704

Table 5.3, the optimal convergence order is observed when ε = r, but not ε = r − 1.705

This indicates that the smoothness requirement in Theorem 4.1 appears to be sharp.706

6. Conclusion. In this paper we have presented the L2-norm stability analysis707

and the optimal error estimate for the ESTDG method, which adopts the explicit708
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Table 5.2
The L2-norm errors and convergence orders of the RKDG(4, 4, k) method with the numerical

flux parameter (3.34) and y = 1. Nonuniform mesh.

J
ε = 0.25 ε = 0.50 ε = 0.75

Error Order Error Order Error Order

k = 1

160 8.03E-05 5.55E-05 4.99E-05

320 2.01E-05 2.00 1.39E-05 2.00 1.24E-05 2.01

640 5.01E-06 2.00 3.47E-06 2.00 3.13E-06 1.98

1280 1.25E-06 2.00 8.67E-07 2.00 7.87E-07 1.99

2560 3.13E-07 2.00 2.17E-07 2.00 1.97E-07 2.00

k = 2

160 2.03E-07 4.83E-10 4.22E-07

320 2.49E-08 3.03 3.03E-11 3.99 5.31E-08 2.99

640 3.13E-09 2.99 1.91E-12 3.99 6.64E-09 3.00

1280 3.91E-10 3.00 1.18E-13 4.01 8.30E-10 3.00

2560 4.94E-11 2.99 7.44E-15 3.99 1.04E-10 3.00

k = 3

160 6.48E-10 4.83E-10 4.78E-10

320 3.92E-11 4.05 3.03E-11 3.99 2.91E-11 4.04

640 2.49E-12 3.98 1.91E-12 3.99 1.86E-12 3.97

1280 1.58E-13 3.98 1.18E-13 4.01 1.15E-13 4.02

2560 9.78E-15 4.01 7.44E-15 3.99 7.23E-15 3.99

Table 5.3
The L2-norm errors and convergence orders of the RKDG(4, 4, 3) method on nonuniform mesh.

Here ε = r − 1 on the left column and ε = r on the right column.

RKDG(4,4,3), y = 3 RKDG(4,4,3), y = 1

ε = 0.25

160 3.87E-08 2.20E-08 3.70E-08 2.43E-08

320 3.06E-09 3.66 1.37E-09 4.00 2.92E-09 3.66 1.52E-09 4.00

640 2.45E-10 3.64 8.57E-11 4.00 2.35E-10 3.64 9.51E-11 4.00

1280 1.97E-11 3.64 5.35E-12 4.00 1.91E-11 3.62 5.94E-12 4.00

2560 1.59E-12 3.63 3.34E-13 4.00 1.55E-12 3.62 3.71E-13 4.00

ε = 0.50

160 5.24E-08 1.66E-08 4.82E-08 1.74E-08

320 4.05E-09 3.69 1.02E-09 4.02 3.76E-09 3.68 1.08E-09 4.01

640 3.12E-10 3.70 6.36E-11 4.01 2.93E-10 3.68 6.72E-11 4.01

1280 2.41E-11 3.70 3.97E-12 4.00 2.28E-11 3.68 4.19E-12 4.00

2560 1.85E-12 3.70 2.48E-13 4.00 1.77E-12 3.68 2.62E-13 4.00

ε = 0.75

160 6.45E-08 1.56E-08 5.82E-08 1.59E-08

320 4.82E-09 3.74 9.55E-10 4.03 4.43E-09 3.72 9.78E-10 4.03

640 3.62E-10 3.74 5.91E-11 4.01 3.37E-10 3.72 6.07E-11 4.01

1280 2.73E-11 3.73 3.68E-12 4.01 2.56E-11 3.71 3.78E-12 4.00

2560 2.07E-12 3.72 2.30E-13 4.00 1.96E-12 3.71 2.36E-13 4.00

single-step time-marching and the stage-dependent numerical flux parameters in the709

DG discretization. The main tool is the technique of the matrix transferring process710

based on the temporal difference of the stage solutions, where the averaged numerical711

flux parameter is proposed to measure the upwind effect in the fully discrete schemes.712

By a unified analysis framework, in this paper we give some detailed L2-norm stability713

stability results for the RKDG method with downwind treatments and the LWDG714

method with different numerical flux parameters for the auxiliary variables. In order715

to obtain the optimal error estimate for the ESTDG method, we propose a series of716

space-time approximation functions for any given spatial function and then establish717

a new proof line for the fully discrete method. During this procedure, the technique718

of the matrix transferring process and the averaged numerical flux parameter play719

very important roles. In future work, we will extend the above works to variable-720

coefficient linear hyperbolic problems and nonlinear conservation laws in one and/or721
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multidimensional cases.722

