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Abstract

In this paper, we develop a high-order well-balanced discontinuous Galerkin method for hyperbolic

balance laws based on the Gauss-Lobatto quadrature rules. Important applications of the method include

preserving the non-hydrostatic equilibria of shallow water equations with non-flat bottom topography

and Euler equations in gravitational fields. The well-balanced property is achieved through two essen-

tial components. First, the source term is reformulated in a flux-gradient form in the local reference

equilibrium state to mimic the true flux gradient in the balance laws. Consequently, the source term

integral is discretized using the same approach as the flux integral at Gauss-Lobatto quadrature points,

ensuring that the source term is exactly balanced by the flux in equilibrium states. Our method differs

from existing well-balanced DG methods for shallow water equations with non-hydrostatic equilibria,

particularly in the aspect that it does not require the decomposition of the source term integral. The

effectiveness of our method is demonstrated through ample numerical tests.

Key Words: well-balanced, discontinuous Galerkin, Gauss-Lobatto quadrature, shallow water equa-

tions, Euler equations, non-hydrostatic equilibria

1 Introduction

The hyperbolic balance law serves as a fundamental tool for characterizing flow and transport phenomena.

In one space dimension, it typically takes the form of

ut + f(u)x = s(u, x), x ∈ R, t > 0, (1.1)
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where u ∈ R
m is the vector of balanced quantities, f the vector of fluxes and s the vector of source terms.

Here and henceforth, letters in boldface font are used to denote quantities of vectors.

Due to the presence of the source term, equation (1.1) often admits non-trivial steady-state solutions,

which are time-independent and exactly balance the flux gradient with the source term, i.e. f(ue(x))x =

s(ue(x), x), where ue is a steady-state solution. It is desirable to design well-balanced numerical methods that

satisfy a discrete version of such a balance, as solutions to many real-world problems are minor deviations

from steady states and well-balanced schemes are highly efficient in resolving such small deviations.

A prototypical example of hyperbolic balance laws is the system of shallow water equations, which has

been widely used in modeling flows in rivers and coastal areas. The shallow water equations with non-flat

bottom topography is written as















ht +mx = 0,

mt +
(

hu2 + 1
2gh

2
)

x
= −ghφx,

(1.2)

where h is the water depth, m = hu is the discharge, u is the velocity, g is the gravitational constant, and φ

is the prescribed bottom topography.

The shallow water equations (1.2) admit the steady state of lake-at-rest, i.e.

u = 0, h+ φ = constant, (1.3)

which is hydrostatic as the velocity is zero. The general non-hydrostatic equilibrium of (1.2) is characterized

by

m = constant,
1

2
u2 + g(h+ φ) = constant, (1.4)

where m is not necessarily zero, thereby the lake-at-rest (1.3) is a special case of (1.4).

Numerous numerical methods have been developed for the exact preservation of the state of lake-at-rest

(1.3), see, e.g. [1, 2, 40, 41, 42, 22, 5, 32], and references therein. It is much more challenging yet highly

meaningful to design well-balanced schemes for the non-hydrostatic equilibrium (1.4), which naturally covers

the steady state (1.3). We refer the readers to works in the non-exhaustive list [33, 39, 4, 3, 8, 20, 31, 7].

Another important example of the hyperbolic balance laws (1.1) is the system of Euler equations for
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compressible gas dynamics, which takes the form of































ρt +mx = 0,

mt + (ρu2 + p)x = −ρφx,

Et + ((E + p)u)x = −mφx,

(1.5)

in gravitational fields, where ρ is the density, m = ρu is the momentum, u is the velocity, E = 1
2ρu

2+ p
γ−1 is

the total energy per unit volume, p is the pressure, γ > 1 is the ratio of specific heats, and φ is the prescribed

potential of the gravitational filed.

The complexity of the Euler equations leads to a richer variety of steady states. Specifically, two types

of hydrostatic equilibria have been most thoroughly investigated in previous studies, e.g. [6, 36, 38, 43, 15,

19, 26, 21], which are the isothermal hydrostatic equilibrium,

u = 0,
p

ρ
= constant,

p

ρ
log ρ+ φ = constant, (1.6)

and the polytropic hydrostatic equilibrium,

u = 0,
p

ργ
= constant,

γ

γ − 1

p

ρ
+ φ = constant. (1.7)

The steady state (1.7) is a particular case of the general isentropic equilibria,

m = constant,
p

ργ
= constant,

1

2
u2 +

γ

γ − 1

p

ρ
+ φ = constant, (1.8)

see the studies in [14, 16]. Due to the break of energy conservation, there is generally no corresponding

non-hydrostatic equilibria of (1.6).

