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Abstract: In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG)
method for time-dependent linear fourth-order problems with four types of boundary condi-
tions. In one dimension and two dimensions, stability and optimal error estimates of order k+1
are derived for the UWLDG scheme with polynomials of degree at most k (k ≥ 1) for solving
initial-boundary value problems. The main difficulties are the design of suitable penalty terms
at the boundary for numerical fluxes and the construction of projections. More precisely, in
two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact
boundary condition is proposed as the boundary flux, which, in combination with some proper
penalty terms, leads to the stability and optimal error estimates. For other three types of
boundary conditions, optimal error estimates can also be proved for fluxes without any penalty
terms when special projections are designed to match different boundary conditions. Numerical
experiments are presented to confirm the sharpness of theoretical results.

Keywords. Fourth-order problem, UWLDG method, Boundary conditions, Optimal error
estimates.

AMS subject Classification. 65M12, 65M15, 65M60

1 Introduction
In [28], Tao, Xu and Shu developed the ultraweak-local discontinuous Galerkin (UWLDG)
method for partial differential equations (PDEs) involving high order spatial derivatives with
periodic boundary conditions, in which stability and optimal error estimates are shown. In this
paper, we are interested in analyzing the UWLDG method for initial-boundary value problems
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of the following time-dependent linear fourth-order equation

ut +∆2u = 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x), x ∈ Ω (1)

equipped with one of the four types of boundary conditions specified below.
(I) The Dirichlet boundary condition (Dirichlet B.C.)

u = gD,
∂u

∂ν
= gN , on ∂Ω; (2a)

(II) The generalized Dirichlet boundary condition (G-Dirichlet B.C.)

u = gD, ∆u = hD, on ∂Ω; (2b)

(III) The Neumann boundary condition (Neumann B.C.)

∂u

∂ν
= gN ,

∂∆u

∂ν
= hN , on ∂Ω; (2c)

(IV) The mixed boundary condition (mixed B.C.)

u = gD, ∆u = hD, on ΓD,

∂u

∂ν
= gN ,

∂∆u

∂ν
= hN , on ΓN ,

(2d)

where Ω ⊂ Rd (d ≥ 1) is a bounded rectangular domain with boundary ∂Ω, ν is the unit
outward normal direction to the boundary ∂Ω, ΓD and ΓN are the parts of ∂Ω such that
ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅. We assume u0(x), gD, hD, gN , hN are sufficiently smooth
functions that make the problem (1) have a unique exact solution. The fourth-order boundary-
value problems associated with (2a)–(2d) appear in many physical and engineering fields, such
as strain gradient elasticity, deformation of beams modeling, plates deflection theory, phase
separation in binary mixtures and image processing; see e.g., [2, 4, 15]. In particular, the
Neumann B.C. (2c) is also called Cahn–Hilliard (C-H) type in the literature [3, 5], which is
related to the C–H model of the phase-separation phenomena.

As a class of nonconforming finite element methods, the discontinuous Galerkin (DG)
method was mainly designed for solving hyperbolic conservation laws; see, e.g., [12, 25]. To
solve equations containing high order derivatives including fourth-order PDEs, different vari-
ants of DG methods are proposed. Let us first mention some work for steady-state fourth-order
boundary-value problems. As the pioneering work [1], Baker applied the DG method to the
approximation of the biharmonic equation with homogeneous Dirichlet B.C.. Subsequently,
other types of DG methods are developed for fourth-order elliptic boundary-value problems,
including the popular C0 interior penalty DG (IPDG) method [3, 15], hp-version symmetric,
nonsymmetric and semi-symmetric IPDG methods [14, 17, 24, 26], mixed DG (MDG) methods
[18] and single face-hybridizable DG method [10], just to mention a few. For time-dependent
fourth-order problems, there are relatively less results than that of the steady-state case, espe-
cially for non-homogeneous boundary-value problems. For example, several DG methods have
been proposed for C-H equations [16, 22, 30]. An adaptive IPDG method was presented for
a fully discrete approximation of the problem (1) with homogeneous Dirichlet B.C. [17]. In
2009, Dong and Shu [13] applied the local discontinuous Galerkin (LDG) method to the equa-
tion (1) with periodic boundary conditions, and derived optimal error estimates for Cartesian
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and triangular meshes. In [23, Example 3.3], a minimal-dissipation LDG scheme with some
suitable boundary penalty terms was numerically investigated for the one-dimensional version
of (1) with the Dirichlet B.C., and the optimal convergence rate was observed. In [20], an
MDG scheme without interior penalty terms was proposed for (1) with boundary conditions
(2a)–(2c), in which the stability was shown and analysis for the optimal error estimates was
left to future work.

The UWLDG method was proposed and investigated in [21, 27, 28, 29], its main feature
is the combination of the advantages of LDG [11] and UWDG [7] methodologies. Taking the
time-dependent linear fourth-order equation as an example, the UWLDG method rewrites the
original equation into a second order system by introducing the auxiliary variable w = ∆u
and then performs integration by parts twice to each second order equation. This method is
beneficial for solving higher order PDEs, since interior penalty terms are no long needed to
ensure stability and fewer auxiliary variables are introduced, resulting in a more compact and
efficient scheme.

To our best knowledge, existing theoretical results in the DG framework for time-dependent
fourth-order problems are mainly focused on periodic boundary conditions, and discussions of
general boundary conditions are very few. The main technicality may lie in the suitable design
of numerical boundary conditions. From the perspective of theoretical analysis, the special
choice of numerical initial condition is subtle for many high order PDEs [19, 31]. Analogously,
in this paper, we find that, an appropriate choice of numerical boundary condition is also essen-
tial to ensure optimal error estimates for fourth-order PDEs with different types of boundary
conditions. From the perspective of numerical experiments, for initial discretization, we know
that a special choice of numerical initial condition is not always necessary; see, e.g., [19, Ex-
ample 5.2] and [31, Remark 2.2]. However, in the numerical experiments of our current work,
we would like to emphasize that the numerical boundary condition should be chosen as the
same as that in theoretical analysis; otherwise, optimal order of accuracy cannot be observed.
This may indicate that the numerical boundary condition seems to be more sensitive than
the numerical initial condition, as far as the time-dependent linear fourth-order problems are
considered.

The purpose of this paper is to construct the UWLDG scheme with delicate numerical
boundary conditions and derive optimal error estimates for the equation (1) with four types
of non-homogeneous boundary conditions in one dimension and two dimensions. Inspired by
the minimal dissipation idea [6, 9], this work is devoted to design a DG scheme with optimal
convergence rates using as few penalty terms as possible to treat different kinds of boundary
conditions. The main difficulties are two folds. The first one is the proper choice of numerical
fluxes for interior faces and the design of suitable penalty terms for boundary faces, especially
when the Dirichlet B.C. is concerned; for other three types of boundary conditions, we present
optimal convergent schemes without any penalty terms by carefully choosing the alternative
interior fluxes to match the boundary conditions. Another difficulty is the construction and
analysis of some elaborate projections, which help us to eliminate as many projection error
terms as possible. In particular, in two dimensions, a superconvergent property of the projection
in Lemmas 3.13–3.14 is essential for deriving optimal error estimates, which is achieved by
establishing the almost polynomials preserving property of degree up to k + 2 in Lemmas
3.11–3.12.

This paper is organized as follows. In Section 2, we present the UWLDG scheme and show
the stability as well as optimal error estimates for the one-dimensional fourth-order problem
(1) with four types of boundary conditions in (2a)–(2d). In Section 3, we extend the results to
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the two-dimensional case, in which numerical boundary conditions and projections are carefully
investigated.

In Section 4, we provide numerical experiments to confirm the theoretical results. We end
in Section 5 with some concluding remarks.

Throughout the paper, we use the standard notation for Sobolev spaces and norms, i.e.,
Wm,p(D) for D ⊆ Ω equipped with the norm ∥ · ∥m,p,D; when p = 2, set Wm,2(D) = Hm(D),
∥ · ∥m,2,D = ∥ · ∥m,D. For any partition Ωh of the domain Ω, the broken Sobolev space Hℓ (Ωh)
with ℓ being a positive integer is the space of functions that are elementwise in the Sobolev
space Hℓ (Ω), and the associated norms can be piecewise defined. We denote ∥ · ∥ℓ,2,Ωh

by ∥ · ∥ℓ
when there is no confusion. We use ∥ · ∥D to denote the L2 norm in D, and we omit the index
D if D = Ω or Ωh.

2 The UWLDG method for the 1D case
In this section, to clearly display the main idea of the numerical treatment of various boundary
conditions, we consider the following one-dimensional version of time-dependent linear fourth-
order equation (1) in the form:

ut + uxxxx = 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x), (3)

with Ω = [a, b] and boundary conditions

(i) u(a, t) = f0(t), u(b, t) = g0(t), ux(a, t) = f1(t), ux(b, t) = g1(t), (4a)
(ii) u(a, t) = f0(t), u(b, t) = g0(t), uxx(a, t) = f2(t), uxx(b, t) = g2(t), (4b)
(iii) ux(a, t)= f1(t), ux(b, t)= g1(t), uxxx(a, t)= f3(t), uxxx(b, t)= g3(t), (4c)
(iv) u(b, t) = g0(t), ux(a, t)= f1(t), uxx(b, t) = g2(t), uxxx(a, t)= f3(t), (4d)

where u0(x), fi(t), gi(t), i = 0, 1, 2, 3 are sufficiently smooth functions.

2.1 The UWLDG scheme
As usual, we divide the computational domain Ω = [a, b] into N cells

a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b,

and denote
Ij =

(
xj− 1

2
, xj+ 1

2

)
, hj = xj+ 1

2
− xj− 1

2
, Ωh = {Ij},

as the cells, cell lengths and the partition of Ω, respectively. We also define h = maxjhj and
assume the mesh is regular. We take the following piecewise polynomial finite element space

Vh = {v : v|Ij ∈ Pk(Ij), j ∈ ZN}, ZN = {1, . . . , N},

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k . We use (vh)
−
j+ 1

2

and
(vh)

+
j+ 1

2

to denote the value of vh at xj+ 1
2

from the left and right cells, respectively. Furthermore,
the jump of vh at xj+ 1

2
is defined as

[[vh ]]j+ 1
2
= (vh)

+
j+ 1

2

− (vh)
−
j+ 1

2

.
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In order to construct the UWLDG scheme, we firstly introduce an auxiliary variable w as
the second order derivative of the exact solution u and rewrite the equation (3) into a second
order system

ut + wxx = 0,

w − uxx = 0.

Then, the UWLDG scheme is defined as follows: find uh, wh ∈ Vh, such that for any p, q ∈ Vh

and j = 1, . . . , N

((uh)t, p)j +(wh, pxx)j +ŵxp
−|j+ 1

2
−ŵxp

+|j− 1
2
−ŵp−x |j+ 1

2
+ ŵp+x |j− 1

2
=0, (5a)

(wh, q)j − (uh, qxx)j − ûxq
−|j+ 1

2
+ ûxq

+|j− 1
2
+ ûq−x |j+ 1

2
− ûq+x |j− 1

2
=0. (5b)

Here, (u, v)j =
∫
Ij

uv dx, and û, ûx, ŵ, ŵx are numerical fluxes, which will be specified later

tailored to different type of boundary conditions.
To finish the construction of the UWLDG scheme, we need to define the numerical flux

according to the prescribed boundary conditions in (4a)–(4d). At interior points xj+ 1
2
, j =

1, . . . , N − 1, we choose

(û, ûx, ŵ, ŵx)j+ 1
2
=
(
u+h , (uh)

−
x , w+

h , (wh)
−
x

)
j+ 1

2
, (6)

for all four kinds of boundary conditions in (4a)–(4d); at boundary points x 1
2
, xN+ 1

2
, we define:

Case (i) For the Dirichlet B.C. (4a),

(û, ûx, ŵ, ŵx) 1
2

=
(
f0(t), f1(t), w

+
h , (wh)

+
x − k2

h3
[[uh ]]

)
1
2
, (7a)

(û, ûx, ŵ, ŵx)N+ 1
2
=
(
g0(t), g1(t), w

−
h +

k1
h

[[(uh)x ]] , (wh)
−
x

)
N+ 1

2
, (7b)

where k1, k2 are positive constants. Here and below, we set

(uh)
−
1
2

:= f0(t), (uh)
+
N+ 1

2

:= g0(t),
(
(uh)x

)−
1
2
:= f1(t),

(
(uh)x

)+
N+ 1

2
:= g1(t),

to make the penalty terms well-defined.
Case (ii) For the G-Dirichlet B.C. (4b),

(û, ûx, ŵ, ŵx) 1
2

=
(
f0(t), (uh)

+
x , f2(t), (wh)

+
x

)
1
2
, (8a)

(û, ûx, ŵ, ŵx)N+ 1
2
=
(
g0(t), (uh)

−
x , g2(t), (wh)

−
x

)
N+ 1

2
. (8b)

Case (iii) For the Neumann B.C. (4c),

(û, ûx, ŵ, ŵx) 1
2

=
(
u+h , f1(t), w

+
h , f3(t)

)
1
2
, (9a)

(û, ûx, ŵ, ŵx)N+ 1
2
=
(
u−h , g1(t), w

−
h , g3(t)

)
N+ 1

2
. (9b)

Case (iv) For the mixed B.C. (4d),

(û, ûx, ŵ, ŵx) 1
2

=
(
u+h , f1(t), w

+
h , f3(t)

)
1
2
, (10a)

(û, ûx, ŵ, ŵx)N+ 1
2
=
(
g0(t), (uh)

−
x , g2(t), (wh)

−
x

)
N+ 1

2
. (10b)
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Remark 2.1. It is worth pointing out that the choice of numerical flux is not unique for each
kind of boundary condition, and some other numerical fluxes would also work as discussed
below.