7. Appendix. In this section we give some supplemental materials for those723

conclusions unproved in Section 3. To this end, we have to make a matrix description724

of the matrix transferring process.725

Associated with the multistep number m and the stage number s, we intro-726

duce some column vectors and square matrices of size ms, whose component is727

only either 0 or 1. More specifically, let 1(m, s) = (1, 1, . . . , 1)> and ei(m, s), for728

i = 0, 1, 2, . . . ,ms − 1, be the unit vector which has 1 only at the i-th position. Let729

I(m, s) be the identity matrix and E(m, s) the shifting matrix which has 1 only at730

the lower second diagonal line. Let731

L(m, s) =
[
I(m, s)−E(m, s)

]−1
− I(m, s) =

∑
1≤κ≤ms−1

E(m, s)κ,

which has 1 at the strictly lower region. For simplicity of notations, we would like to732

denote, for example733

1(m) = 1(m, s), 1 = 1(1, s), 1̂ = 1(m, 1).

This rule will be used throughout the entire section.734

7.1. Matrix description of matrix transferring process. In this subsection735

we present a matrix description of how to get the ultimate spatial matrix. To do that,736

we define some ms order matrices737

(7.1a) C(m) = {cij(m)}, D(m) = {dij(m)}, W (m;ϑ) = {dij(m)(θij(m)− ϑ)},

and738

(7.1b) Σ(m) = {σij(m)}, Φ(m) = {φij(m)}, Q(m;ϑ) = {qij(m;ϑ)}.

Here i and j are all taken from 0 to ms−1, and ϑ is the given parameter as mentioned739

in subsection 3.1.1.740

7.1.1. The ultimate spatial matrix. This matrix is obtained by running Algo-741

rithm 1 for ` = 1, 2, . . . , ζ, where the crucial calculation is the increment accumulation742

in Step 2.743

Define a lower triangle matrix A?(m) = {a?ij(m)}0≤i,j≤ms−1, whose entries are744

defined as zero except745

a?ij(m) = (1− δij/2)a
(j)
i+1,j(m), for j ≤ i ≤ ms− 1, and 0 ≤ j ≤ ζ − 1.

Noticing that {q̃ij(m)}0≤i,j,≤ms−1 is a lower triangle matrix, we can extend all three
summation ranges in Step 2 to the entire index set {0, 1, . . . ,ms− 1}. Gathering up
the related operation of Algorithm 1 till the matrix transferring process stops, we can
easily obtain a unified description for the increment procedure at any fixed position.
More specifically, the integrated calculation reads (dropping (m) for convenience)

gi′j′ ← gi′j′ − a?i′j′ ; gi′j′ ← gi′j′ + a?κ′j′ q̃κ′i′ , gi′j′ ← gi′j′ + a?i′κ′ q̃κ′j′ ,

where the index i′, j′ and κ′ go through {0, 1, . . . ,ms−1}. Finally, the total increment746

at Step 2 of Algorithm 1 can be expressed in the matrix form747

G(m) = (2ϑ− 1)A?(m) + Q(m;ϑ)>A?(m) + A?(m)Q(m;ϑ),
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where q̃ij(m) = qij(m;ϑ) + ϑδij is used.748

From Step 3 of Algorithm 1, we have the ultimate spatial matrix (the last row749

and column is dropped, since they are always zero)750

B(m) = G(m) + G(m)>

=
(
ϑ− 1

2

)
B?(m) +

1

2

[
B?(m)Q(m;ϑ) + Q(m;ϑ)>B?(m)

]
.

(7.2)

Here we have introduced a symmetric matrix751

(7.3) B?(m) = 2A?(m) + 2A?(m)> = {b?ij(m)}0≤i,j≤ms−1,

which is the same as that in [24]. The entry at the lower triangular zone is defined as752

(7.4) b?ij(m) =

{
2a

(j)
i+1,j(m), 0 ≤ j ≤ ζ − 1, j ≤ i ≤ ms− 1,

0, otherwise.

In what follows, we only need to pay more attention on the perturbation matrix753

(7.5) Z(m;ϑ) = B?(m)Q(m;ϑ) = {zij(m;ϑ)}0≤i,j≤ms−1.

