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1. Introduction. The DG method is a finite element method using completely
discontinuous piecewise polynomial space. It was first introduced by Reed and Hill in
1973 for the neutron linear transport [24], and later developed into the Runge-Kutta
DG (RKDG) method by Cockburn and Shu for hyperbolic equations [9, 11, 12, 13].
Due to its remarkable advantage such as flexibility for arbitrarily unstructured meshes,
the efficiency in parallel implementation, and the ability to easily handle complex
geometries or interfaces and accommodate arbitrary h−p adaptivity, the DG method
has found wide applications in solving various differential equations. We refer to
[10, 26] and their references for the development and survey of DG methods.

The mathematical study for DG methods can be traced back as early as 1974
by LeSaint and Raviart in [19], where a convergence rate of O(hk) for Pk elements
on general triangulations and of O(hk+1) for Qk elements (i.e., tensor product bi-k
polynomial spaces) on Cartesian grids were proved in the standard L2 norm. Later,

Johnson and Pitkaranta [18] proved a rate of O(hk+ 1
2 ) in a mesh-dependent norm for

Pk elements on general triangulations, which was confirmed to be optimal by Peterson
in [23]. Richter [25] obtained the optimal rate of convergence of O(hk+1) for some
specially structured two-dimensional non-Cartesian grids under the assumption that
all element edges are bounded away from the characteristic direction. Falk and Richter
[15] investigated the DG method for Friedrich systems and proved a convergence

rate of O(hk+ 1
2 ) on general triangulations for the DG approximation. A hp-version

DG method has been studied in [17] and the exponential convergence was derived
for piecewise analytic solution. We also refer to [20, 30] for the discussion on the
interrelation between the mesh and the order of convergence for k = 1 and k = 0.
As for the one-dimensional and some multidimensional problems using Qk elements,
optimal a priori error estimates of order O(hk+1) was proved for DG methods by

∗ This work is supported in part by the National Natural Science Foundation of China under
grants 12271049, 12131005, and the NSF grant DMS-2309249.

∗School of Mathematical Science, Beijing Normal University, Beijing, 100875, China.
†Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
‡Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.

1



using the upwind fluxes [8, 29] and upwind-biased numerical fluxes [22].

Although it is well-known that the convergence rate of O(hk+ 1
2 ) for the DG

method using Pk elements can not be improved on general triangular meshes, a large
amount of numerical experiments show that the convergence rate can be improved
from O(hk+ 1

2 ) to O(hk+1) by 1
2 on Cartesian grids. It has been an open question

whether the optimal convergence order O(hk+1) for Pk element DG method holds
true on Cartesian meshes. Only recently, Liu et al [21] proved that, for upwind
DG method using Pk elements on uniform Cartesian meshes, the error in the L2 norm
achieved optimal (k+1)-th order convergence for linear constant hyperbolic equations.
For linear variable coefficient and nonlinear cases, only lower order DG schemes (i.e.,
0 ≤ k ≤ 3 for variable coefficient case and k = 2, 3 for nonlinear case) were proved
to be optimal in L2 error estimates. However, the theoretical analysis for high-order
DG method is still in vacancy when Pk elements are used to solve the linear variable
coefficient and nonlinear hyperbolic problems.

The main purpose of current paper is to establish a unified analysis for Pk element
DG method for 2-D linear and nonlinear hyperbolic equations on uniform Cartesian
meshes, where both optimal error estimates and superconvergence properties for the
DG solution are investigated. One contribution of this study is to provide a firm an-
swer, with a rigorous mathematical proof, that the optimal convergence orderO(hk+1)
for DG method solving both linear and nonlinear equations holds true when Pk, k ≥ 0
elements and uniform Cartesian meshes are used. Another contribution is the discov-
ery of some new superconvergence phenomena for the Pk element DG method. Albeit
with considerable interest in analyzing superconvergence properties of DG methods
(see, e.g., [1, 2, 3, 5, 6, 4, 7, 16, 27, 28]), all the studies are based on one-dimensional
problems and multi-dimensional Qk elements. To the best of our knowledges, no su-
perconvergence result for the Pk element DG method has been reported yet in the
literature. In this paper, superconvergence of errors for the cell average and for the
downwind edge average is established for the first time, with an order of O(hk+2).