For the Dirichlet B.C. (4a), we can also choose the following three kinds of numerical fluxes
(with k1, k2 being positive constants):

• (û, ûx, ŵ, ŵx)j+ 1
2
=


(
f0(t), f1(t), w

+
h + k1

h [[(uh)x ]] , (wh)
+
x − k2

h3 [[uh ]]
)

1
2
, j=0,(

u+h , (uh)
+
x , w−

h , (wh)
−
x

)
j+ 1

2
, j = 1, . . . , N − 1,(

g0(t), g1(t), w
−
h , (wh)

−
x

)
N+ 1

2
, j = N.

• (û, ûx, ŵ, ŵx )j+ 1
2
=


(
f0(t), f1(t), w

+
h + k1

h [[(uh)x ]] , (wh)
+
x

)
1
2
, j = 0,(

u−h , (uh)
+
x , w−

h , (wh)
+
x

)
j+ 1

2
, j = 1, . . . , N − 1,(

g0(t), g1(t), w
−
h , (wh)

−
x − k2

h3 [[uh ]]
)
N+ 1

2
, j = N.

• (û, ûx, ŵ, ŵx)j+ 1
2
=


(
f0(t), f1(t), w

+
h , (wh)

+
x

)
1
2
, j = 0,(

u−h , (uh)
−
x , w+

h , (wh)
+
x

)
j+ 1

2
, j = 1, . . . , N − 1,

( g0(t), g1(t), w
−
h + k1

h [[(uh)x ]] , (wh)
−
x − k2

h3 [[uh ]])N+1
2
, j=N.

For the G-Dirichlet B.C. (4b), the Neumann B.C. (4c) and the mixed B.C. (4d), we can
also choose the following numerical flux at interior points xj+ 1

2
, j = 1, . . . , N − 1, coupled with

the boundary fluxes (8)–(10), respectively.

(û, ûx, ŵ, ŵx)j+ 1
2
=
(
u−h , (uh)

+
x , w−

h , (wh)
+
x

)
j+ 1

2
, j = 1, . . . , N − 1. (11)

Remark 2.2. In particular, if the equation (2.1) is equipped with the following type of mixed
B.C.

u(a, t) = f0(t), ux(b, t) = g1(t), uxx(a, t) = f2(t), uxxx(b, t) = g3(t),

we can take the numerical flux at interior points as (6) or (11), coupled with the following
boundary flux:

(û, ûx, ŵ, ŵx) 1
2
=
(
f0(t), (uh)

+
x , f2(t), (wh)

+
x

)
1
2
,

(û, ûx, ŵ, ŵx)N+ 1
2
=
(
u−h , g1(t), w−

h , g3(t)
)
N+ 1

2
.

In the following analysis, without loss of generality, we mainly consider the interior numer-
ical flux (6) and the boundary fluxes (7)–(10) corresponding to boundary conditions (4a)–(4d),
respectively.

2.2 Stability analysis
In this subsection, we will show the stability property of the scheme (5) with the interior
numerical flux (6) and the boundary numerical fluxes in (7)–(10).

Theorem 2.3. For the fourth-order problem (3) equipped with the homogeneous boundary
conditions in (4a)–(4d), the solutions uh, wh to the semi-discrete UWLDG scheme (5) with
numerical fluxes (6) and (7)–(10) satisfy the following L2 stability

1

2

d

dt
∥uh(t)∥2 + ∥wh(t)∥2 ≤ 0. (13)
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Proof. We take the test function p = uh, q = wh in (5), then use integration by parts and add
the two equations together to obtain

((uh)t, uh)j + (wh, wh)j + L1
j (wh, uh)− L2

j (uh, wh) = 0, ∀j ∈ ZN , (14)

where

L1
j (wh, uh) =w−

h (uh)
−
x |j+ 1

2
− w+

h (uh)
+
x |j− 1

2
+ ŵx u

−
h |j+ 1

2
− ŵx u

+
h |j− 1

2

− ŵ (uh)
−
x |j+ 1

2
+ ŵ (uh)

+
x |j− 1

2
,

L2
j (uh, wh) =u−h (wh)

−
x |j+ 1

2
− u+h (wh)

+
x |j− 1

2
+ ûxw

−
h |j+ 1

2
− ûxw

+
h |j− 1

2

− û (wh)
−
x |j+ 1

2
+ û (wh)

+
x |j− 1

2
.

Then, summing over j for (14), we get

1

2

d

dt
∥uh(t)∥2 + ∥wh(t)∥2 + L(uh, wh) = 0, (15)

where

L(uh, wh) =
N∑
j=1

(
L1
j (wh, uh)− L2

j (uh, wh)
)
.

To estimate L(uh, wh), we firstly substitute the interior numerical flux (6) into it to obtain

L(uh, wh) = A0 +A⋆, (16)

where

A0 =w−
h (uh)

−
x |N+ 1

2
− w+

h (uh)
+
x | 1

2
− u−h (wh)

−
x |N+ 1

2
+ u+h (wh)

+
x | 1

2
, (17a)

A⋆ = ŵxu
−
h |N+ 1

2
− ŵxu

+
h | 12 − ŵ(uh)

−
x |N+ 1

2
+ ŵ(uh)

+
x | 1

2
(17b)

− ûxw
−
h |N+ 1

2
+ ûxw

+
h | 12 + û(wh)

−
x |N+ 1

2
− û(wh)

+
x | 1

2
.

Collecting each of the boundary flux (7)–(10) into the expression of A⋆ in (17b), and denoting
the corresponding result, respectively, as A(i),A(ii),A(iii),A(iv), we get

A(i) =−A0 − f0 · (wh)
+
x | 1

2
+ g0 · (wh)

−
x |N+ 1

2
+ f1w

+
h | 12 − g1w

−
h |N+ 1

2

− k1
h
[[(uh)x]](uh)

−
x |N+ 1

2
+

k2
h3

[[uh]]u
+
h | 12 ,

A(ii) =−A0 − f0 · (wh)
+
x | 1

2
+ g0 · (wh)

−
x |N+ 1

2
+ f2 · (uh)+x | 1

2
− g2 · (uh)−x |N+ 1

2
,

A(iii) =−A0 + f1w
+
h | 12 − g1w

−
h |N+ 1

2
− f3u

+
h | 12 + g3u

−
h |N+ 1

2
,

A(iv) =−A0 − f0 · (wh)
+
x | 1

2
+ g1w

−
h |N+ 1

2
+ f2 · (uh)+x | 1

2
+ g3u

−
h |N+ 1

2
.

Clearly, when fi = 0, gi = 0, i = 0, 1, 2, 3, we have

[[uh ]] 1
2
= (uh)

+
1
2

, [[(uh)x ]]N+ 1
2
= −

(
(uh)x

)−
N+ 1

2
,
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and
A(i) = −A0 +

k1
h

((
(uh)x

)−
N+ 1

2

)2
+

k2
h3

(
(uh)

+
1
2

)2

,

A(ii) = A(iii) = A(iv) = −A0.

(18)

Since k1, k2 are positive constants, we insert (18) into (16) to find that

L(uh, wh) ≥ 0,

which is valid for all four kinds of boundary conditions in (4a)–(4d). This, together with (15),
implies the stability result (13).

2.3 Optimal error estimates
In this subsection, we present the optimal error estimates of the UWLDG scheme. To do that,
we introduce several projections that are needed in the error analysis.

2.3.1 Projections
Different projections are needed in dealing with different boundary conditions with the goal of
eliminating as many projection errors as possible. Given u ∈ H2(Ωh), we define three kinds of
one-dimensional projection onto Vh as follows.

• PM : For k ≥ 1, j ∈ ZN , PM |Ij ∈ Pk(Ij), such that, for j = 1, . . . , N ,∫
Ij

(u− PMu)vh dx = 0, ∀vh ∈ Pk−2(Ij), (19a)

PMu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PMu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
. (19b)

• PD: For k ≥ 1, j ∈ ZN , PD|Ij ∈ Pk(Ij), such that, for j = 1, . . . , N − 1,∫
Ij

(u− PDu)vh dx = 0, ∀vh ∈ Pk−2(Ij), (20a)

PDu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PDu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
, (20b)

and for j = N , ∫
IN

(u− PDu)vh dx = 0, ∀vh ∈ Pk−2(IN ), (20c)

PDu
(
x+
N− 1

2

)
= u

(
xN− 1

2

)
, PDu

(
x−
N+ 1

2

)
= u

(
xN+ 1

2

)
. (20d)

• PN : For k ≥ 2, j ∈ ZN , PN |Ij ∈ Pk(Ij), such that, for j = 2, . . . , N ,∫
Ij

(u− PNu)vh dx = 0, ∀vh ∈ Pk−2(Ij), (21a)

PNu
(
x+
j− 1

2

)
= u

(
xj− 1

2

)
,
(
PNu

)
x

(
x−
j+ 1

2

)
= ux

(
xj+ 1

2

)
, (21b)
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and for j = 1, ∫
I1

(u− PNu)vh dx = 0, ∀vh ∈ Pk−2(I1), (21c)

(PNu)x
(
x+1

2

)
= ux

(
x 1

2

)
, (PNu)x

(
x−3

2

)
= ux

(
x 3

2

)
. (21d)

It is easy to verify that all these projections are well defined and have the following optimal
approximation property; see [28, 8].

Lemma 2.4. Let π be any projection defined by (19)–(21), then for u ∈ Hk+1(Ωh), there holds

∥u− πu∥+ hs∥u− πu∥s + h
1
2 ∥u− πu∥Γh ≤ Chk+1∥u∥k+1, (22)

where ∥v∥Γh =
(∑N

j=1

[
(v−

j+ 1
2

)2 + (v+
j− 1

2

)2
]) 1

2 , 1 ≤ s ≤ k is an integer and C is a positive
constant independent of h.

2.3.2 Main results
Without loss of generality, we firstly state the error estimate result for the case of the Dirichlet
B.C. (4a), and the results for other three boundary conditions will be discussed in Remark 2.6
and Remark 2.7.

Theorem 2.5. Let u be the exact solution of the fourth-order equation (3) with the boundary
condition (4a), w = uxx; and assume u is smooth enough, e.g., ∥u∥k+3, ∥ut∥k+1 are bounded
uniformly for any time t. Let uh, wh be solutions of the UWLDG scheme (5) with numerical
fluxes (6)–(7). Then, for k ≥ 1, we have the following optimal error estimates:

∥u(t)− uh(t)∥+
∫ t

0
∥w(τ)− wh(τ)∥ dτ ≤ Chk+1, (23)

where C is a constant independent of h and dependent on ∥u∥k+3, ∥ut∥k+1, and t.