The objective of this paper is to establish a high-order, well-balanced discontinuous Galerkin (DG) method

for the hyperbolic balance law (1.1), which in particular is capable of preserving the general non-hydrostatic

equilibria (1.4) and (1.8) for the shallow water equations (1.2) and Euler equations (1.5), respectively. The

DG method was first introduced in 1973 by Reed and Hill [35] for solving linear steady-state hyperbolic

balance laws, and was later developed into the Runge-Kutta discontinuous Galerkin (RKDG) by Cockburn

et al. in a series of papers [9, 10, 11, 12, 13] for nonlinear time-dependent problems. The DG method adopts

piecewise polynomials to form its function space and incorporates the concept of numerical fluxes from

finite volume methods, making it especially well-suited for solving hyperbolic problems due to its advantages

in high-order accuracy, compact stencil, flexibility in geometry, and ease of parallelism. There are many
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researches on well-balanced methods within the DG framework. For instance, Xing and Shu developed

a high order well-balanced DG method in [41] for hyperbolic balance laws with separable source terms.

Subsequently, a more straightforward well-balanced DG for shallow water equations was proposed in [42]

based on the hydrostatic reconstruction [1], thanks to the fact that the hydrostatic equilibrium solution lives

in the DG space if the bottom topography is projected onto the same space. However, great difficulties arise

when designing well-balanced methods for non-hydrostatic equilibria, as the steady-state solutions generally

do not live in the space of piecewise polynomials. In [39], the problem was addressed by a recovery technique

of local reference equilibrium states and decomposition of the source term into the equilibrium and residual

parts. The method has been extended to preserve the moving-water equilibrium of the Ripa model in [4]

and the polytropic equilibrium of Euler equations in [26], and incorporated with a modified oscillation free

discontinuous Galerkin (OFDG) damping term in [30] to achieve better robustness. More recently, Zhang

et al. [45] proposed a new well-balanced DG scheme for the non-hydrostatic equilibria of shallow water

equations. The scheme directly approximates the equilibrium variables in the DG space, rather than the

conserved ones, resulting in a much cleaner approach yet with increased computational costs in Newton

iteration. We also refer to another well-balanced DG method based on global fluxes in [31], as well as related

works cited therein.

In this paper, we propose a novel well-balanced DG method for hyperbolic balance laws based on the

Gauss-Lobatto quadrature rules. The method is aimed at preserving the non-hydrostatic equilibria of nodal

values at the k + 1 Gauss-Lobatto points, which can be chosen as the degrees of freedom associated with

the Lagrange basis for simplicity, in a P k-DG scheme. The key components of the proposed method are the

flux-gradient reformulation of the source terms in local reference equilibrium states and the same approach

of discretization for the source term and flux integral at the Gauss-Lobatto points. The special reformulation

of the source term is inspired by the treatments in [25, 6, 27], see also [34, 16] for closely related treatment

and the survey [18]. A high order well-balanced finite difference WENO scheme has been proposed in our

recent work [44] based on the same reformulation. In spirit, our method is very close to the work in [6], which

used the nodal DG method to preserve the hydrostatic equilibria of the Euler equations in the gravitational

fields.

The remaining of the paper is organized as follows. In Section 2, we review some important properties of

the steady states of the shallow water equations and Euler equations. Consequently, the well-balanced DG

scheme is established in Section 3 for these equations. The good performance of the scheme is validated in
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Section 4 by ample numerical tests. Finally, we end up with some concluding remarks in Section 5.

2 Steady states of the shallow water equations and Euler equations

In this section, we review some properties of the non-hydrostatic equilibria of the shallow water equations

and Euler equations, and introduce necessary definitions to facilitate the construction of our well-balanced

DG method.

2.1 The shallow water equations with non-flat bottom topography

For the shallow water equations (1.2), we introduce the vector of equilibrium variables

v = (m,Q)
T
, where Q =

1

2
u2 + g(h+ φ). (2.1)

The vector is constant in the non-hydrostatic equilibria (1.4). Moreover, we denote the mapping from the

vector of conserved variables u = (h,m)T to equilibrium ones by v = V (u, φ). Its inverse mapping is denoted

by u = U(v, φ). If ue is an equilibrium state satisfying (1.4), then ue(x) = U(ve, φ(x)) for the constant

ve = V (ue(x), φ(x)).