7.1.2. Elemental formula on the perturbation matrix. Taking into ac-754

count the purpose of the matrix transferring process, we want to deduce a convenient755

and unified formula for those left-top entries zij(m;ϑ) for 0 ≤ i, j ≤ ζ−1. To do that,756

we have to rebuild an equivalent formula for some b?ij(m).757

Lemma 7.1. Denote αi(m) = 0 if i > ms for simplicity. For 0 ≤ i ≤ ζ − 1, there758

holds759

(7.6) b?ij(m) = 2
∑

0≤κ≤i

(−1)καi−κ(m)αj+1+κ(m), 0 ≤ j ≤ ms− 1.

Proof. Recalling the existing results [24, Lemma 3.1]:

a
(j′)
i′j′ (m) =

∑
0≤κ≤j′

(−1)καi′+κ(m)αj′−κ(m), for 0 ≤ j′ ≤ ζ and j′ < i′ ≤ ms,

(7.7a)

a
(i′)
i′i′ (m) =

∑
−i′≤κ≤i′

(−1)καi′+κ(m)αi′−κ(m), for 1 ≤ i′ ≤ ζ,
(7.7b)

we can prove this lemma by some simple discussions for different case of j.760

If j > i, since B?(m) is symmetric, it follows from (7.4) that761

b?ij(m) = b?ji(m) = 2a
(i)
j+1,i(m).

This proves (7.6) by using the first equation in (7.7) with i′ = j + 1 and j′ = i.762

Otherwise, if j ≤ i, we similarly have763

b?ij(m) = 2a
(j)
i+1,j(m) = 2

∑
0≤κ≤j

(−1)καi+1+κ(m)αj−κ(m).
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To prove this lemma, we just need to show Υ = 0, with

Υ
def
=

∑
0≤κ≤j

(−1)καi+1+κ(m)αj−κ(m)−
∑

0≤κ≤i

(−1)καi−κ(m)αj+1+κ(m)

=
∑

0≤κ≤j+i+1

(−1)j−κακ(m)αj+i+1−κ(m).

Here we have respectively used the replacements of index κ′ = j−κ and κ′ = j+1+κ764

in the two summations of the first equality. This purpose is easily checked as follows.765

• If j+ i+ 1 is odd, the replacement κ′ = i+ j+ 1−κ implies Υ = (−1)i+j+1Υ766

and hence Υ = 0.767

• If j + i+ 1 is even, denoted by 2`, a simple replacement of summation index768

again reduces769

(−1)j−`Υ =
∑
−`≤κ≤`

(−1)κα`+κ(m)α`−κ(m) = a
(`)
`,`(m),

where the last step uses the second equation in (7.7). Since ` ≤ (2ζ−1)/2 < ζ,770

it follows a
(`)
`,`(m) = 0 from the definition of the termination index of spatial771

discretization. This implies Υ = 0 also.772

Till now we sum up the above conclusions and complete the proof of this lemma.773

Due to (3.11) and (3.8), respectively, we can immediately obtain774

(7.8) Q(m;ϑ)Σ(m) = Φ(m)W (m;ϑ), Φ(m)D(m) = Σ(m).

This implies Q(m;ϑ) = Σ(m)D(m)−1W (m;ϑ)Σ(m)−1. Lemma 7.1 and (7.5) deduce775

for any 0 ≤ i, j ≤ ζ − 1 that776

(7.9) zij(m;ϑ) =
∑

0≤κ≤i

2(−1)καi−κ(m)πκ,j(m;ϑ),

where777

πκ,j(m;ϑ) =
∑

0≤`≤ms−1

α`+1+κ(m)q`,j(m;ϑ)

=

 ∑
0≤`≤ms−1

α`+1+κ(m)e>` (m)Σ(m)

 · [D−1(m)W (m;ϑ)
]
·
[
Σ(m)−1ej(m)

]
.

(7.10)

7.1.3. Simplification. In this subsection we want to set up an equivalent sim-778

plified expression of (7.10) by using the original data of the time marching as much779

as possible. We start from the calculation of Σ(m)−1. By denoting (here and below780

we omit (m) in the matrix entry)781

S(m) = I(m)−C(m)E(m) =



1

−c11 1

−c21 −c22 1
...

...
. . .

−cms−1,1 −cms−1,2 · · · −cms−1,ms−1 1


,
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the definition procedure of the temporal differences of stage solutions can be written782

into the matrix form783  Σ(m)

σms,0 · · · σms,ms−1 σms,ms

 =


1

Φ(m)




1

−C(m)e0(m) S(m)

 .