Proof. Let eu = u−uh, ew = w−wh. Since u and w also satisfy the UWLDG scheme (5)–(7),
we sum over j for the cell error equations to get(

(eu)t, p
)
Ωh

+B(ew, p) = 0, (24a)
(ew, q)Ωh

−B(eu, q) = 0, (24b)

where B(·, ·) is defined as follows: for v, z ∈ H2(Ωh)

B(v, z) =
N∑
j=1

(v, zxx)j +
N∑
j=1

(
v̂x z

−|j+ 1
2
− v̂x z

+|j− 1
2
− v̂ z−x |j+ 1

2
+ v̂ z+x |j− 1

2

)
,

and

(
êu, (̂eu)x, êw, (̂ew)x

)
j+ 1

2

=


(
0, 0, e+w , (ew)

+
x + k2

h3 [[uh]]
)

1
2
, j = 0,(

e+u , (eu)
−
x , e+w , (ew)

−
x

)
j+ 1

2
, j = 1, . . . , N−1,(

0, 0, e−w − k1
h [[(uh)x]], (ew)

−
x

)
N+ 1

2
, j = N.
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Notice that [[uh]] 1
2
= −(eu)

+
1
2

and [[(uh)x]]N+ 1
2
= ((eu)x)

−
N+ 1

2

, then

(̂ew)x
∣∣
1
2
=
(
(ew)x

)+
1
2
− k2

h3
(eu)

+
1
2

, êw
∣∣
N+ 1

2
=
(
ew
)−
N+ 1

2
− k1

h

(
(eu)x

)−
N+ 1

2
.

Next, we denote

eu = (u− PMu)− (uh − PMu) = ηu − ξu,

ew = (w − PMw)− (wh − PMw) = ηw − ξw,

and let

(
η̂u, (̂ηu)x, η̂w, (̂ηw)x

)
j+ 1

2

=



(
0, 0, η+w , (ηw)

+
x − k2

h3 η
+
u

)
1
2

, j = 0,(
η+u , (ηu)

−
x , η

+
w , (ηw)

−
x

)
j+ 1

2
, j = 1, . . . , N−1,(

0, 0, η−w − k1
h (ηu)

−
x , (ηw)

−
x

)
N+ 1

2

, j = N,

(
ξ̂u, (̂ξu)x, ξ̂w, (̂ξw)x

)
j+ 1

2

=



(
0, 0, ξ+w , (ξw)

+
x − k2

h3 ξ
+
u

)
1
2

, j = 0,(
ξ+u , (ξu)

−
x , ξ

+
w , (ξw)

−
x

)
j+ 1

2
, j = 1, . . . , N−1,(

0, 0, ξ−w − k1
h (ξu)

−
x , (ξw)

−
x

)
N+ 1

2

, j = N,

Then, taking p = ξu, q = ξw and adding the two equations in (24), we get

LHS = RHS,

where

LHS =
(
(ξu)t, ξu

)
Ωh

+(ξw, ξw)Ωh
+B(ξw, ξu)−B(ξu, ξw),

RHS =
(
(ηu)t, ξu

)
Ωh

+(ηw, ξw)Ωh
+B(ηw, ξu)−B(ηu, ξw).

Using integration by parts and a simple calculation, we can get

LHS =
(
(ξu)t, ξu

)
Ωh

+(ξw, ξw)Ωh
+

k2
h3

(
(ξu)

+
1
2

)2

+
k1
h

((
(ξu)x

)−
N+ 1

2

)2
, (25)

Besides, the definition of the projection PM implies that

RHS=
(
(ηu)t, ξu

)
Ωh

+(ηw, ξw)Ωh
−
(
(ηw)x

)+
1
2
(ξu)

+
1
2

− (ηw)
−
N+ 1

2

(
(ξu)x

)−
N+ 1

2
. (26)

Using Young’s inequality, we obtain

−
(
(ηw)x

)+
1
2
(ξu)

+
1
2

≤ h3

2k2

((
(ηw)x

)+
1
2

)2
+

k2
2h3

(
(ξu)

+
1
2

)2

,

−(ηw)
−
N+ 1

2

(
(ξu)x

)−
N+ 1

2
≤ h

2k1

((
ηw
)−
N+ 1

2

)2
+

k1
2h

((
(ξu)x

)−
N+ 1

2

)2
.

(27)

Consequently, by the trace inequality and approximation property of the projection PM in (22),
we get ∣∣ ((ηw)x)+1

2

∣∣ ≤ Chk−
1
2 ∥w∥k+1,

∣∣(ηw)−N+ 1
2

∣∣ ≤ Chk+
1
2 ∥w∥k+1. (28)
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Thus, it follows from Cauchy–Schwarz inequality and (25)–(28) that

1

2

d

dt
∥ξu(t)∥2 + ∥ξw(t)∥2 ≤ Chk+1∥ξu(t)∥+ Chk+1∥ξw(t)∥+ Ch2k+2.

A simple application of the Gronwall’s inequality gives us

∥ξu(t)∥+
∫ t

0
∥ξw(τ)∥ dτ ≤ Chk+1.

Then, by the triangle inequality we have

∥eu(t)∥+
∫ t

0
∥ew(τ)∥ dτ ≤ Chk+1,

where C is a constant depending on ∥u∥k+3, ∥ut∥k+1 and t, but is independent of h. This
completes the proof of Theorem 2.5.

Remark 2.6. For the fourth-order problem (3) with the G-Dirichlet B.C. (4b), the UWLDG
solutions of (5) with numerical fluxes (6) and (8) satisfy the optimal error estimate result (23)
for k ≥ 2, which can be proved by performing the similar arguments as in the proof of Theorem
2.5 and using the projection PN . For k = 1, we can not get the second order error estimate,
indeed, only 3/2th order is observed in the numerical experiment for both L2 error of u and w;
see Table 2 and Table 3 in Section 4.

Remark 2.7. For the fourth-order problem (3) with the Neumann B.C. (4c) and the mixed
B.C. (4d), consider the UWLDG solutions of (5) with interior flux (6) and the boundary
fluxes (9)–(10), the optimal error estimates in (23) for k ≥ 1 can also be proved by using the
projections PD and PM , respectively.

3 The UWLDG method for the 2D case
In this section, we consider the UWLDG method for the two-dimensional time-dependent
fourth-order problem (1) with boundary conditions (2a)–(2d). Let Ω = [a1, b1] × [a2, b2] be a
bounded rectangular domain in R2, and denote

ΓN = {(x, y) ∈ ∂Ω|x = a1 or y = a2}, ΓD = {(x, y) ∈ ∂Ω|x = b1 or y = b2}.

We set νm, m = l, b, r, t, are the unit outward normal vectors of the left, bottom, right and top
boundary side of Ω respectively, i.e.,

νl = (−1, 0), νb = (0,−1), νr = (1, 0), νt = (0, 1).

3.1 The UWLDG scheme
Similar to the one-dimensional case, we rewrite (1) into a second order system

ut +∆w = 0,

w −∆u = 0.

To define the UWLDG method clearly, let us first introduce some notation.

11



3.1.1 Notation
As shown in Figure 1, let Ωh = {Kij = Ii × Jj , i = 1, . . . , Nx, j = 1, . . . , Ny} be a partition of
Ω with the shape-regular rectangle element Kij . We denote ΩI

h and Ω0
h as the sets of all the

interelements and the boundary elements, respectively. We denote Eh as the set of all faces of
the partition Ωh, and E I

h , E 0
h as the sets of interior faces e (i.e., e is shared by two elements in

Ωh) and boundary faces e (i.e., e lies on ∂Ω), respectively. In particular, E 0,l
h , E 0,b

h , E 0,r
h and

E 0,t
h represent the sets of boundary faces e that lie on the left, bottom, right and top side of

the domain Ω, respectively.

Figure 1: The 2D mesh Ωh

The boundary and the diameter of K are denoted as ∂K and hK , and set h = maxK hK .
The finite element space associated with the mesh Ωh is of the form

Wh =
{
v ∈ L2(Ω) : v|K ∈ Qk(K), ∀K ∈ Ωh

}
,

where Qk(K) is the space of tensor product of polynomials of degree at most k in each variable
of x = (x, y) in K.

3.1.2 The UWLDG scheme
The UWLDG method is given as follows: to seek uh, wh ∈ Wh, such that(

(uh)t , p
)
K
+ (wh,∆p)K + ⟨∇̂w · n, p⟩∂K − ⟨ŵ,∇p · n⟩∂K = 0, (30a)

(wh, q)K − (uh,∆q)K − ⟨∇̂u · n, q⟩∂K + ⟨û,∇q · n⟩∂K = 0, (30b)

holds for all p, q ∈ Wh and K ∈ Ωh. Here n denotes the unit outward normal vector to ∂K,
and for any v, z ∈ H2(Ωh)

(v, z)K =

∫
K
v(x, y)z(x, y) dxdy, ⟨v,∇z · n⟩∂K =

∫
∂K

v(s)
(
∇z(s) · n

)
ds.
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For the above boundary integral, if v or z is not single-valued on the element faces, we take its
value from interior of K and restrict it on ∂K.

To complete the definition of the UWLDG method, we need to define the numerical fluxes
û, ∇̂u, ŵ and ∇̂w. To do that, firstly, for a possibly discontinuous function ω(x, y), we define
ω± on the vertical and horizontal edge respectively as

ω±
i+ 1

2
,y
= ω

(
x±
i+ 1

2

, y
)
= lim

ε→0±
ω
(
xi+ 1

2
+ ε, y

)
, i = 0, 1, . . . , Nx,

ω±
x,j+ 1

2

= ω
(
x, y±

j+ 1
2

)
= lim

ε→0±
ω
(
x, yj+ 1

2
+ ε
)
, j = 0, 1, . . . , Ny.

We denote(
∇ω
)±
i+ 1

2
,y
=
(
(ωx)

±
i+ 1

2
,y
, (ωy)

±
i+ 1

2
,y

)T
,
(
∇ω
)±
x,j+ 1

2
=
(
(ωx)

±
x,j+ 1

2

, (ωy)
±
x,j+ 1

2

)T
,

and set the jump value as

[[ω]]i+ 1
2
,y = ω+

i+ 1
2
,y
− ω−

i+ 1
2
,y
, [[ω]]x,j+ 1

2
= ω+

x,j+ 1
2

− ω−
x,j+ 1

2

.

Then, the numerical fluxes are defined as follows. At interior faces e ∈ E I
h , we always choose

û
∣∣
e
= u+h

∣∣
e
, ∇̂u

∣∣
e
= (∇uh)

−∣∣
e
, ŵ

∣∣
e
= w+

h

∣∣
e
, ∇̂w

∣∣
e
= (∇wh)

− ∣∣
e
. (31)

For the numerical flux on the boundary face e ∈ E 0
h , we firstly consider the Dirichlet B.C. (2a),

since some penalty terms are involved.
Case (I) For the Dirichlet B.C. (2a), we define:
• the numerical flux û

∣∣
e

as

û
∣∣
e
= PM (gD)

∣∣
e
, ∀e ∈ E 0

h ; (32a)

• the numerical flux ∇̂u
∣∣
e

as

∇̂u · νm

∣∣
e
= PM

(
gN
)∣∣

e
, ∀e ∈ E 0,m

h , m = l, b, r, t; (32b)

• the numerical flux ŵ
∣∣
e

as

ŵ
∣∣
e
= w+

h

∣∣
e
, ∀e ∈ E 0,l

h ,E 0,b
h ,

ŵ
∣∣
e
= w−

h

∣∣
e
+

k1
h

[[(uh)x ]]
∣∣
e
, ∀e ∈ E 0,r

h ,

ŵ
∣∣
e
= w−

h

∣∣
e
+

k2
h

[[(uh)y ]]
∣∣
e
, ∀e ∈ E 0,t

h ;

(32c)

• the numerical flux ∇̂w
∣∣
e

as

∇̂w · νl

∣∣
e
= (∇wh)

+ · νl

∣∣
e
+

k3
h3

[[uh ]]
∣∣
e
, ∀e ∈ E 0,l

h ,

∇̂w · νb

∣∣
e
= (∇wh)

+ · νb

∣∣
e
+

k4
h3

[[uh ]]
∣∣
e
, ∀e ∈ E 0,b

h ,

∇̂w · νm

∣∣
e
= (∇wh)

− · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t;

(32d)
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where k1, k2, k3, k4 are positive constants. To ensure the penalty terms in (32c) and (32d) are
well-defined, we set

u−h
∣∣
e
:= PM (gD)|e, ∀e ∈ E 0,l

h , E 0,b
h ,(

(uh)x
)+∣∣

e
:= PM

(
gN
)
|e, ∀e ∈ E 0,r

h ,(
(uh)y

)+∣∣
e
:= PM

(
gN
)
|e, ∀e ∈ E 0,t

h .