For the calculation of U(v, φ), we introduce the Froude number

Fr =
|u|
c
, where c =

√

gh. (2.2)

The flow regimes of u are classified as subcritical, critical or supercritical if Fr < 1,= 1 or > 1. In each flow

regime, the water depth h is uniquely determined by the formula of trigonometric solution of cubic equation

[24, 20],

h(m,Q, φ) =
Q− gφ

3g

(

1 + cos(
θ

3
)−

√
3σ sin(

θ

3
)

)

, (2.3)

where θ = arccos
(

27
4

g2m2

(Q−gφ)3
− 1

)

and σ = sign(Fr-1), if the equilibrium variables m, Q are given with

Q− gφ ≥ 3
2 (g|m|)

2
3 . For more properties of the equilibrium variables and the mapping U(v, φ), we refer the

readers to [33].

2.2 The Euler equations in gravitational fields

For the Euler equations (1.5), we introduce the vector of equilibrium variables

v = (m, s,Q)T , where s =
p

ργ
, Q =

1

2
u2 +

γs

γ − 1
ργ−1 + φ. (2.4)
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The vector is constant in the isentropic non-hydrostatic equilibria (1.8). Similarly, we denote the mapping

from the vector of conserved variables u = (ρ,m,E)T to equilibrium ones by v = V (u, φ). Its inverse

mapping is denoted by u = U(v, φ). If ue is an equilibrium state satisfying (1.8), then ue(x) = U(ve, φ(x))

for the constant ve = V (ue(x), φ(x)).

For the calculation of U(v, φ), we introduce the Mach number

Mach =
|u|
c
, where c =

√

γp/ρ. (2.5)

The flow regimes of u are classified as subcritical, critical or supercritical if Mach < 1,= 1 or > 1. In each

flow regime, the density ρ is uniquely determined by the equation

1

2

m2

ρ2
+

γs

γ − 1
ργ−1 + φ = Q, (2.6)

if the equilibrium variables m, s,Q are given with Q−φ ≥
(

1
2 + 1

γ−1

)

(γs)
2

γ+1 |m|
2(γ−1)
γ+1 . In practice, we can

use Newton iteration to calculate ρ from (2.6) and obtain E = 1
2
m2

ρ
+ sργ

γ−1 consequently. For more properties

of the equilibrium variables and mapping U(v, φ), we refer to [16].

3 The well-balanced discontinuous Galerkin method

In this section, we establish the well-balanced DG method for the shallow water equations (1.2) and Euler

equations (1.5) in a unified framework, and give the proof of its well-balanced property.

3.1 Notations

We first introduce the notations to be used throughout this section. Consider the domain Ω = [a, b] ⊂ R, we

take the partition a = x 1
2
< x 3

2
< · · · < xN+ 1

2
= b, and denote the j-th cell by Ij = [xj− 1

2
, xj+ 1

2
] with size

∆xj = xj+ 1
2
− xj− 1

2
, for j = 1, 2, . . . , N .

The function space of the P k-DG scheme is defined as

W k
h = {w ∈ L2([a, b]) : w|Ij ∈ P k(Ij), j = 1, 2, . . . , N}, (3.1)

where P k(I) denotes the space of polynomials of order no greater than k on the interval I. Since w ∈ W k
h are

piecewise polynomials with possible discontinuities at interfaces, we define the left/right limits at xj+ 1
2

by

w±
j+ 1

2

= limǫ→0+ w(xj+ 1
2
± ǫ). We also denote W

k
h =

[

W k
h

]m
and w

±
j+ 1

2

= limǫ→0+ w(xj+ 1
2
± ǫ) for w ∈ W

k
h

as the corresponding vector version of the function space and left/right limits.
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To establish the well-balanced DG method, we adopt the (k + 1)-point Gauss-Lobatto quadrature

rule in the P k-DG scheme, and denote the quadrature of a continuous function g on Ij by
ffl

Ij
gdx =

∆xj

∑k+1
i=1 ωig(x

j
i ) to distinguish it from the exact integral

´

Ij
gdx, where {xj

i}k+1
i=1 and {ωi}k+1

i=1 are the

Gauss-Lobatto quadrature points (on Ij) and weights, respectively. Note that xj
1 = xj− 1

2
and xj

k+1 = xj+ 1
2
,

which is important for the scheme to achieve the well-balanced property. We denote by Ij [·] the Lagrange

interpolation operator at the Gauss-Lobatto points on Ij , i.e. Ij [g] ∈ P k(Ij) with Ij [g] (xj
i ) = g(xj

i ) for

i = 1, . . . , k + 1. For convenience, we write the shortened notation I[g] for Ij [g], if the cell j is clear from

the context.

3.2 The well-balanced DG scheme

To construct the scheme, we reformulate the hyperbolic balance law (1.1) on Ij as follows [18],

ut + f(u)x =
s(u, x)

s(uj
e, x)

f(uj
e)x, (3.2)

where u
j
e is a local reference equilibrium state satisfying f(uj

e(x))x = s(uj
e(x), x) on Ij , whose definition is

provided below, and the operations in the source term is understood component-wisely and equal to one in

the case of 0
0 .