To end with this introduction, we would like to pointed out that the theoretical
analysis for the Pk elements is much more difficult and sophisticated than the coun-
terpart Qk elements, whose degree of freedom (i.e., (k + 1)2) almost doubles that of
the Pk elements (k+ 1)(k+ 2)/2. The deficiency of degree of freedom makes the error
analysis (i.e., construction of the projection) for Pk elements elusive. To cope with
this problem, we first construct a specially designed projection of the exact solution
and then use the idea of correction function to correct the error between the DG solu-
tion and the special projection. The construction of correction functions finally yields
our desired optimal error estimates and superconvergence results for the Pk element
DG method.

The remainder of the paper is organized as follows. In Section 2, we study the op-
timal error estimates and superconvergence property for the semi-discrete DG scheme
solving linear variable coefficient hyperbolic equations. In Section 3, we provide the
proof of the optimal error estimates and superconvergence of DG method for nonlinear
hyperbolic equations. Some numerical examples are provided in Section 4. Finally,
we conclude and give a few perspectives for future work in Section 5.

2. DG method for linear hyperbolic equations. In this section, we present
and analyze the DG method for the two-dimensional linear hyperbolic conservation
laws

ut + (αu)x + (βu)y = 0, (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, 0) = u0(x, y),
(2.1)
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where α = α(x, y), β = β(x, y) are smooth function. For simplicity, we assume Ω =
[0, 2π]2 and the periodic boundary condition is satisfied. The assumption of the
boundary condition is not essential since the analysis can be applied to other boundary
conditions such as the Dirichlet boundary condition.

2.1. DG schemes. Let 0 = x 1
2
< x 3

2
< · · · < xm+ 1

2
= 2π and 0 = y 1

2
< y 3

2
<

· · · < yn+ 1
2

= 2π. For any positive integer r, we define Zr = {1, 2, . . . , r}, and denote
by Th the rectangular partition of Ω. That is,

Th = {τi,j = τxi × τ
y
j : τxi = [xi− 1

2
, xi+ 1

2
], τyj = [yj− 1

2
, yj+ 1

2
], (i, j) ∈ Zm × Zn}.

We denote hxi = xi+ 1
2
−xi− 1

2
, hyj = yj+ 1

2
− yj− 1

2
, and h = max(hxi , h

y
j ) is the maximal

length of all edges, and xi =
x
i+1

2
−x

i− 1
2

2 , yj =
y
j+1

2
−y

j− 1
2

2 the cell center of τxi , τ
y
j ,

respectively.
Define the finite element space

Vh = {v : v|τ ∈ Pk(x, y), τ ∈ Th},

where Pk denotes the space of polynomials of degree at most k with coefficients as
functions of t. The DG solution for (2.1) is to find a uh ∈ Vh such that

aτ (uh, v) = 0, ∀τ ∈ Th, v ∈ Vh, (2.2)

where for any τ = τi,j ∈ Th, (i, j) ∈ Zm × Zn,

aτ (uh, v) =

∫
τi,j

∂tuhvdxdy −
∫
τi,j

αuhvxdxdy −
∫
τi,j

βuhvydxdy

+

∫ y
j+1

2

y
j− 1

2

(
αûh(xi+ 1

2
, y)v(x−

i+ 1
2

, y)− αûh(xi− 1
2
, y)v(x+

i− 1
2

, y)
)
dy

+

∫ x
i+1

2

x
i− 1

2

(
βũh(x, yj+ 1

2
)v(x, y−

j+ 1
2

)− βũh(x, yj− 1
2
)v(x, y+

j− 1
2

)
)
dx.