The numerical fluxes for other three types of boundary conditions are given in the following
remark.

Remark 3.1. For boundary conditions (2b)–(2d), we can use the numerical flux (31) for
interior face e ∈ E I

h together with the following boundary flux for e ∈ E 0
h .

Case (II) For the G-Dirichlet B.C. (2b), we define:

û
∣∣
e
= PN (gD)

∣∣
e
, ŵ

∣∣
e
= PN (hD)

∣∣
e
, ∀e ∈ E 0

h ,

∇̂u· νm

∣∣
e
=(∇uh)

+ · νm

∣∣
e
, ∇̂w· νm

∣∣
e
=(∇wh)

+ · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b,

∇̂u· νm

∣∣
e
=(∇uh)

− · νm

∣∣
e
, ∇̂w· νm

∣∣
e
=(∇wh)

− · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t.

(33)

Case (III) For the Neumann B.C. (2c), we define:

û
∣∣
e
= u+h

∣∣
e
, ŵ

∣∣
e
= w+

h

∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b,

û
∣∣
e
= u−h

∣∣
e
, ŵ

∣∣
e
= w−

h

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t,

∇̂u· νm

∣∣
e
= PD(gN )

∣∣
e
, ∇̂w· νm

∣∣
e
= PD(hN )

∣∣
e
, ∀e ∈ E 0,m

h ,m = l, b, r, t.

(34)

Case (IV) For the mixed B.C. (2d), we define: for e ∈ E 0,m
h , m = l, b,

û
∣∣
e
=u+h

∣∣
e
, ∇̂u· νm

∣∣
e
=PM (gN )

∣∣
e
, ŵ

∣∣
e
=w+

h

∣∣
e
, ∇̂w· νm

∣∣
e
=PM (hN )

∣∣
e
, (35a)

and for e ∈ E 0,m
h , m = r, t,

û
∣∣
e
= PM (gD)

∣∣
e
, ∇̂u · νm

∣∣
e
= (∇uh)

− · νm

∣∣
e
,

ŵ
∣∣
e
= PM (hD)

∣∣
e
, ∇̂w · νm

∣∣
e
= (∇wh)

− · νm

∣∣
e
.

(35b)

In the following subsections, we will give stability analysis and error estimate results of
the above UWLDG schemes. Before that, for easy presentation, we introduce several short
notations. Firstly, for η ∈ H2(Ωh) and p ∈ Wh, we define

BK(η, p) = (η,∆p)K + ⟨∇̂η · n, p⟩∂K − ⟨η̂,∇p · n⟩∂K , ∀ K ∈ Ωh. (36)

Then, for Kij ∈ ΩI
h, we specifically have

BKij (η, p) =
8∑

m=0

T ij
m (η, p), i=2, 3, . . . , Nx − 1, j=2, 3, . . . , Ny − 1, (37)
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where

T ij
0 (η, p) =

∫
Kij

η (pxx + pyy) dxdy, (38)

T ij
1 (η, p)=−

∫
Jj

η(x+
i+ 1

2

, y) px(x
−
i+ 1

2

, y) dy, T ij
2 (η, p)=

∫
Jj

η(x+
i− 1

2

, y) px(x
+
i− 1

2

, y) dy,

T ij
3 (η, p)=−

∫
Ii

η(x, y+
j+ 1

2

) py(x, y
−
j+ 1

2

) dx, T ij
4 (η, p)=

∫
Ii

η(x, y+
j− 1

2

) py(x, y
+
j− 1

2

) dx,

T ij
5 (η, p)=

∫
Jj

ηx(x
−
i+ 1

2

, y) p(x−
i+ 1

2

, y) dy, T ij
6 (η, p)=−

∫
Jj

ηx(x
−
i− 1

2

, y) p(x+
i− 1

2

, y) dy,

T ij
7 (η, p)=

∫
Ii

ηy(x, y
−
j+ 1

2

) p(x, y−
j+ 1

2

) dx, T ij
8 (η, p)=−

∫
Ii

ηy(x, y
−
j− 1

2

) p(x, y+
j− 1

2

) dx.

Next, for each K ∈ Ωh, p, q, φ ∈ Wh, we introduce

H∂K(p, q) = ⟨wh,∇uh · n⟩∂K − ⟨uh,∇wh · n⟩∂K + ⟨∇̂w · n, p⟩∂K
− ⟨ŵ,∇p · n⟩∂K − ⟨∇̂u · n, q⟩∂K + ⟨û,∇q · n⟩∂K ,

(39)

and

S(φ) =

Ny∑
j=1

∫
Jj

k1
h

(
φx

(
x−
Nx+

1
2

, y
))2

+
k3
h3

(
φ
(
x+1

2

, y
))2

dy

+

Nx∑
i=1

∫
Ii

k2
h

(
φy

(
x, y−

Ny+
1
2

))2

+
k4
h3

(
φ
(
x, y+1

2

))2

dx.

(40)

3.2 Stability analysis
In this subsection, we show the L2-stability of the UWLDG method (30) with the interior flux
(31) and the boundary fluxes (32)–(35).

Lemma 3.2. If the boundary condition (2a) is homogeneous, i.e., gD = 0, gN = 0, on ∂Ω,
then the numerical fluxes defined by (31) and (32) satisfy∑

K∈Ωh

H∂K(uh, wh) = S(uh) ≥ 0, (41)

where S(·) is defined by (40).

Proof. Firstly, we notice that∑
K∈Ωh

H∂K(uh, wh) =
∑

K∈Ωh

( ∑
e∈E I

h

H∂K∩e(uh, wh) +
∑
e∈E 0

h

H∂K∩e(uh, wh)
)
. (42)

For any e ∈ E I
h , we suppose e = ∂K1 ∩ ∂K2, by (31), it is easy to check that

H∂K1∩e(uh, wh) +H∂K2∩e(uh, wh) = 0,
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hence, ∑
K∈Ωh

∑
e∈E I

h

H∂K∩e(uh, wh) = 0. (43)

For e ∈ E 0
h , without loss of generality, we assume e ∈ E 0,b

h , i.e., e is the bottom boundary face
of some element Ki1, i ∈ {1, 2, . . . , Nx}. According to the definition of the boundary flux (32),
we have

û
∣∣
e
=PM

(
gD
)∣∣

e
= 0, ∇̂u · νb

∣∣
e
=PM

(
gN
)∣∣

e
= 0, ŵ

∣∣
e
=w+

h

∣∣
e
,

∇̂w· νb

∣∣
e
=(∇wh)

+ · νb

∣∣
e
+
k4
h3

(
u+h −PM (gD)

)∣∣∣
e
= (∇wh)

+ · νb

∣∣
e
+

k4
h3

u+h
∣∣
e
.

Therefore,

H∂Ki1∩e(uh, wh) = ⟨w+
h ,∇u+h · νb⟩e − ⟨u+h ,∇w+

h · νb⟩e + ⟨∇w+
h · νb, u

+
h ⟩e

− ⟨w+
h ,∇u+h · νb⟩e +

k4
h3

⟨u+h , u
+
h ⟩e

=
k4
h3

∫
Ii

(
uh
(
x, y+1

2

))2

dx.

Similarly, we can derive that, for i = 1, . . . , Nx, j = 1, . . . , Ny,

H∂KiNy∩e(uh, wh)=
k2
h

∫
Ii

(
(uh)y

(
x, y−

Ny+
1
2

))2

dx, e ∈ E 0,t
h ,

H∂K1j∩e(uh, wh) =
k3
h3

∫
Jj

(
uh
(
x+1

2

, y
))2

dy, e ∈ E 0,l
h ,

H∂KNxj∩e(uh, wh)=
k1
h

∫
Jj

(
(uh)x

(
x−
Nx+

1
2

, y
))2

dy, e ∈ E 0,r
h .

Therefore, summing over K ∈ Ωh and e ∈ E 0
h , we obtain∑

K∈Ωh

∑
e∈E 0

h

H∂K∩e(uh, wh)= S(uh). (44)

Since the penalty parameters ki > 0, i = 1, 2, 3, 4, then (41) follows by (42), (43) and (44).

Similar to Lemma 3.2, we have the following lemma for other three types of boundary
conditions.

Lemma 3.3. If the boundary conditions (2b)–(2d) are homogeneous, then the numerical fluxes
defined by (31) and (33)–(35) satisfy∑

K∈Ωh

H∂K(uh, wh) = 0.

Theorem 3.4. For the two-dimensional fourth-order equation (1) with the homogeneous bound-
ary conditions in (2a)–(2d), the UWLDG solutions uh, wh of the scheme (30) with the interior
flux (31) and the corresponding boundary fluxes (32)–(35) satisfy

1

2

d

dt
∥uh(t)∥2 + ∥wh(t)∥2 ≤ 0. (45)

16



Proof. Take (p, q) = (uh, wh) and add the two equations in (30), then use integration by parts,
we obtain

((uh)t, uh)K + (wh, wh)K +H∂K (uh, wh) = 0, ∀K ∈ Ωh,

where H∂K(·, ·) is defined by (39). We sum over all the elements K in Ωh to get

1

2

d

dt
∥uh(t)∥2 + ∥wh(t)∥2 +

∑
K∈Ωh

H∂K(uh, wh) = 0.

By Lemmas 3.2-3.3, we immediately arrive at the L2-stability result (45).

3.3 Optimal error estimates
In this subsection, we mainly consider optimal error estimates of the UWLDG scheme (30)
with numerical fluxes (31)–(32) for solving the two-dimensional problem (1) with the Dirichlet
B.C. (2a), since it is more involved. To this end, let us firstly introduce the semi-norm on the
boundary: for ∀v ∈ Hℓ(Ωh), ℓ ≥ 2,

∥v∥∂K :=

(∫
Jj

[
(v−

i+ 1
2
,y
)2 + (v+

i− 1
2
,y
)2
]
dy +

∫
Ii

[
(v−

x,j+ 1
2

)2 + (v+
x,j− 1

2

)2
]
dx

) 1
2

.

Then, we denote ∥∇v∥∂K =
(
∥vx∥2∂K + ∥vy∥2∂K

) 1
2 , and for any subset K̃ ⊆ Ωh,

∥v∥
∂K̃

=
( ∑

K∈K̃

∥v∥2∂K
) 1

2
, ∥∇v∥

∂K̃
=
( ∑

K∈K̃

∥∇v∥2∂K
) 1

2
, ∥v∥

ℓ,K̃
=
( ∑

K∈K̃

∥v∥2ℓ,K
) 1

2
.

The following trace and inverse inequalities [13] are useful in our analysis.

Lemma 3.5. For any v ∈ H1(K), there exists a positive constant C, such that

∥v∥2∂K ≤ C∥v∥K∥v∥1,K ,

where C is independent of the mesh size h.

Lemma 3.6. For any q ∈ Qk(K), there exist a positive constants C, such that

∥q∥∂K ≤ Ch
− 1

2
K ∥q∥K , ∥∇q∥K ≤ Ch−1

K ∥q∥K ,

where ∥∇q∥K =
( ∫

K ∇q · ∇q dx
) 1

2 , C is independent of the mesh size h.