The well-balanced DG scheme based on the reformulation (3.2) is given as follows: Find U(t) ∈ W
k
h,

such that, ∀w ∈ W
k
h,

ˆ

Ij

Ut ·wdx =

 

Ij

f(U) ·wxdx− f̂
l
j+ 1

2
·w−

j+ 1
2

+ f̂
r
j− 1

2
·w+

j− 1
2

+

 

Ij

s(U, x)

s(uj
e, x)

∂x
(

I
[

f(uj
e)
])

·wdx, (3.3)

for j = 1, 2, . . . , N , where

f̂
l
j+ 1

2
= F

(

U
∗,−

j+ 1
2

,U∗,+

j+ 1
2

)

− f(U∗,−

j+ 1
2

) + f(U−
j+ 1

2

),

f̂
r
j− 1

2
= F

(

U
∗,−

j− 1
2

,U∗,+

j− 1
2

)

− f(U∗,+

j− 1
2

) + f(U+
j− 1

2

),

(3.4)

are numerical fluxes based on the flux function F(·, ·), e.g. the Lax-Friedrichs flux

F(U−,U+) =
1

2

(

f(U−) + f(U+)− α
(

U
+ −U

−
))

, (3.5)

with α = maxU{|λ1(U)|, . . . , |λm(U)|} and λi the eigenvalues of the system (1.1), and the generalized

hydrostatic reconstruction [1, 45] U∗,±

j+ 1
2

are defined as

U
∗,±

j+ 1
2

= U(V±
j+ 1

2

, φ∗
j+ 1

2
), (3.6)
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with V
±
j+ 1

2

= V (U±
j+ 1

2

, φ±
j+ 1

2

) and φ∗
j+ 1

2

= min(φ−
j+ 1

2

, φ+
j+ 1

2

). The Lagrange basis at Gauss-Lobatto points is

particularly suitable for the computation of the scheme, and the same quadrature can also be used for the

left-hand side, which results in the nodal formulation [17].

The local reference equilibrium state u
j
e is defined as follows,

u
j
e(x) = U(Vj

e, φ(x)), x ∈ Ij , (3.7)

where V
j
e = V (U(xj

ℓ), φ(x
j
ℓ)), ℓ = argmax1≤i≤k+1 φ(x

j
i ), and the values of piecewise functions at xj

1 and

xj
k+1 are understood as inside Ij for the time being. With such a choice of ℓ, uj

e is always well-defined on Ij .

Remark 3.1. For the Euler equations, we have s(u, x) = (0,−ρφx,−mφx)
T , s(uj

e, x) = (0,−ρjeφx,−mj
eφx)

T ,

and f(uj
e) = (mj

e,
(mj

e)
2

ρ
j
e

+ pje, (E
j
e + pje)

mj
e

ρ
j
e

), where mj
e is a constant. After cancellations, the reformulation

of the source term in (3.2) can be simplified as
(

0, ρ

ρ
j
e

,m
)T

× ∂x(0,
(mj

e)
2

ρ
j
e

+ pje, (E
j
e + pje)

1

ρ
j
e

)T , where the

operations are understood component-wisely. Similarly, for the shallow water equations, the reformulation of

the source term in (3.2) can be simplified as
(

0, h

h
j
e

)T

× ∂x(0,
(mj

e)
2

h
j
e

+ 1
2g(h

j
e)

2)T .

3.3 The well-balanced property

The scheme (3.3) is well-balanced in the sense that, if its solution U is in equilibrium at all Gauss-Lobatto

points {xj
i}k+1

i=1 , j = 1, 2, . . . , N , then the right-hand side is zero, which can be stated as the following theorem.

Theorem 3.1. If U ∈ W
k
h satisfies U|Ij = Ij [ue] , j = 1, . . . , N , for an equilibrium state ue of (1.1), then

the right-hand side of (3.3) is zero.

Proof. We denote by V
j
i = V (U(xj

i ), φ(x
j
i )) for i = 1, . . . , k + 1, j = 1, . . . , N . Since U(xj

i ) = ue(x
j
i ) and

V (ue(x), φ(x)) ≡ ve, we have V
j
i ≡ ve, ∀i, j, where ve is a constant. Therefore, U∗,−

j+ 1
2

= U(ve, φ
∗
j+ 1

2

) =

U
∗,+

j+ 1
2

, which implies f̂
l
j+ 1

2

= f(U−
j+ 1

2

) and f̂
r
j− 1

2

= f(U+
j− 1

2

) from the consistency of F(·, ·). Moreover, by the

definition (3.7), we have u
j
e(x) = ue, j = 1, . . . , N .