Here for any function v, v(x−
i− 1

2

, ·), v(x+
i− 1

2

, ·) denote the left and right limits of v

across xi− 1
2
, respectively, and ûh, ũh are numerical fluxes. In this paper, we consider

the upwind numerical fluxes ûh, ũh, which are defined by

ûh(xi+ 1
2
, y) =

{
uh(x−

i+ 1
2

, y), if α(xi+ 1
2
, y) ≥ 0,

uh(x+
i+ 1

2

, y), if α(xi+ 1
2
, y) < 0,

ũh(x, yj+ 1
2
) =

{
uh(x, y−

j+ 1
2

), if β(x, yj+ 1
2
) ≥ 0,

uh(x, y+
j+ 1

2

), if β(x, yj+ 1
2
) < 0.

Denoting v±|i+ 1
2 ,y

= v(x±
i+ 1

2

, y), v±|x,j+ 1
2

= v(x, y±
j+ 1

2

), {v} and [v] the average

and jump of v, respectively. That is,

{v}i+ 1
2 ,y

=
1

2
(v+ + v−)|i+ 1

2 ,y
, {v}x,j+ 1

2
=

1

2
(v+ + v−)|x,j+ 1

2
,

[v]i+ 1
2 ,y

= (v+ − v−)|i+ 1
2 ,y
, [v]x,j+ 1

2
= (v+ − v−)|x,j+ 1

2
.

3



Let

a(u, v) =
∑
τ∈Th

aτ (u, v), (u, v)τ =

∫
τ

uvdxdy, (u, v) =
∑
τ∈Th

(u, v)τ .

By a direct calculation, we have

a(v, v) = (vt, v) +
1

2
(αx + βy, v

2)

+
1

2

∫ 2π

0

 m∑
i=1

α({v} − v̂)[v]
∣∣
i+ 1

2 ,y
dy +

n∑
j=1

β({v} − ṽ)[v]
∣∣
x,j+ 1

2

dx

 .

Due to the special choice of numerical fluxes, there holds

1

2

d

dt
‖v‖20 = (vt, v) . a(v, v) + ‖v‖20, ∀v ∈ Vh. (2.3)

Especially, the L2 stability of the upwind DG method follows, by taking v = uh in
the above inequality and using the Gronwall inequality.

2.2. Error analysis. To investigate the optimal error estimates and supercon-
vergence of DG method, our analysis is along this line: we first define a projection
Phu ∈ Vh of the exact solution, and then construct a specially designed correction
function wh such that |a(u− Phu+ wh, v)| is of higher order, i.e.,

|a(u− Phu+ wh, v)| . hk+1+l‖v‖0

for some positive l. Here the notation A . B indicates A ≤ cB with c a constant
independent of the mesh size h. Finally we adopt the above weak estimate to obtain
the desired optimal convergence rate and superconvergence rate for the DG approxi-
mation. If no otherwise stated, we always suppose that the mesh is uniform and that
both α, β do not change sign over the whole domain Ω, i.e.,

α(x, y)β(x, y) 6= 0, ∀(x, y) ∈ Ω.

Without loss of generality, we discuss the case α > 0, β > 0. The other three cases
(i.e., α > 0, β < 0, α < 0, β > 0, α < 0, β < 0) follow the same arguments.

In the rest of this paper, standard notations for Sobolev spaces are adopted, such
as Wm,p(D) on subdomain D ⊂ Ω equipped with the norm ‖ · ‖m,p,D and semi-norm
| · |m,p,D. When D = Ω, the index D is omitted. We set Wm,2(D) = Hm(D),
‖ · ‖m,2,D = ‖ · ‖m,D, and | · |m,2,D = | · |m,D.

2.2.1. A special projection of the exact solution. Let I = [−1, 1], L−1 = 0,
and Lp, p ≥ 0 the standard Legendre polynomial of degree p in I. Define Li,p(x), Lj,p(y)
to be the Legendre polynomial of degree p on the interval τxi and τyj , respectively.