3.3.1 Projection and its properties
For two-dimensional Cartesian meshes, the projection can be constructed as the tensor product
of one-dimensional projections. We define Π : H2(Ωh) → Wh as

Πu := PMx ⊗ PMyu , (46)
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where PM is the one-dimensional projection given by (19a)–(19b), and the subscripts x and y
indicate that the projection PM is applied with respect to the corresponding variable. Specifi-
cally, for all Kij = Ii × Jj = (xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
) and ∀vh ∈ Qk−2(K), Πu satisfies the

following identities ∫
Kij

Πu(x, y)vh(x, y)dxdy =

∫
Kij

u(x, y)vh(x, y)dxdy, (47a)∫
Ii

Πu
(
x, y+

j− 1
2

)
vh
(
x, y+

j− 1
2

)
dx =

∫
Ii

u
(
x, yj− 1

2

)
vh
(
x, y+

j− 1
2

)
dx, (47b)∫

Jj

Πu
(
x+
i− 1

2

, y
)
vh
(
x+
i− 1

2

, y
)
dy =

∫
Jj

u
(
xi− 1

2
, y
)
vh
(
x+
i− 1

2

, y
)
dy, (47c)∫

Ii

(
Πu
)
y

(
x, y−

j+ 1
2

)
vh
(
x, y−

j+ 1
2

)
dx =

∫
Ii

uy
(
x, yj+ 1

2

)
vh
(
x, y−

j+ 1
2

)
dx, (47d)∫

Jj

(
Πu
)
x

(
x−
i+ 1

2

, y
)
vh
(
x−
i+ 1

2

, y
)
dy =

∫
Jj

ux
(
xi+ 1

2
, y
)
vh
(
x−
i+ 1

2

, y
)
dy, (47e)

Πu
(
x+
i− 1

2

, y+
j− 1

2

)
= u

(
xi− 1

2
, yj− 1

2

)
, (47f)(

Πu
)
x

(
x−
i+ 1

2

, y+
j− 1

2

)
= ux

(
xi+ 1

2
, yj− 1

2

)
, (47g)(

Πu
)
y

(
x+
i− 1

2

, y−
j+ 1

2

)
= uy

(
xi− 1

2
, yj+ 1

2

)
, (47h)(

Πu
)
xy

(
x−
i+ 1

2

, y−
j+ 1

2

)
= uxy

(
xi+ 1

2
, yj+ 1

2

)
. (47i)

Clearly, the following relationship between Π and PM holds:

Proposition 3.7. For ∀Kij ∈ Ωh, on the boundary ∂Kij, we have

Πu(x+
i− 1

2

, y) = PMy

(
u(xi− 1

2
, y)
)
, (Πu)x(x

−
i+ 1

2

, y) = PMy

(
ux(xi+ 1

2
, y)
)
, y ∈ Jj ;

Πu(x, y+
j− 1

2

) = PMx

(
u(x, yj− 1

2
)
)
, (Πu)y(x, y

−
j+ 1

2

) = PMx

(
uy(x, yj+ 1

2
)
)
, x ∈ Ii.

Using a similar argument as that in [28, Lemma 6.1], it is easy to check the existence and
uniqueness of the projection Π, and we also have the following approximation property.

Lemma 3.8. Assume u ∈ Hs(Ωh), s ≥ 2, then there exists a unique Πu ∈ Wh satisfying (47).
Moreover, there holds

∥u−Πu∥K + hℓ ∥u−Πu∥ℓ,K + h
1
2 ∥u−Πu∥∂K ≤ Chmin{k+1, s}∥u∥s,K ,

where 1 ≤ ℓ ≤ min{k + 1, s} is an integer and C is a constant independent of h.

3.3.2 Main results
We are now ready to state the error estimate result of the UWLDG scheme solving (1) with
the Dirichlet B.C. (2a).

Theorem 3.9. Let u be the exact solution of the fourth order equation (1) with the Dirichlet
B.C. (2a), w = ∆u; and assume u is smooth enough, e.g., ∥u∥k+5, ∥ut∥k+1 are bounded
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uniformly for any time t. Let uh, wh be solutions of the UWLDG scheme (30) with numerical
fluxes (31)–(32). For k ≥ 1, we have

∥u(t)− uh(t)∥+
∫ t

0
∥w(τ)− wh(τ)∥ dτ ≤ Chk+1, (48)

where C is a constant independent of h and dependent on ∥u∥k+5, ∥ut∥k+1, and t.

The proof of Theorem 3.9 is divided into the following five steps:
Step 1. The error equation. As usual, we denote

eu = u− uh, ew = w − wh.

Since the exact solution u and w satisfy the following weak formulation:

(ut, p)K + (w,∆p)K + ⟨∇w · n, p⟩∂K − ⟨w,∇p · n⟩∂K = 0,

(w, q)K − (u,∆q)K − ⟨∇u · n, q⟩∂K + ⟨u,∇q · n⟩∂K = 0,

then we can get the cell error equation as(
(eu)t, p

)
K
+ (ew,∆p)K + ⟨∇̂ew · n, p⟩∂K − ⟨êw,∇p · n⟩∂K = 0, (49a)

(ew, q)K − (eu,∆q)K − ⟨∇̂eu · n, q⟩∂K + ⟨êu,∇q · n⟩∂K = 0, (49b)

where

êu = u− û, ∇̂eu · n = (∇u− ∇̂u) · n,

êw = w − ŵ, ∇̂ew · n = (∇w − ∇̂w) · n.

Step 2. The error decomposition. Denote eu = ηu − ξu, ew = ηw − ξw with

ηu = u−Πu, ξu = uh −Πu, ηw = w −Πw, ξw = wh −Πw.

• At the interior face e ∈ E I
h , we naturally have

η̂u
∣∣
e
= η+u

∣∣
e
, ξ̂u

∣∣
e
= ξ+u

∣∣
e
, ∇̂ηu

∣∣
e
= (∇ηu)

−∣∣
e
, ∇̂ξu

∣∣
e
= (∇ξu)

−∣∣
e
,

η̂w
∣∣
e
= η+w

∣∣
e
, ξ̂w

∣∣
e
= ξ+w

∣∣
e
, ∇̂ηw

∣∣
e
= (∇ηw)

−∣∣
e
, ∇̂ξw

∣∣
e
=(∇ξw)

−∣∣
e
.

(50)

• At the boundary face e ∈ E 0
h , we specially let

η̂u
∣∣
e
:= êu

∣∣
e
, ξ̂u

∣∣
e
:= 0, ∀e ∈ E 0

h , (51a)

∇̂ηu · νm

∣∣
e
:=∇̂eu · νm

∣∣
e
, ∇̂ξu · νm

∣∣
e
:= 0, ∀e ∈ E 0,m

h ,m = l, b, r, t, (51b)

η̂w
∣∣
e
:= η+w

∣∣
e
, ξ̂w

∣∣
e
:= ξ+w

∣∣
e
, ∀e ∈ E 0,l

h ,E 0,b
h ,

η̂w
∣∣
e
:=η−w

∣∣
e
, ξ̂w

∣∣
e
:= ξ−w

∣∣
e
+
k1
h

[[(uh)x ]]
∣∣
e
, ∀e ∈ E 0,r

h ,

η̂w
∣∣
e
:=η−w

∣∣
e
, ξ̂w

∣∣
e
:= ξ−w

∣∣
e
+
k2
h

[[(uh)y ]]
∣∣
e
, ∀e ∈ E 0,t

h ,

(51c)
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∇̂ηw · νl

∣∣
e
:=(∇ηw)

+ · νl

∣∣
e
, ∇̂ξw · νl

∣∣
e
:=(∇ξw)

+ · νl

∣∣
e
+
k3
h3

[[uh ]]
∣∣
e
, ∀e ∈ E 0,l

h ,

∇̂ηw · νb

∣∣
e
:=(∇ηw)

+ · νb

∣∣
e
, ∇̂ξw · νb

∣∣
e
:= (∇ξw)

+ · νb

∣∣
e
+
k4
h3

[[uh ]]
∣∣
e
, ∀e ∈ E 0,b

h ,

∇̂ηw · νm

∣∣
e
:= (∇ηw)

− · νm

∣∣
e
, ∇̂ξw · νm

∣∣
e
:= (∇ξw)

− · νm

∣∣
e
, ∀e ∈ E 0,m

h ,m = r, t.

(51d)

Based on the above decomposition, for all K ∈ Ωh, we have

êu
∣∣
∂K

= η̂u
∣∣
∂K

− ξ̂u
∣∣
∂K

, ∇̂eu · n
∣∣
∂K

= ∇̂ηu · n
∣∣
∂K

− ∇̂ξu · n
∣∣
∂K

,

êw
∣∣
∂K

= η̂w
∣∣
∂K

− ξ̂w
∣∣
∂K

, ∇̂ew · n
∣∣
∂K

= ∇̂ηw · n
∣∣
∂K

− ∇̂ξw · n
∣∣
∂K

.

Hence, we can decompose the cell error equation (49) into the following form(
(ξu)t, p

)
K
+BK (ξw, p) =

(
(ηu)t, p

)
K
+BK (ηw, p) ,

(ξw, q)K −BK (ξu, q) = (ηw, q)K −BK (ηu, q) ,
(52)

where BK(·, ·) is defined by (36). Now, we take p = ξu, q = ξw and add the two equations in
(52), after summing over K, we obtain,(

(ξu)t, ξu
)
Ωh

+ (ξw, ξw)Ωh
+ Λ1 =

(
(ηu)t, ξu

)
Ωh

+ (ηw, ξw)Ωh
+ Λ2, (53)

where

Λ1 =
∑

K∈Ωh

(
BK(ξw, ξu)−BK(ξu, ξw)

)
, Λ2 =

∑
K∈Ωh

(
BK(ηw, ξu)−BK(ηu, ξw)

)
.

Step 3. The estimate of Λ1. The estimate of Λ1 is given in the following lemma.

Lemma 3.10. Λ1 = S(ξu), where S(·) is defined by (40).

Proof. Firstly, for ∀K ∈ Ωh, using integration by parts, we obtain

Λ1 =
∑

K∈Ωh

(
BK(ξw, ξu)−BK(ξu, ξw)

)
=
∑

K∈Ωh

H̃∂K(ξu, ξw),

where

H̃∂K(ξu, ξw) = ⟨ξw,∇ξu · n⟩∂K − ⟨ξu,∇ξw · n⟩∂K + ⟨∇̂ξw · n, ξu⟩∂K
− ⟨ξ̂w,∇ξu · n⟩∂K − ⟨∇̂ξu · n, ξw⟩∂K + ⟨ξ̂u,∇ξw · n⟩∂K .

(54)

In addition, the property of projection Π in Proposition 3.7 implies that

PMy

(
u|e
)
= (Πu)+|e, e ∈ E 0,l

h , PMy(ux|e) =
(
(Πu)x

)−|e, e ∈ E 0,r
h ,

PMx

(
u|e) = (Πu)+|e, e ∈ E 0,b

h , PMx(uy|e) =
(
(Πu)y

)−|e, e ∈ E 0,t
h ,

which allows us to rewrite those terms with penalty in (51c)–(51d) as

ξ̂w
∣∣
e
= ξ−w

∣∣
e
− k1

h

(
(ξu)x

)−∣∣
e
, e ∈ E 0,r

h ,

ξ̂w
∣∣
e
= ξ−w

∣∣
e
− k2

h

(
(ξu)y

)−∣∣
e
, e ∈ E 0,t

h ,

∇̂ξw · νl

∣∣
e
=
(
∇ξw

)+ · νl

∣∣
e
+

k3
h3

ξ+u
∣∣
e
, e ∈ E 0,l

h ,

∇̂ξw · νb

∣∣
e
=
(
∇ξw

)+ · νb

∣∣
e
+

k4
h3

ξ+u
∣∣
e
, e ∈ E 0,b

h .
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Next, using a similar argument as that in the proof of (41), we can obtain∑
K∈Ωh

H̃∂K(ξu, ξw) = S(ξu).

This completes the proof of this lemma.

Step 4. The estimate of Λ2. The following polynomials preserving properties of degree up
to k + 2 is crucial for the estimates of Λ2, we list them in the following Lemma 3.11-3.12.

Lemma 3.11. If w ∈ Pk+2 (k ≥ 1), p ∈ Wh, we have

BK (ηw, p) = 0, ∀K ∈ ΩI
h, (55a)

∑
K∈Ω0

h

BK(ηw, p)=−
Nx∑
i=1

∫
Ii

(
ηw
(
x, y−

Ny+
1
2

)
py
(
x, y−

Ny+
1
2

)
+(ηw)y

(
x, y+1

2

)
p
(
x, y+1

2

))
dx

−
Ny∑
j=1

∫
Jj

(
ηw
(
x−
Nx+

1
2

, y
)
px
(
x−
Nx+

1
2

, y
)
+(ηw)x

(
x+1

2

, y
)
p
(
x+1

2

, y
))

dy.

(55b)

Proof. The proof of this lemma is provided in Appendix A.1.

Lemma 3.12. If u ∈ Pk+2 (k ≥ 1), q ∈ Wh, we have

BK (ηu, q) = 0, ∀K ∈ Ωh. (56)

Proof. The proof of this lemma is provided in Appendix A.2.

By Lemmas 3.11–3.12, we can obtain a superconvergent property of BK (ηw, p) and BK (ηu, q)
and show it in Lemmas 3.13 and 3.14, respectively.