Consequently, the right-hand side of (3.3) is

RHSj =

 

Ij

f(U) ·wxdx− f(U−
j+ 1

2

) ·w−
j+ 1

2

+ f(U+
j− 1

2

) ·w+
j− 1

2

+

 

Ij

∂x (I [f(U)]) ·wdx

=

ˆ

Ij

I [f(U)] ·wxdx− f(U−
j+ 1

2

) ·w−
j+ 1

2

+ f(U+
j− 1

2

) ·w+
j− 1

2

+

ˆ

Ij

∂x (I [f(U)]) ·wdx

= 0,
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where the second equality is because the (k+1)-point Gauss-Lobatto quadrature rule is exact for polynomials

of degree no greater than 2k − 1, and the last equality is a consequence of integration by parts.

Remark 3.2. By Theorem 3.1, if the initial condition u0 of equation (1.1) is in equilibrium, which is gen-

erally non-polynomial, we should take the initial condition U0 of scheme (3.3) by the Lagrange interpolation

U0 = I [u0] to preserve the equilibrium exactly.

3.4 An extra damping term

Following [28], we add an extra oscillation free discontinuous Galerkin (OFDG) damping term to the scheme

(3.3) to control the spurious oscillations without breaking the well-balanced property.

The well-balanced OFDG scheme is given as follows: Find U(t) ∈ W
k
h, such that, ∀w ∈ W

k
h,

LHSj = RHSj −
k
∑

ℓ=0

σℓ
j(U)

∆xj

ˆ

Ij

(

U
j
r − P ℓ−1

h U
j
r

)

·wdx, (3.8)

for j = 1, 2, . . . , N , where LHSj and RHSj are the original left-hand and right-hand sides of (3.3), respec-

tively, and U
j
r = U|Ij − I

[

u
j
e

]

is the residual of equilibrium state, P ℓ−1
h , ℓ ≥ 1 is the standard component-

wise L2-projection on P ℓ−1(Ij) and P−1
h = P 0

h . The damping coefficients σℓ
j(U) are constructed in exactly

the same way as [28] and [29] for the shallow water equations and Euler equations, respectively. Since

U|Ij = I[uj
e] in equilibrium, it is clear that the OFDG damping term does not destroy the well-balanced

property of (3.3).

Beside the OFDG method, appropriate slope limiters, e.g., [4, 45], may also be used to control the

oscillation without affecting the well-balanced property.

4 Numerical tests

In this section, we test the performance of the proposed well-balanced DG scheme (3.8) for the shallow water

equations and Euler equations, with the classic fourth order Runge-Kutta time discretization. We take the

step size of time as ∆t = CFL

|||u|+c||
L∞(Ω)

∆x, where ∆x is the minimum cell length of mesh and CFL is a

constant taken as 0.1 in the tests if not otherwise stated. The gravitational constant in the shallow water

equations are taken as g = 9.812 in all tests. To save space, we only show the results of P 2-DG scheme in

the well-balanced tests. All numerical examples in this section are classic. We refer the readers to the results

of other methods, e.g. [8, 16, 23, 28, 33, 37, 43, 45], for comparison.
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4.1 The shallow water equations

Example 4.1. Accuracy test

In this example, we test the accuracy of the proposed well-balanced DG method for the shallow water

equations with a smooth bottom.

The bottom topography and initial conditions of the problem are given by

φ(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), m(x, 0) = sin(cos(2πx)). (4.1)

The computational domain is Ω = [0, 1] with periodic boundary condition.

Since the analytical solution of the problem is not available, we calculate the reference solution using the

ninth-order WENO finite difference scheme on N = 6400 grid. The L1 errors and orders of convergence of

h and m with N uniform cells are listed in Table 1, at the terminal time T = 0.1 before shock formation.

We can clearly observe high order convergence rates for P 1, P 2 and P 3-DG methods from the table.

Example 4.2. Well-balanced test for a smooth bottom topography

In this example, we test the well-balanced property of our scheme for a smooth bottom in different flow

regimes.

The bottom topography of the problem is given by

φ(x) =















0.2− 0.05(x− 10)2, 8 ≤ x ≤ 12,

0, otherwise,

(4.2)

on the domain Ω = [0, 25]. We impose the boundary conditions by keeping the values on boundaries constant

and equal to the initial conditions.

Below, we consider four non-hydrostatic equilibria in different flow regimes:

(a) Subcritical flow:

m(x, 0) = 4.42, Q(x, 0) = 22.06605, with Fr(x, 0) < 1.