For any function v and integer p ≥ 0, we denote by πxpv the L2 projection of v
along the x direction onto Pp(x). To be more precise, πxpv|τx

i
∈ Pp(x) satisfies∫

τx
i

(v − πxpv)wdx = 0, ∀w ∈ Pp(x).

The L2 projection πypv of v along the y direction can be defined similarly. By using
the standard approximation theory, we have

‖v − πxpv‖0,τx
i

+ h
1
2 ‖v − πxpv‖0,∞,τx

i
. hl‖v‖l,τx

i
, l ≤ p+ 1. (2.4)
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Furthemore, if

v|τx
i

=

∞∑
l=0

vlLi,l(x), with vl =
2l + 1

hxi

∫
τx
i

vLi,l(x)dx,

then

πxpv|τx
i

=

p∑
l=0

vlLi,l(x), (v − πxpv)|τx
i

=

∞∑
l=p+1

Li,l(x)
2l + 1

hxi

∫
τx
i

vLi,l(x)dx. (2.5)

In each element τi,j , (i, j) ∈ Zm × Zn, suppose u(x, y, t) has the following Radau
expansion

u(x, y, t)|τi,j =

∞∑
p=0

∞∑
q=0

ui,jp,q(Li,p − Li,p−1)(x)(Lj,q − Lj,q−1)(y), (2.6)

where (see [4])

ui,jp,q = u(x−
i+ 1

2

, y−
j+ 1

2

, t) +

p−1∑
l=0

q−1∑
r=0

(2l + 1)(2r + 1)

hxi h
y
j

∫
τi,j

u(x, y, t)Li,l(x)Lj,r(y)dxdy

−
p−1∑
l=0

2l + 1

hxi

∫
τx
i

u(x, y−
j+ 1

2

, t)Li,l(x)dx−
q−1∑
r=0

2r + 1

hyj

∫
τy
j

u(x−
i+ 1

2

, y, t)Lj,r(y)dy.

In light of (2.5), we have

ui,jp,q = (u− πxp−1u)(x−
i+ 1

2

, y−
j+ 1

2

, t)− πyq−1(u− πxp−1u)(x−
i+ 1

2

, y−
j+ 1

2

, t)

= (I − πyq−1)(I − πxp−1)u(x−
i+ 1

2

, y−
j+ 1

2

, t).

Here I denotes the identity operator. Then we conclude from (2.4) that

|ui,jp,q| . hp+q−1‖u‖p+q,τi,j . (2.7)

In addition, we have from (2.5) that

ui,jp,q =

∞∑
l=p

∞∑
r=q

(2l + 1)(2r + 1)

hxi h
y
j

∫
τi,j

u(x, y, t)Li,l(x)Lj,r(y)dxdy. (2.8)

Denote by Qk = Pk(x)×Pk(y) the standard space of bi-k polynomials, and define
P−h u ∈ Qk(x, y) the truncated Radau expansionof the exact u. That is,

P−h u
∣∣
τi,j

=

k∑
p=0

k∑
q=0

ui,jp,q(Li,p − Li,p−1)(x)(Lj,q − Lj,q−1)(y). (2.9)

We split P−h u into three parts

P−h u|τi,j =

 ∑
p+q≤k

+
∑

p+q=k+1

+
∑

k+2≤p+q≤(k+1)2

ui,jp,q(Li,p − Li,p−1)(x)(Lj,q − Lj,q−1)(y)

:= Q1u+Q2u+Q3u.
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Define

ζ0|τi,j =
∑

p+q=k+1

ui,jp,qLi,p(x)Lj,q(y). (2.10)

Now we define a projection Phu ∈ Vh of u as follows:

Phu|τi,j = Q1u+Q2u− ζ0.

Given a sequence of coefficients {vi,j}, define

D1v
i,j = vi,j − vi−1,j , D2v

i,j = vi,j − vi,j−1,

Dl
1v
i,j = D1(Dl−1

1 vi,j), Dl
2v
i,j = D2(Dl−1

2 vi,j), l ≥ 2.

We next estimate the coefficients ui,jp,q given in (2.6) and the function ζ0.