Lemma 3.13. For p ∈ Wh and k ≥ 1, we have∑
K∈Ωh

|BK(ηw, p)| ≤ Chk+1∥w∥k+3∥p∥+ Ch2k+2∥w∥2k+1 +
1

2
S(p), (57)

where C is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.3.

Lemma 3.14. For q ∈ Wh and k ≥ 1, we have∑
K∈Ωh

|BK(ηu, q)| ≤ Chk+1∥u∥k+5∥q∥, (58)

where C is a constant independent of the mesh size h.

Proof. The proof of this lemma is provided in Appendix A.4.

Lemma 3.15. For Λ2, we have

|Λ2| ≤ Chk+1∥ξu∥+ Chk+1∥ξw∥+ Ch2k+2 +
1

2
S(ξu), (59)

where C depends on ∥u∥k+5, but is independent of the mesh size h.
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Proof. Taking p = ξu, q = ξw in Lemma 3.13 and Lemma 3.14, respectively, we can immediately
get (59).

Step 5. The proof of Theorem 3.9.

Proof. Recalling the error equation (53), and using the Cauchy–Schwarz inequality and ap-
proximation property of the projection Π in Lemma 3.8, we arrive at

1

2

d

dt
∥ξu(t)∥2 + ∥ξw(t)∥2 + Λ1 ≤ Chk+1 ∥ξu(t)∥+ Chk+1 ∥ξw(t)∥+ |Λ2|.

By Lemma 3.10 and Lemma 3.15, we immediately obtain

1

2

d

dt
∥ξu(t)∥2 + ∥ξw(t)∥2 ≤ Chk+1 ∥ξu(t)∥+ Chk+1 ∥ξw(t)∥+ Ch2k+2.

Then, by Gronwall’s inequality, we get

∥ξu(t)∥+
∫ t

0
∥ξw(τ)∥ dτ ≤ Chk+1,

and hence

∥eu(t)∥+
∫ t

0
∥ew(τ)∥ dτ ≤ Chk+1,

where C depends on ∥u∥k+5, ∥ut∥k+1 and t, but is independent of h.

Remark 3.16. For the fourth-order problem (1) with the G-Dirichlet B.C. (2b), for k ≥ 2, we
can derive the optimal error estimate (48) for the UWLDG scheme (30) with numerical fluxes
(31) and (33) by using the projection PNx ⊗ PNy . For k = 1, we cannot get the second order
error estimate, indeed, only 3/2th order is observed in the numerical experiment for both L2

error of u and w; see Table 2 and Table 3 in Section 4.

Remark 3.17. For the fourth-order problem (1) with the Neumann B.C. (2c) and the mixed
B.C. (2d), when the UWLDG scheme (30) with numerical fluxes (31), (34) and (35) are
considered, the optimal error estimates in (48) for k ≥ 1 can also be derived by using the
projection PDx ⊗ PDy and PMx ⊗ PMy , respectively.

4 Numerical examples
In this section, we present two numerical examples to confirm the theoretical convergence
results of the UWLDG method for time-dependent linear fourth-order initial-boundary value
problems. In all experiments, we use the four-stage singly diagonally implicit Runge–Kutta
method with third order of accuracy (SDIRK3) for time discretization. We test on uniform
meshes with final time T = 1.

Example 4.1. Consider the one-dimensional linear fourth order problem

ut + uxxxx = 0, u(x, 0) = sin(x), (x, t) ∈ [0, 2π]× (0, T ]

with boundary conditions as in (4a)–(4d) such that the exact solution is

u(x, t) = e−tsin(x).
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For the Dirichlet B.C. (4a), our computation is based on the flux (6)–(7). Table 4.1 lists
the L2 errors and orders for eu, ew using numerical fluxes with and without penalties. It is
observed that, for the case with penalty terms (the penalty parameters k1 = k2 = 1) the errors
achieve optimal (k + 1)th order accuracy for both ∥eu∥ and ∥ew∥, which is consistent with
Theorem 2.5. For the case without penalties (k1 = k2 = 0), loss of order for ∥eu∥ is observed,
especially for k = 2, order lost up to one and a half, which indicates that the penalty terms
are necessary for both theoretical analysis and numerical implementation.

Table 1: L2 errors ∥eu∥, ∥ew∥ and orders for Example 4.1 with the Dirichlet B.C. with
and without penalties using Pk polynomials on a uniform mesh of N cells.

N
with penalty without penalty

∥eu∥ order ∥ew∥ order ∥eu∥ order ∥ew∥ order

P1

10 5.67E-02 – 4.37E-02 – 9.22E-02 – 4.95E-02 –
20 1.35E-02 1.87 1.14E-02 1.93 2.99E-02 1.62 1.19E-02 2.05
40 3.93E-03 1.97 2.85E-03 2.00 9.87E-03 1.60 2.89E-03 2.04
80 9.87E-04 1.99 7.14E-04 2.00 3.35E-03 1.55 7.16E-04 2.01
160 2.47E-04 1.99 1.78E-04 2.00 1.15E-03 1.53 1.78E-04 2.00
320 6.18E-05 1.99 4.46E-05 2.00 4.05E-04 1.51 4.46E-05 2.00

P2

10 8.54E-04 – 8.05E-04 – 4.34E-02 – 1.62E-03 –
20 9.73E-05 3.13 9.92E-05 3.02 1.59E-02 1.44 1.66E-04 3.28
40 1.23E-05 2.98 1.23E-05 3.00 5.68E-03 1.48 1.71E-05 3.27
80 1.53E-06 2.99 1.53E-06 3.00 2.01E-03 1.49 1.89E-06 3.20
160 1.92E-07 3.00 1.92E-07 3.00 7.12E-04 1.49 2.13E-07 3.12
320 2.40E-08 3.00 2.40E-08 3.00 2.51E-04 1.49 2.53E-08 3.07

P3

10 2.25E-05 – 2.19E-05 – 9.86E-04 – 2.31E-05 –
20 1.37E-06 4.03 1.37E-06 3.99 8.85E-05 3.47 1.38E-06 4.06
40 8.59E-08 3.99 8.59E-08 3.99 7.85E-06 3.49 8.60E-08 4.01
80 5.37E-09 3.99 5.37E-09 3.99 6.94E-07 3.49 5.37E-09 4.00
160 3.35E-10 3.99 3.35E-10 3.99 6.14E-08 3.49 3.35E-10 4.00
320 2.09E-11 3.99 2.09E-11 3.99 5.42E-09 3.49 2.09E-11 4.00

For the G-Dirichlet, Neumann and mixed boundary conditions in (4b)–(4d), our computa-
tion is based on the flux choice (6) and (8)–(10). The errors ∥eu∥, ∥ew∥ and numerical orders,
for 1 ≤ k ≤ 3, are shown in Tables 2 and 3 respectively, which display the expected optimal
(k + 1)th convergence rates except for the case of the G-Dirichlet B.C. with P1 polynomials.
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Table 2: L2 errors ∥eu∥ and orders for Example 4.1 with the G-Dirichlet, Neumann and
mixed boundary conditions using Pk polynomials on a uniform mesh of N cells.

N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥eu∥ order ∥eu∥ order ∥eu∥ order

P1

10 9.94E-02 – 3.41E-02 – 5.10E-02 –
20 2.89E-02 1.77 9.21E-03 1.88 1.34E-02 1.92
40 9.05E-03 1.67 2.35E-03 1.96 3.40E-03 1.98
80 2.98E-03 1.59 5.92E-04 1.99 8.53E-04 1.99
160 1.01E-03 1.55 1.48E-04 1.99 2.13E-04 1.99
320 3.53E-04 1.52 3.70E-05 1.99 5.33E-05 1.99

P2

10 1.08E-03 – 7.45E-04 – 8.06E-04 –
20 1.19E-04 3.18 9.52E-05 2.96 9.91E-05 3.02
40 1.36E-05 3.12 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06 3.07 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07 3.03 1.91E-07 2.99 1.92E-07 3.00
320 2.43E-08 3.02 2.39E-08 2.99 2.40E-08 3.00

P3

10 2.22E-05 – 2.18E-05 – 2.19E-05 –
20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06 3.99
40 8.59E-08 4.00 8.59E-08 3.99 8.59E-08 3.99
80 5.37E-09 4.00 5.37E-09 3.99 5.37E-09 3.99
160 3.35E-10 3.99 3.35E-10 3.99 3.35E-10 3.99
320 2.09E-11 3.99 2.09E-11 3.99 2.09E-11 3.99

Table 3: L2 errors ∥ew∥ and orders for Example 4.1 with the G-Dirichlet, Neumann and
mixed boundary conditions using Pk polynomials on a uniform mesh of N cells.

N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥ew∥ order ∥ew∥ order ∥ew∥ order

P1

10 6.15E-02 – 3.08E-02 – 3.75E-02 –
20 1.65E-02 1.89 8.39E-03 1.87 9.65E-03 1.95
40 5.17E-03 1.67 2.14E-03 1.97 2.40E-03 2.00
80 1.72E-03 1.58 5.38E-04 1.99 6.01E-04 2.00
160 5.89E-04 1.54 1.34E-04 1.99 1.50E-04 2.00
320 2.05E-04 1.52 3.36E-05 1.99 3.75E-05 2.00

P2

10 1.04E-03 – 7.43E-04 – 7.93E-04 –
20 1.18E-04 3.14 9.51E-05 2.96 9.86E-05 3.00
40 1.36E-05 3.11 1.20E-05 2.97 1.23E-05 3.00
80 1.62E-06 3.06 1.52E-06 2.98 1.53E-06 3.00
160 1.97E-07 3.03 1.91E-07 2.99 1.92E-07 3.00
320 2.43E-08 3.02 2.39E-08 2.99 2.40E-08 3.00

P3

10 2.22E-05 – 2.18E-05 – 2.19E-05 –
20 1.37E-06 4.01 1.37E-06 3.99 1.37E-06 3.99
40 8.59E-08 4.00 8.59E-08 3.99 8.59E-08 3.99
80 5.37E-09 4.00 5.37E-09 3.99 5.37E-09 3.99
160 3.35E-10 3.99 3.35E-10 3.99 3.35E-10 3.99
320 2.09E-11 3.99 2.09E-11 3.99 2.09E-11 3.9924



Example 4.2. Consider the following two-dimensional fourth-order problem

ut +∆2u = 0, u(x, y, 0) = sin(x+ y), (x, y) ∈ [0, 2π]× [0, 2π], t ∈ (0, T ],

equipped with boundary conditions (2a)–(2d) such that the exact solution is

u(x, y, t) = e−4t sin(x+ y).

We compute this example using the interior numerical flux (31) and boundary fluxes (32)–
(35) for corresponding boundary conditions.

In Table 4, we list the computation results for the Dirichlet B.C. (2a). We observe that the
UWLDG scheme with penalty terms gives the optimal (k+1)th order of the accuracy, which is
consistent with Theorem 3.9. Here, the penalty parameters are chosen as ki = 1, i = 1, 2, 3, 4.
Moreover, if we remove the penalty terms in the scheme, it is observed that at least one and a
half order is lost for both ∥eu∥ and ∥ew∥.

Table 4: L2 errors ∥eu∥, ∥ew∥ and orders for Example 4.2 with the Dirichlet B.C., with
and without penalties using Qk polynomials on a uniform mesh of N ×N cells.

N ×N
with penalty without penalty

∥eu∥ order ∥ew∥ order ∥eu∥ order ∥ew∥ order

Q1

10× 10 9.39E-03 – 1.69E-02 – 5.50E-02 – 3.00E-02 –
20× 20 3.03E-03 1.62 5.52E-03 1.61 5.81E-02 -0.07 5.03E-02 -0.74
40× 40 8.06E-04 1.91 1.46E-03 1.92 6.05E-02 -0.05 4.39E-02 0.19
60× 60 3.56E-04 2.01 6.46E-04 2.01 5.73E-02 0.13 3.59E-02 0.49
80× 80 1.98E-04 2.03 3.60E-04 2.03 5.38E-02 0.22 3.00E-02 0.61

Q2

10× 10 9.14E-05 – 1.75E-04 – 2.96E-02 – 9.28E-03 –
20× 20 7.60E-06 3.58 1.63E-05 3.42 1.13E-02 1.39 2.16E-03 2.10
40× 40 8.93E-07 3.08 1.83E-06 3.15 4.18E-03 1.43 6.21E-04 1.79
60× 60 2.61E-07 3.02 5.32E-07 3.05 2.32E-03 1.45 3.01E-04 1.78
80× 80 1.10E-07 3.01 2.22E-07 3.03 1.52E-03 1.46 1.82E-04 1.74

In Tables 5 and 6, we show the approximation results of ∥eu∥ and ∥ew∥ for other three
kinds of boundary conditions. We can observe the expected optimal convergence rates for the
Neumann B.C. and mixed B.C. when k = 1, 2, and for the G-Dirichlet B.C. when k = 2, which
confirm our theoretical results discussed in Remark 3.16–3.17.