(b) Supercritical flow:

m(x, 0) = 24, Q(x, 0) = 91.624, with Fr(x, 0) > 1.
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h m

P k-DG N L1 error order L1 error order

100 2.41E-03 - 1.63E-02 -

200 3.75E-04 2.68 2.56E-03 2.67

k = 1 400 6.68E-05 2.49 4.60E-04 2.48

800 1.17E-05 2.51 7.96E-05 2.53

1600 2.29E-06 2.36 1.53E-05 2.38

100 9.19E-05 - 7.74E-04 -

200 5.60E-06 4.04 4.73E-05 4.03

k = 2 400 3.69E-07 3.93 3.09E-06 3.94

800 2.92E-08 3.66 2.44E-07 3.66

1600 2.82E-09 3.37 2.35E-08 3.38

100 5.07E-06 - 4.26E-05 -

200 2.28E-07 4.47 1.94E-06 4.46

k = 3 400 9.19E-09 4.63 7.85E-08 4.62

800 3.43E-10 4.74 2.94E-09 4.74

1600 1.40E-11 4.62 1.23E-10 4.57

Table 1: L1 errors and orders of convergence in the accuracy test 4.1 for the shallow water equations.

Reference solution is obtained by WENO-9 on N = 6400 grid.
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(c) Transcritical flow without shock:

m(x, 0) = 1.53, Q(x, 0) =
3

2
(9.812× 1.53)

2
3 + 9.812× 0.2,

with















Fr(x, 0) < 1, x < 10,

Fr(x, 0) > 1, x > 10.

(d) Transcritical flow with a stationary shock:

m(x, 0) = 0.18, Q(x, 0) =















3
2 (9.812× 0.18)

2
3 + 9.812× 0.2, x ≤ 11.665504281554291,

0.182

2×0.332 + 9.812× 0.33, otherwise,

with















Fr(x, 0) < 1, x < 10 or x > 11.665504281554291,

Fr(x, 0) > 1, 10 < x < 11.665504281554291.

We compute the solutions of case (a), (b), (c) and (d) on N = 200 meshes up to T = 10. The cells are

uniform for the first three cases. Due to the appearance of a shock at x = 11.665504281554291 in the last

case, we use the Roe flux as in [45] and partition 100 uniform cells for the regions on the left and right sides

of the shock, respectively, such that the shock locates exactly at a cell interface of the mesh.

The L1 and L∞ errors of the numerical solutions compared with the solution at initial time are listed in

Table 2, from which we can observe that the errors are in the round-off level, which confirms the well-balanced

property of the scheme.

h m

Case L1 error L∞ error L1 error L∞ error

(a) 5.55E-17 6.66E-16 4.26E-16 2.66E-15

(b) 1.69E-13 3.73E-14 1.52E-12 3.87E-13

(c) 1.43E-14 4.72E-15 2.89E-14 1.02E-14

(d) 6.54E-15 1.28E-15 1.50E-14 2.55E-15

Table 2: L1 and L∞ errors for different cases in the well-balanced test 4.2 with N = 200 at T = 10. Con-

tinuous bottom topography. Case (a): subcritical flow; Case (b): supercritical flow; Case (c): transcritical

flow without shock; Case (d): transcritical flow with a stationary shock.
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Example 4.3. Well-balanced test for a discontinuous bottom topography

In this example, we test the well-balanced property of the proposed scheme for a discontinuous bottom in

different flow regimes.

The bottom topography of the problem is given by

φ(x) =















0.2, 8 ≤ x ≤ 12,

0, otherwise,

(4.3)

on the domain Ω = [0, 25]. We impose the boundary conditions by keeping the values on boundaries constant

and equal to the initial conditions.

Below, we consider three non-hydrostatic equilibria in different flow regimes:

(a) Subcritical flow: The settings are the same as case (a) in Example 4.2.

(b) Supercritical flow: The settings are the same as case (b) in Example 4.2.

(c) Transcritical flow:

m(x, 0) = 1.53, Q(x, 0) =
3

2
(9.812× 1.53)

2
3 + 9.812× 0.2,

with































Fr(x, 0) < 1, x < 8,

Fr(x, 0) = 1, 8 ≤ x ≤ 12,

Fr(x, 0) > 1, x > 12.

We compute the solutions of case (a), (b) and (c) on N = 200 uniform meshes up to T = 10.

The L1 and L∞ errors of the numerical solutions compared with the solution at initial time are listed in

Table 3, from which we can observe that the errors are in the round-off level, which verifies the well-balanced

property of the scheme.

Example 4.4. Small perturbation of steady states for the smooth bottom

In this example, we test the capability of the proposed scheme to capture small perturbations of equilibria

for smooth bottom topography. We add δ = 0.05 in the region x ∈ [5.75, 6.25] on top of the initial water

depth of case (a), (b), (c) and (d) in Example 4.2, and compute the solutions up to T = 1.5, 1.0, 1.5 and 3.0,

respectively.