Recalling the definition of the evolution equation, the matrix inversion on both sides784

of the above identity yields785  Σ(m)−1

α0 · · · αms−1 αms

 =


1

S(m)−1C(m)e0(m) S(m)−1D(m)Σ(m)−1

 ,

where we have used (7.8) to get Φ(m)−1 = D(m)Σ(m)−1. Comparing with the
matrices entries on both sides, we can achieve the following equalities for every column
in the matrix Σ(m)−1,

Σ(m)−1e0(m) = [I(m) + E(m)S(m)−1C(m)]e0(m)
def
= q(m),(7.11a)

Σ(m)−1ej(m) = E(m)S(m)−1D(m)︸ ︷︷ ︸
K(m)

Σ(m)−1ej−1(m), j ≥ 1,(7.11b)

and for every evolution coefficient in (3.16),

α0(m) = ems−1(m)>S(m)−1C(m)e0(m),(7.12a)

αj(m) = ems−1(m)>S(m)−1D(m)︸ ︷︷ ︸
p>(m)

Σ(m)−1ej−1(m), j ≥ 1.(7.12b)

For those important parts in the above formulas, we need to investigate the relation-786

ship between one-step and multistep time marching.787

To do that, we would like to use the (right) Kronecker product of matrices [23].788

For example, it is easy to see789

e0(m) = ê0 ⊗ e0, ems−1(m)> = ê>m−1 ⊗ e>s−1, I(m) = Î ⊗ I,

which implies E(m) = Î ⊗E + Ê ⊗ e0e
>
s−1. Due to the definition (3.3), we derive790

(7.13) C(m) = Î ⊗C, D(m) =
1

m
Î ⊗D, W (m;ϑ) =

1

m
Î ⊗W (ϑ),

where W (ϑ) = W (1;ϑ). Further, by some lengthy and tedious matrices manipula-
tions, we can get the following important identities

S(m)−1 = L̂⊗ S−1Ce0e
>
s−1S

−1 + Î ⊗ S−1,(7.14a)

K(m) =
1

m

[
L̂⊗ qp> + Î ⊗ES−1D

]
,(7.14b)

p(m)> =
1

m
1̂⊗ p>,(7.14c)

q(m) = 1̂⊗ q.(7.14d)
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In this process, we have used some simple conclusions791

Ê + Ê L̂ = L̂, ê>m−1 + ê>m−1L̂ = 1̂>, ê0 + L̂ê0 = 1̂,

and an important identity, as a corollary of (7.12a) and α0(m) = 1,792

(7.15) e>ms−1(m)S(m)−1C(m)e0(m) = 1.

Limited by the length of this paper, we omit the detailed verifications for (7.14).793

Based on the above conclusions, we are ready to simplify formula (7.10). An794

induction process for (7.11) yields the following identity795

(7.16) Σ(m)−1ej(m) = K(m)jq(m) = K(m)j(1̂⊗ q), j ≥ 0,

where (7.14d) is used at the last step. The corresponding matrix expression is796

(7.17) Σ(m)−1E(m) = K(m)Σ(m)−1.

Since
∑

0≤`≤ms−1 e`+κ(m)>e`(m)> = E(m)κ, we use (7.12b) to get for any κ ≥ 0797

that798

∑
0≤`≤ms−1

α`+1+κ(m)e`(m)>Σ(m) = p(m)>Σ(m)−1E(m)κΣ(m)

= p(m)>[Σ(m)−1E(m)Σ(m)]κ = p(m)>K(m)κ =
1

m

(
1̂> ⊗ p>

)
K(m)κ,

(7.18)

where (7.17) and (7.14c) are respectively used at the last two steps. With the help of799

(7.13), substituting (7.16) and (7.18) into (7.10) yields a simplification expression800

(7.19) πκ,j(m;ϑ) =
1

m

(
1̂> ⊗ p>

)
K(m)κ

(
Î ⊗D−1W (ϑ)

)
K(m)j

(
1⊗ q

)
.

This ends this subsection.801

7.2. Proof of Lemma 3.3. Noticing (3.14) and α1 = 1, it follows from (3.28)802

and (7.10) that Θ(m) = ϑ+ π00(m;ϑ) for any ϑ. Then (7.19) implies that803

(7.20) Θ(m) = ϑ+
1

m

(
1̂> ⊗ p>

)(
Î ⊗D−1W (ϑ)

)(
1̂⊗ q

)
= ϑ+ p>D−1W (ϑ)q,

due to the simple fact 1̂>Î1̂ = m. This completes the proof of Lemma 3.3.804

Taking m = 1 and ϑ = Θ in (7.20), we use Lemma 3.3 to get805

(7.21) p>D−1W (Θ)q = 0.