For the G-Dirichlet B.C., since the projection PN does not exist when k = 1, then we cannot
construct the numerical flux as (33). Therefore, we simply use the exact boundary conditions to
define the boundary numerical flux û and ŵ in this case, i.e., û|e = gD|e, ŵ|e = hD|e. However,
we can clearly see that about half order is lost for both ∥eu∥ and ∥ew∥ when k = 1.

To further illustrate the special choice of the numerical boundary conditions is necessary in
our implementation, we test again the Example 4.2 for the four types of boundary conditions.
We choose the standard L2 projection of exact boundary conditions to replace the projection
PM , PN , and PD in the boundary fluxes (32)–(35). The approximation results are shown in
Tables 7 and 8, from which it is hard to see the optimal convergence rates, especially for the
case of the G-Dirichlet B.C. and the mixed B.C..
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Table 5: L2 errors ∥eu∥ and orders for Example 4.2 with the G-Dirichlet, Neumann and
mixed boundary conditions using Qk polynomials on a uniform mesh of N ×N cells.

N ×N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥eu∥ order ∥eu∥ order ∥eu∥ order

Q1

10× 10 9.18E-02 – 3.23E-02 – 2.57E-02 –
20× 20 7.27E-02 0.33 9.90E-03 1.70 8.18E-03 1.65
40× 40 5.42E-02 0.42 2.62E-03 1.91 2.18E-03 1.90
60× 60 4.50E-02 0.45 1.18E-03 1.96 9.88E-04 1.95
80× 80 3.38E-02 0.50 6.68E-04 1.98 5.61E-04 1.96

Q2

10× 10 1.08E-04 – 1.11E-04 – 1.17E-04 –
20× 20 9.36E-06 3.52 9.29E-06 3.58 9.40E-06 3.64
40× 40 9.81E-07 3.25 9.52E-07 3.28 9.58E-07 3.29
60× 60 2.77E-07 3.11 2.69E-07 3.11 2.70E-07 3.11
80× 80 1.14E-07 3.07 1.11E-07 3.05 1.12E-07 3.05

Table 6: L2 errors ∥ew∥ and orders for Example 4.2 with the G-Dirichlet, Neumann and
mixed boundary conditions using Qk polynomials on a uniform mesh of N ×N cells.

N ×N
G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥ew∥ order ∥ew∥ order ∥ew∥ order

Q1

10× 10 7.48E-02 – 4.27E-02 – 3.12E-02 –
20× 20 6.95E-02 0.11 1.25E-02 1.76 9.74E-03 1.68
40× 40 5.16E-02 0.42 3.29E-03 1.93 2.57E-03 1.92
60× 60 4.25E-02 0.48 1.47E-03 1.97 1.15E-03 1.97
80× 80 3.69E-02 0.49 8.33E-04 1.98 6.52E-04 1.98

Q2

10× 10 1.73E-04 – 1.64E-04 – 1.61E-04 –
20× 20 1.70E-05 3.34 1.58E-05 3.37 1.58E-06 3.35
40× 40 1.90E-06 3.15 1.80E-06 3.13 1.81E-07 3.12
60× 60 5.47E-07 3.07 5.25E-07 3.04 5.27E-07 3.04
80× 80 2.27E-07 3.04 2.20E-07 3.02 2.21E-07 3.02

5 Concluding remarks
In this paper, we analyze the UWLDG method solving time-dependent linear fourth-order
equations with four types of boundary conditions. By designing elaborate numerical fluxes
together with some penalty terms and constructing suitable projections, stability and optimal
error estimates are derived, which are valid for one- and two-dimensional problems. Numerical
experiments are presented to illustrate the sharpness of theoretical results. The treatment of
various boundary conditions of this work would be helpful for solving other practical engineering
problems involving complex boundary conditions. Extensions to other high order equations are
left for future work.
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Table 7: L2 errors ∥eu∥ and orders for Example 4.2 with four types of boundary conditions
using Qk polynomials on a uniform mesh of N×N cells. Take the L2 projection of exact
boundary condition as boundary flux.

N ×N
Dirichlet B.C. G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥r order

Q1

10× 10 1.00E-03 – 6.86E-02 – 4.20E-02 – 4.33E-02 –
20× 20 3.09E-03 1.69 6.79E-02 0.01 1.31E-02 1.67 1.22E-02 1.82
40× 40 8.21E-04 1.91 5.33E-02 0.35 3.51E-03 1.90 3.13E-03 1.96
60× 60 3.63E-04 2.01 4.47E-02 0.43 1.58E-03 1.96 1.41E-03 1.96
80× 80 2.02E-04 2.03 3.87E-02 0.49 8.97E-04 1.97 8.10E-04 1.93

Q2

10× 10 9.43E-05 – 2.81E-04 – 1.62E-04 – 1.10E-03 –
20× 20 8.02E-06 3.55 1.11E-05 4.65 1.18E-05 3.76 1.69E-04 2.69
40× 40 9.20E-07 3.12 1.04E-05 0.09 1.05E-06 3.48 1.72E-06 6.61
60× 60 2.77E-07 2.95 8.20E-07 6.26 2.90E-07 3.19 4.38E-07 3.38
80× 80 1.17E-07 2.99 7.91E-06 -7.87 1.43E-07 2.45 5.13E-07 -0.55

Table 8: L2 errors ∥ew∥ and orders for Example 4.2 with four types of boundary condi-
tions using Qk polynomials on a uniform mesh of N × N cells. Take the L2 projection
of exact boundary condition as boundary flux.

N ×N
Dirichlet B.C. G-Dirichlet B.C. Neumann B.C. mixed B.C.
∥ew∥ order ∥ew∥ order ∥ew∥ order ∥ew∥ order

Q1

10× 10 1.85E-02 – 5.99E-02 – 5.60E-02 – 4.54E-02 –
20× 20 5.66E-03 1.71 6.49E-02 -0.11 1.65E-02 1.76 1.32E-03 1.78
40× 40 1.49E-03 1.92 5.07E-02 0.35 4.33E-03 1.93 3.43E-03 1.94
60× 60 7.07E-04 1.83 4.21E-02 0.45 1.94E-03 1.97 1.54E-03 1.97
80× 80 3.73E-04 2.22 3.67E-02 0.47 1.10E-03 1.98 8.97E-04 1.88

Q2

10× 10 2.12E-04 – 2.51E-04 – 2.13E-04 – 3.90E-04 –
20× 20 3.97E-05 2.41 1.92E-05 3.70 1.81E-05 3.55 1.21E-04 1.68
40× 40 1.52E-05 1.38 2.04E-05 -0.08 1.88E-06 3.26 4.54E-06 4.74
60× 60 3.55E-06 3.59 1.36E-06 6.67 5.39E-07 3.03 8.57E-07 4.11
80× 80 2.94E-06 0.65 6.78E-06 -5.58 2.28E-07 2.99 1.01E-06 -0.58
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Appendix A Proof of a few technical lemmas
A.1 The proof of Lemma 3.11

Proof. • The proof for (55a) : K ∈ ΩI
h.

By (37), we have the following specific expression of BK(ηw, p)

BK(ηw, p) =
8∑

m=0

T ij
m (ηw, p), K = Kij ∈ ΩI

h, (A.60)

where T ij
m (ηw, p) are defined by (38). Since Π is a polynomial preserving operator up to k, then

(55a) holds for each w ∈ Qk(K). Thus, we only need to consider the cases

w(x, y) = xk+2, yk+2, xk+1y, yk+1x, xk+1, yk+1. (A.61)

For w(x, y) = xk+2, since it only depends on x, we have Πw = PMx(x
k+2). Clearly, (ηw)y = 0.

Then, by the definition of PM , we have

T ij
m (ηw, p) = 0, m = 1, 2, 5, 6, 7, 8,

∫
Kij

(w −Πw) pxxdxdy = 0.

In addition, we use integration by parts to find that∫
Kij

(w −Πw) pyydxdy =− T ij
3 (ηw, p)− T ij

4 (ηw, p).

A substitution of above results into (A.60) leads to

BK (ηw, p) = 0, if w(x, y) = xk+2.

For w(x, y) = yxk+1, we have Πw = yPMx(x
k+1), hence

T ij
m (ηw, p) = 0, m = 1, 2, 5, 6,

∫
Kij

(w −Πw) pxxdxdy = 0.

Besides, we use integration by parts twice to find that∫
Kij

(w −Πw) pyydxdy =− T ij
3 (ηw, p)− T ij

4 (ηw, p)− T ij
7 (ηw, p)− T ij

8 (ηw, p).

Substituting above results into (A.60), we get

BK (ηw, p) = 0, if w(x, y) = yxk+1.

For w(x, y) = yk+2, yk+1x, xk+1 and yk+1, the proofs are analogous, and thus omitted. This
finishes the proof of (55a).

• The proof for (55b) : K ∈ Ω0
h.

We take K = K11 as an example. By (51c)–(51d), we have

BK11(ηw, p)=
5∑

m=0

T 11
m (ηw, p) +

(
T̃ 11
6 + T 11

7 + T̃ 11
8

)
(ηw, p), (A.62)
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where T 11
m (ηw, p), m = 0, 1, 2, 3, 4, 5, 7 are determined by (38) for i, j = 1, and

T̃ 11
6 (ηw, p)=−

∫
J1

(ηw)x
(
x+1

2

, y
)
p
(
x+1

2

, y
)
dy, T̃ 11

8 (ηw, p)=−
∫
I1

(ηw)y
(
x, y+1

2

)
p
(
x, y+1

2

)
dx.

We still only need to consider the cases in (A.61). First, for w(x, y) = xk+2, we have Πw =
PMx(x

k+2), (ηw)y = 0. Therefore,

T 11
m (ηw, p) = 0, m = 1, 2, 5, 7, T̃ 11

8 (ηw, p) = 0,

∫
K11

(w −Πw) pxxdxdy = 0.

We use integration by parts to find that∫
K11

(w −Πw)pyy dxdy = −T 11
3 (ηw, p)− T 11

4 (ηw, p).

Substitute above results into (A.62) to get

BK11(ηw, p) = T̃ 11
6 (ηw, p), if w(x, y) = xk+2.

Next, we consider w(x, y) = xyk+1. Clearly, Πw = xPMy(y
k+1). By the definition of PM , we

immediately have

T 11
m (ηw, p) = 0, m = 3, 4, 7,

∫
K11

(w −Πw)pyy dxdy = 0.

Furthermore, using integration by parts twice, we arrive at∫
K11

(w −Πw)pxx dxdy = −
(
T 11
1 + T 11

2 + T 11
5 + T̃ 11

6

)
(ηw, p).

A substitution of above results into (A.62) gives us

BK11(ηw, p) = T̃ 11
8 (ηw, p), if w(x, y) = xyk+1. (A.63)

Similarly, it is easy to check that

BK11(ηw, p) = T̃ 11
6 (ηw, p), if w(x, y) = xk+1, yxk+1,

BK11(ηw, p) = T̃ 11
8 (ηw, p), if w(x, y) = yk+1, yk+2.

Finally, we conclude that for all w ∈ Pk+2, there are at most two nonzero terms T̃ 11
6 (ηw, p) and

T̃ 11
8 (ηw, p) in BK11(ηw, p), i.e.,

BK11(ηw, p) = −
∫
J1

(ηw)x
(
x+1

2

, y
)
p
(
x+1

2

, y
)
dy −

∫
I1

(ηw)y
(
x, y+1

2

)
p
(
x, y+1

2

)
dx.

For other boundary elements, we can use a similar analysis as above for the case of K11.
Therefore, to derive (55b), we need only to sum over the results derived by all K in Ω0

h, and
this completes the proof of (55b).
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A.2 The proof of Lemma 3.12

Proof. • K ∈ ΩI
h.