We show the numerical results with locally zoomed boxes in Figure 1, from which we can see the small

perturbations are captured very well.
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Figure 1: Surface level h + φ and bottom in the test of small perturbations of steady states for smooth

bottom in Example 4.4.
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h m

Case L1 error L∞ error L1 error L∞ error

(a) 1.85E-17 4.44E-16 0 0

(b) 1.75E-13 2.89E-14 1.60E-12 3.06E-13

(c) 1.05E-14 2.89E-15 2.00E-14 7.55E-15

Table 3: L1 and L∞ errors for different cases in the well-balanced test 4.3 with N = 200 at T = 10. Discon-

tinuous bottom topography. Case (a): subcritical flow; Case (b): supercritical flow; Case (c): transcritical

flow.

Example 4.5. Small perturbation of steady states for the discontinuous bottom

In this example, we test the capability of the proposed scheme to capture small perturbations of equilibria

for discontinuous bottom topography. We add δ = 0.05 in the region x ∈ [5.75, 6.25] on top of the initial

water depth of case (a), (b) and (c) in Example 4.3, and compute the solutions up to T = 1.5, 1.0, and 1.5,

respectively.

We show the numerical results with locally zoomed boxes in Figure 2, from which we can see that the

small perturbations are captured very well.

Example 4.6. Dam breaking over a rectangular bump

In this example, we test the dam breaking over a rectangular bump.

The bottom topography and initial conditions of the problem are given by

b(x) =















8, |x− 750| ≤ 187.5,

0, otherwise,

h(x, 0) =















20− b(x), x ≤ 750,

15− b(x), otherwise,

m(x, 0) = 0.

The computational domain is Ω = [0, 1500]. We impose the boundary conditions by keeping the boundary

values constant and equal to the initial conditions.

We compute the solution of the DG scheme on N = 200, 400 uniform meshes with CFL = 0.05, and

draw the cell averages of surface level h+ φ at T = 15, 60 in Figure 3. The reference solutions in the figure

are given by WENO finite difference scheme on N = 6400 grid. The results exhibit good resolution and

essentially oscillation free fashion as in [30].
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Figure 2: Surface level h+φ and bottom in the test of small perturbations of steady states for discontinuous

bottom in Example 4.5.
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Figure 3: Surface level h+ φ of the dam breaking problem 4.6.
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4.2 The Euler equations

Example 4.7. Accuracy test

In this example, we test the accuracy of the proposed well-balanced DG method for the Euler equations in

a gravitational field.

We take the linear gravitational field φ(x) = x and ratio of specific heat γ = 5
3 . An exact solution of the

Euler equations (1.5) is then given by

ρ(x, t) = 1 +
1

5
sin(π(x − u0t)), u(x, t) = u0, p(x, t) = p0 + u0t− x+

1

5π
cos(π(x − u0t)), (4.4)

in the domain Ω = [0, 2], where u0, p0 are constants taken as u0 = 1, p0 = 4.5 in the computation.

The L1 errors and orders of convergence of ρ,m and E are listed in Table 4 at the terminal time T = 0.1,

where we can clearly observe the optimal convergence rates for P 1, P 2 and P 3-DG methods.

Example 4.8. Well-balanced test

In this example, we test the well-balanced property of the proposed scheme for steady-state isentropic

flows.

We take the gravitational filed φ(x) = x and ratio of specific heat γ = 5
3 , with the initial conditions

satisfying

s(x, 0) = 1, m(x, 0) = −Mγ
1
2 , Q(x, 0) =

1

2
M2γ +

γ

γ − 1
, (4.5)

on the domain Ω = [0, 2]. The boundary conditions are imposed by keeping constant values that equal the

initial conditions.

Below, we consider three equilibria in different flow regimes:

(a) Hydrostatic flow: M = 0.

(b) Subcritical flow: M = 0.01.

(c) Supercritical flow: M = 2.5.

We compute the solutions up to t = 10 on N = 200 uniform meshes, and gather the L1 and L∞ errors

compared with the initial conditions in Table 5, from which we can observe the steady states are exactly

preserved up to round-off errors.