This property reflects the essence of the averaged numerical flux parameter, and plays806

an important role in the proof of Lemma 3.4.807

Remark 7.1. Assume that the numerical flux parameters are the same at each808

time marching, and alternatively taken from two numbers θ1 and θ2 for different n.809

By (7.20) and (7.21), a simple manipulation shows Θ = (θ1 + θ2)/2. This clearly810

reflects the meaning of the averaged numerical flux parameter.811
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7.3. Proof of Lemma 3.4. For convenience of notations, we use a generic812

notation C to denote a positive constant independent of m.813

Recalling the proof of [24, Proposition 3.3], we have for 0 ≤ i, j ≤ ζ − 1 that814

(7.22)

∣∣∣∣b?ij(m)− 2

i!j!(i+ j + 1)

∣∣∣∣ ≤ C

m
,

and we emphasize that { 2
i!j!(i+j+1)}0≤i,j≤ζ−1 forms a symmetric positive definite ma-815

trix. Since the averaged numerical flux parameter is assumed to be Θ > 1/2, noticing816

(7.2) and (7.9), it is sufficient to prove this lemma by showing for 0 ≤ κ, j ≤ ζ − 1817

that818

(7.23) |πκ,j(m; Θ)| ≤ C

m
.

Here we have used the fact that αi−κ(m) is bounded independent of m, since [24,819

inequality (3.16)] has shown |αi′(m)− 1/i′!| ≤ C/mr for 0 ≤ i′ ≤ 2ζ − 1.820

Denote πκ,j = πκ,j(m; Θ) and W = W (Θ) for simplicity. Below we prove (7.23)821

for different cases, where (7.21) plays an important role to well control the accumu-822

lation and growth as m goes to infinity.823

• If κ = j = 0, we have π0,0 = (1̂>Î1̂)⊗ (p>D−1Wq) = 0, due to (7.21).824

• If κ > 0 and j > 0, we have825

(7.24) πκ,j =
1

m

(
1̂> ⊗ p>

)
[K(m)]κ−1Πκ,j(m)[K(m)]j−1

(
1̂⊗ q

)
,

where826

Πκ,j(m) = K(m)
(
Î ⊗D−1W

)
K(m).

Substituting (7.14b) into this formula and then using (7.21) to eliminate the

term involving L̂
2
. After some manipulations we yield

Πκ,j(m) =
1

m2
L̂⊗ [qp>D−1WES−1D + ES−1Wqp>]

+
1

m2
Î ⊗ES−1WES−1D.

The row norms for all matrices (including the row vectors and column vectors)827

do not depend on m, except that ‖L̂‖∞ = m− 1. Hence we have828

‖Πκ,j(m)‖∞ ≤
C

m
.

Noticing ‖ 1
m (1̂> ⊗ p>)‖∞ ≤ C and ‖K(m)‖∞ ≤ C, we get from (7.24) what829

we want to prove.830

• If κ = 0 and j > 0, we have π0,j = 1
mΠ0,j(m)[K(m)]j−1(1̂⊗ q) with831

Π0,j(m) =
(
1̂> ⊗ p>

)(
Î ⊗D−1W

)
K(m) =

1

m
1̂> ⊗ p>D−1WES−1D,

by some manipulations with the help of (7.14b) and (7.21). The remaining832

proof follows the same line as above, hence is omitted.833

• If κ > 0 and j = 0, we have πκ,0 = 1
m (1̂> ⊗ p>)[K(m)]κ−1Πκ,0(m), where834

Πκ,0(m) = K(m)(Î ⊗D−1W )(1̂⊗ q) = 1̂⊗ES−1Wq,

with the help of (7.14b) and (7.21). Then we can prove (7.24) as above.835

Summing up the above conclusions, we verify (7.23) and then prove this lemma.836
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7.4. Proof of Propositions 3.1 and 3.2. Taking ϑ = 0 in (7.20) and substi-837

tuting the definition of p> and q, we have838

(7.25) Θ = e>s−1S
−1W (0)(I + ES−1C)e0.

This identity will be used below.839

Since we have assumed c`κ ≥ 0 for any ` and κ in this paper, we can conclude840

that all entries of S−1 are non-negative by using the simple fact841

S−1 = (I −EC)−1 = I +
∑

1≤i≤s−1

(EC)i.

Hence we can conclude from (7.25) that Θ is a non-negative linear combination of the842

entries of W (0) = {d`κθ`κ}0≤`,κ≤s−1. This proves Proposition 3.1.843

For the LWDG method with the time marching coefficients (2.10), we have S = I844

and we get from (7.25) that845

(7.26) Θ = e>s−1W (0)e0 = ds−1,0θs−1,0 = θs−1,0,

since I + ES−1C = I + EC = I. This completes the proof of Proposition 3.2.846
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