For interelements K ∈ ΩI
h, using the same analysis as that in the proof of (55a), we can

easily obtain
BK (ηu, q) = 0, ∀u ∈ Pk+2, K ∈ ΩI

h.

• K ∈ Ω0
h.

For the boundary elements K ∈ Ω0
h, without loss of generality, consider K = K11 as an

example. By (51a) and (51b), we get

BK11(ηu, q) = (T 11
0 + T 11

1 + T 11
3 + T 11

5 + T 11
7 )(ηu, q) +

4∑
m=1

S11
m (u, q), (A.64)

where T 11
m (ηu, q), m = 0, 1, 3, 5, 7 are determined by (38) for i, j = 1, and

S11
1 (u, q) = −

∫
I1

(
uy
(
x, y 1

2

)
− PMx

(
uy(x, y 1

2
)
))

q(x, y+1
2

) dx,

S11
2 (u, q) =

∫
I1

(
u
(
x, y 1

2

)
− PMx

(
u(x, y 1

2
)
))

qy
(
x, y+1

2

)
dx,

S11
3 (u, q) = −

∫
J1

(
ux
(
x 1

2
, y
)
− PMy

(
ux(x 1

2
, y)
))

q
(
x+1

2

, y
)
dy,

S11
4 (u, q) =

∫
J1

(
u
(
x 1

2
, y
)
− PMy

(
u(x 1

2
, y)
))

qx
(
x+1

2

, y
)
dy.

We still only need to check the cases in (A.61), since PM and Π are all polynomial preserving
operators up to k.

For u(x, y) = xk+2, we have Πu = PMx(x
k+2), then uy = (Πu)y = 0. Hence, combining

with the properties of the PM , we have

T 11
1 (ηu, q) = T 11

5 (ηu, q) = T 11
7 (ηu, q) = S11

1 (u, q) = 0,

∫
K11

(u−Πu) qxxdxdy = 0.

Furthermore, using integration by parts, we can find that,∫
K11

(u−Πu) qyydxdy = −T 11
3 (ηu, q)− S11

2 (u, q).

In addition, since PM is polynomial preserving for k ≥ 1, then

S11
3 (u, q) = −

∫
J1

(
(k + 2)

(
x 1

2

)k+1 − PMy

(
(k + 2)

(
x 1

2

)k+1))
q
(
x+1

2

, y
)
dy = 0,

S11
4 (u, q) =

∫
J1

((
x 1

2

)k+2 − PMy

(
(x 1

2
)k+2

))
qx
(
x+1

2

, y
)
dy = 0.

Collecting above results into (A.64), we obtain

BK11(ηu, q) = 0, if u = xk+2.
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For u(x, y) = yxk+1, Πu = yPMx(x
k+1). Then

T 11
1 (ηu, q) = 0, T 11

5 (ηu, q) = 0,

∫
K11

(u−Πu) qxxdxdy = 0.

Again, the fact PM is polynomial preserving for k ≥ 1 leads to

S11
3 (u, q)=−

∫
J1

(
(k + 1)

(
x 1

2

)k
y−PMy

(
(k + 1)

(
x 1

2

)k
y
))

q
(
x+1

2

, y
)
dy=0,

S11
4 (u, q) =

∫
J1

((
x 1

2

)k+1
y − PMy

(
(x 1

2
)k+1y

))
qx
(
x+1

2

, y
)
dy = 0.

Using integration by parts twice, we can find that∫
K11

(u−Πu) qyydxdy = −T 11
3 (ηu, q)−T 11

7 (ηu, q)−S11
1 (u, q)−S11

2 (u, q).

Substituting above results into (A.64), we arrive at

BK11(ηu, q) = 0, if u(x, y) = yxk+1.

For other cases u(x, y) = yk+2, xyk+1, xk+1, yk+1, the proofs are analogous. Therefore, we have
BK11(ηu, q) = 0, ∀u ∈ Pk+2. Analysis for other boundary elements Kij can be performed
similarly. This completes the proof of (56).

A.3 The proof of Lemma 3.13

Proof. • K ∈ ΩI
h.

Since k ≥ 1, by the Cauchy–Schwarz inequality, the approximation property of the projec-
tion Π, trace and inverse inequalities, we can establish the following rough estimate: for any
v ∈ H2(Ωh) and K ∈ ΩI

h,∣∣BK(ηv, p)
∣∣ ≤ ∥ηv∥K∥∆p∥K + C∥ηv∥∂K̃∥∇p∥∂K + C∥∇ηv∥∂K̃∥p∥∂K
≤ Ch2∥v∥2,Kh−2∥p∥K+Ch

3
2 ∥v∥

2,K̃
h−

3
2 ∥p∥K+Ch

1
2 ∥v∥

2,K̃
h−

1
2 ∥p∥K

≤ C∥v∥
2,K̃

∥p∥K , (A.65)

where K̃ = {Ki+1,j , Ki−1,j , Kij , Ki,j−1, Ki,j+1}. Let χ be any polynomial of degree at most
k + 2, by (55a) in Lemma 3.11, we have

BK(ηχ, p) = 0, ∀p ∈ Wh.

Then, by the linearity of operator BK(·, p) and the estimate (A.65), we get

BK(ηw, p) = BK(ηw, p)−BK(ηχ, p) = BK(ηw−χ, p) ≤ C∥w − χ∥
2,K̃

∥p∥K .

Consequently, for all K ∈ ΩI
h∣∣BK(ηw, p)

∣∣ ≤ C inf
χ∈Pk+2

∥w − χ∥
2,K̃

∥p∥K ≤ Chk+1∥w∥
k+3,K̃

∥p∥K , (A.66)
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which produces ∑
K∈ΩI

h

|BK(ηw, p)| ≤ Chk+1∥w∥k+3∥p∥. (A.67)

• K ∈ Ω0
h.

We take the element K = K11 as an example. Recalling (A.62), we split BK11(ηw, p) into
two parts

BK11(ηw, p) = AK11(ηw, p) + ÃK11(ηw, p),

where

AK11(ηw, p) =
5∑

m=0

T 11
m (ηw, p) + T 11

7 (ηw, p), ÃK11(ηw, p) = T̃ 11
6 (ηw, p) + T̃ 11

8 (ηw, p).

Notice that we have checked that AK11(ηχ, p) = 0 holds for any χ ∈ Pk+2(K11) in the proof of
(55b), then AK11(ηw, p) can be estimated by using the same skill as that for interelements in
(A.66). It reads,

|AK11(ηw, p)| ≤ Chk+1∥w∥
k+3,K̃11

∥p∥K11 , (A.68)

where K̃11 = {K21, K11, K12}. By Young’s inequality, we have

|ÃK11(ηw, p)| ≤
h3

2k3

∫
J1

|(ηw)x
(
x+1

2

, y
)
|2dy + k3

2h3

∫
J1

|p
(
x+1

2

, y
)
|2dy

+
h3

2k4

∫
I1

|(ηw)y
(
x, y+1

2

)
|2dx+

k4
2h3

∫
I1

|p
(
x, y+1

2

)
|2dx.

Furthermore, using the trace inequality and the approximation properties of Π, we obtain∫
J1

|(ηw)x
(
x+1

2

, y
)
|2dy≤∥(ηw)x∥2∂K11

≤Ch2k−1∥w∥2k+1,K11
,∫

I1

|(ηw)y(x, y+1
2

)|2dx ≤∥(ηw)y∥2∂K11
≤Ch2k−1∥w∥2k+1,K11

.

Therefore, we arrive at the estimate of ÃK11(ηw, p) as

|ÃK11(ηw, p)|≤Ch2k+2∥w∥2k+1,K11
+

k3
2h3

∫
J1

|p(x+1
2

, y)|2dy+ k4
2h3

∫
I1

|p(x, y+1
2

)|2dx.

Combining the above estimate with (A.68), we get

|BK11(ηw, p)| ≤ Chk+1∥w∥
k+3,K̃11

∥p∥K11 + Ch2k+2∥w∥2k+1,K11

+
k3
2h3

∫
J1

|p(x+1
2

, y)|2dy + k4
2h3

∫
I1

|p(x, y+1
2

)|2dx.
(A.69)

For the cases of other boundary elements, similar estimates as (A.69) can also be derived.
Summing over all elements in Ω0

h, we deduce that∑
K∈Ω0

h

|BK(ηw, p)| ≤ Chk+1
∑

K∈Ω0
h

∥w∥
k+3,K̃

∥p∥K+Ch2k+2
∑

K∈Ω0
h

∥w∥2k+1,K+
1

2
S(p),

≤ Chk+1∥w∥k+3∥p∥+ Ch2k+2∥w∥2k+1 +
1

2
S(p), (A.70)

where K̃ ⊆ Ωh denotes the union of K and all of its neighbor elements in Ωh. The expected
estimate (57) follows by combining (A.67) and (A.70).
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A.4 The proof of Lemma 3.14
Proof. • K ∈ ΩI

h.
By Lemma 3.12, we know

BK (ηχ, q) = 0, ∀χ ∈ Pk+2(K), q ∈ Wh.

And we also have the rough estimate as in (A.65), it reads
|BK(ηv, q)| ≤ C∥v∥

2,K̃
∥q∥K , ∀v ∈ H2(Ωh), K ∈ Ωh, q ∈ Wh.

Hence, using the same argument as that in the proof of (A.66), we arrive at
|BK(ηu, q)| ≤ Chk+1∥u∥

k+3,K̃
∥q∥K , ∀K ∈ ΩI

h. (A.71)

• K ∈ Ω0
h.

We still take K11 as an example and recall the expression of BK11(ηu, q) in (A.64),

BK11

(
ηu, q

)
= (T 11

0 + T 11
1 + T 11

3 + T 11
5 + T 11

7 )(ηu, q) +

4∑
m=1

S11
m (u, q).

Similar to the proof of (A.65), it is easy to get∣∣(T 11
0 + T 11

1 + T 11
3 + T 11

5 + T 11
7 )(ηu, q)

∣∣ ≤ C∥u∥
2,K̃11

∥q∥K11 .

In addition, by the Cauchy-Schwarz inequality, approximation property of the one-dimensional
projection PM , trace and inverse inequalities, we obtain∣∣S11

1 (u, q) + S11
3 (u, q)

∣∣ ≤ ∥uy(·, y 1
2
)− PMx

(
uy(·, y 1

2
)
)
∥I1∥q(·, y+1

2

)∥I1

+ ∥ux(x 1
2
, ·)− PMy

(
ux(x 1

2
, ·)
)
∥J1∥q(x+1

2

, ·)∥J1

≤ Ch2
(
∥uy(·, y 1

2
)∥2,I1 + ∥ux(x 1

2
, ·)∥2,J1

)
∥q∥∂K11

≤ Ch
3
2 ∥u∥4,K11∥q∥K11 ,

and ∣∣S11
2 (u, q) + S11

4 (u, q)
∣∣ ≤ ∥ηu(·, y+1

2

)∥I1∥qy(·, y+1
2

)∥I1 + ∥ηu(x+1
2

, ·)∥I1∥qx(x+1
2

, ·)∥J1

≤ ∥ηu∥∂K11 ·
(
∥qy∥∂K11 + ∥qx∥∂K11

)
≤ C∥u∥2,K11∥q∥K11 .

Thus, we arrive at the rough estimate for BK11

(
ηu, q

)
as

|BK11

(
ηu, q

)
| ≤ C∥u∥

4,K̃11
∥q∥K11 .

From Lemma 3.12, we also know
BK11 (ηχ, q) = 0, ∀χ ∈ Pk+2(K11), q ∈ Wh,

then using a similar argument as that in the proof of (A.66) again, we can obtain
|BK11

(
ηu, q

)
| ≤ Chk+1∥u∥

k+5,K̃11
∥q∥K11 .

Analogously, we can check that, for any other boundary elements Kij ∈ Ω0
h, the above estimate

holds, i.e.,
|BKij

(
ηu, q

)
| ≤ Chk+1∥u∥

k+5,K̃ij
∥q∥Kij , ∀Kij ∈ Ω0

h, (A.72)

where K̃ij ⊆ Ωh denotes the union of Kij and all of its neighbor elements in Ωh. Therefore,
the estimate (58) follows by combining (A.71)–(A.72) and summing over all K ∈ Ωh.
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