Example 4.9. Small perturbation of steady states

In this example, we test the capability of the scheme to capture small perturbations of equilibria.
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ρ m E

P k-DG N L1 error order L1 error order L1 error order

20 2.25E-03 - 2.61E-03 - 2.05E-03 -

40 5.33E-04 2.08 6.18E-04 2.08 4.79E-04 2.10

k = 1 80 1.32E-04 2.02 1.51E-04 2.03 1.16E-04 2.05

160 3.28E-05 2.01 3.75E-05 2.01 2.84E-05 2.02

320 8.18E-06 2.00 9.35E-06 2.00 7.04E-06 2.01

20 1.25E-04 - 1.35E-04 - 6.35E-05 -

40 1.66E-05 2.91 1.77E-05 2.94 8.57E-06 2.89

k = 2 80 2.12E-06 2.97 2.21E-06 3.00 1.10E-06 2.96

160 2.65E-07 3.00 2.73E-07 3.02 1.39E-07 2.99

320 3.30E-08 3.01 3.37E-08 3.01 1.74E-08 3.00

20 6.95E-07 - 6.45E-07 - 1.20E-06 -

40 4.15E-08 4.07 4.25E-08 3.92 6.12E-08 4.29

k = 3 80 3.03E-09 3.78 3.00E-09 3.82 3.84E-09 4.00

160 2.13E-10 3.83 2.16E-10 3.80 2.34E-10 4.04

320 1.36E-11 3.97 1.38E-11 3.96 1.51E-11 3.96

Table 4: L1 errors and orders of convergence in the accuracy test 4.7 for the Euler equations.

ρ m E

Case L1 error L∞ error L1 error L∞ error L1 error L∞ error

(a) 5.53E-15 1.70E-14 7.30E-16 1.95E-15 1.13E-15 3.11E-15

(b) 4.52E-15 1.24E-14 8.51E-16 2.05E-15 1.28E-15 3.77E-15

(c) 1.15E-14 1.20E-14 1.90E-14 1.95E-14 3.40E-14 3.46E-14

Table 5: L1 and L∞ errors for different cases in the well-balanced test 4.8 with N = 200 at T = 10. Case

(a): M = 0; Case (b): M = 0.01; Case (c): M = 2.5.
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We add δp = A exp(−100(x− x̄)2) on top of the initial pressure of case (a), (b) and (c) in Example 4.8,

and keep density and velocity the same as before, where A = 10−6 and

x̄ =































1.0, case (a),

1.1, case (b),

1.5, case (c).

We compute the solutions up to t = 0.45, 0.45 and 0.25 for the case (a), (b) and (c), respectively. The

discrepancy of pressure and velocity with respect to their corresponding base steady states are shown in

Figure 4, together with the results of a non-well-balanced DG scheme with the straightforward approximation

of source term and normal OFDG damping term for comparison. We can see the well-balanced scheme

captures small perturbations much better than the non-well-balanced scheme on coarse meshes.

Example 4.10. Discontinuous wave propogation

In this example, we test the capability of the proposed scheme to capture shocks and large gradients of

solutions. We enlarge the perturbation in Example 4.9 by taking A = 1 in the pressure deviation δp therein,

with all other parameters kept the same.

The numerical results of the well-balanced scheme are shown in Figure 5, and are compared with those

of the non-well-balanced scheme with a straightforward approximation of source terms and normal OFDG

damping term. The reference solutions are computed by the WENO finite difference scheme on N = 6400

mesh. We can see the well-balanced scheme and non-well-balanced scheme produce indistinguishable solutions

with essentially oscillation free fashion as expected, and agree very well with those of the WENO schemes

on the fine mesh. We noticed two times larger OFDG damping coefficients than the ones proposed in [29]

is needed in the computation of case (b), for both the well-balanced and non-well-balanced DG schemes, to

avoid negative pressure. This is possibly because of the low pressure near the right boundary.

5 Concluding remarks

In this paper, we have established a high order well-balanced discontinuous Galerkin method for the non-

hydrostatic equilibria of the shallow water equations and Euler equations. The well-balanced property is

achieved through a special reformulation of the source term to mimic the flux gradient. Subsequently, the

source term integral is discretized at Gauss-Lobatto points to cancel the flux integral evaluated by the
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Figure 4: Discrepancy of pressure and velocity with respect to their base steady states in small perturbation

test 4.9. WB: well-balanced scheme; NWB: non-well-balanced scheme.
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Figure 5: Pressure and velocity in discontinuous wave propogation test 4.10.
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Gauss-Lobatto quadrature and the numerical fluxes. A modified OFDG damping term is added to the

scheme to control spurious oscillations near shocks without breaking the well-balanced property. Though

the non-hydrostatic equilibria are generally non-polynomials, the steady states are exactly preserved at all

Gauss-Lobatto points by the scheme, if the initial conditions are obtained from Lagrange interpolation at

Gauss-Lobatto points. As verified by ample numerical tests, the scheme is high-order accurate, well-balanced,

and capable of capturing small perturbations of steady states and shocks well.
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