Lemma 2.1. Suppose ui,jp,q are the coefficients given in (2.6). Then for any positive
integer r′, l′

m∑
i=1

n∑
j=1

|Dr′

2 D
l′

1 u
i,j
p,q|2 . h2(p+q+r′+l′−1)‖∂p+l

′

x ∂q+r
′

y u‖20. (2.11)

Proof. First, given any fixed positive integer r, l, we denote

vi,j := vi,jl,r =
4

hxi h
y
j

∫
τx
i

∫
τy
j

u(x, y, t)Li,l(x)Lj,r(y)dxdy.

Let h̄ = h/2. Since the mesh is uniform, we have, by a scaling from τxi , τ
y
j to [−1, 1],

D2v
i,j =

∫ 1

−1

∫ 1

−1

u(xi + h̄ξ, yj + h̄s)− u(xi + h̄ξ, yj−1 + h̄s))Ll(ξ)Lr(s)dξds

= c

∫ 1

−1

∫ 1

−1

∂pξ∂
q
s (u(xi + h̄ξ, yj + h̄s)− u(xi + h̄ξ, yj−1 + h̄s))

dl−p(ξ2 − 1)l

dξl−p
dr−q(s2 − 1)r

dsr−q
dsdξ.

Here c = (−1)p+q

2l+rl!r!
, q ≤ r, p ≤ l, and we have used the integration by parts in the last

step. Noticing that ∂pξ∂
q
su = O(hp+q)∂px∂

q
yu, we get

|D2v
i,j | . hp+q−1

2l+rl!r!

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 3

2

|∂px∂q+1
y u|dxdy .

hp+q

2l+rl!r!
‖∂px∂q+1

y u‖0,τi,j∪τi,j−1 ,

which yields, together with (2.8),

|D2u
i,j
p,q| .

∞∑
l=p

∞∑
r=q

|D2v
i,j | . hp+q‖∂px∂q+1

y u‖0,τi,j∪τi,j−1 .

Following the same argument, we have

|D1u
i,j
p,q| . hp+q‖∂p+1

x ∂qyu‖0,τi,j∪τi−1,j ,

|D2D1u
i,j
p,q| . hp+q+1

∑
i′=i,i−1

∑
j′=j,j−1

‖∂p+1
x ∂q+1

y u‖0,τi′,j′ .
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Summing up all i, j, we conclude that (2.11) holds true for (r′, l′) = (0, 1), (1, 0), (1, 1).
By the induction method, we can prove (2.11) is also valid for r′, l′ ≥ 2 and we omit
it here for simplicity.

Given any function w, define the difference operator of w along the x direction
and y direction by

Dxw
±
i = w(x±

i+ 1
2

, y)− w(x±
i− 1

2

, y), Dyw
±
j = u(x, y±

j+ 1
2

)− w(x, y±
j− 1

2

),

Dl+1
x w±i = Dx(Dl

xw
±
i ), Dl+1

y w±j = Dy(Dl
yw
±
j ), l ≥ 1.

We have the following results for ζ0.
Lemma 2.2. Given any fixed positive integer r ≥ 1, there hold∑

τi,j

|
∫
τx
i

βζ−0 |x,j+ 1
2
Li,r(x)dx−

∫
τx
i−1

βζ−0 |x,j+ 1
2
Li−1,r(x)dx|2 . h2(k+2)‖u‖2k+2,(2.12)

∑
τi,j

|
∫
τx
i

Dy(βζ0)−j Li,r(x)dx−
∫
τx
i−1

Dy(βζ0)−j Li−1,r(x)dx|2 . h2(k+3)‖u‖2k+3, (2.13)

∑
τi,j

|
∫
τy
j

Dx(αζ0)−i Lj,r(y)dy|2 + |
∫
τy
j

αζ−0 |i+ 1
2 ,y
dy|2 . h2(k+2)‖u‖2k+2, (2.14)

∑
τi,j

|
∫
τy
j

Dx(αζ0)−i dy|
2 . h2(k+3)‖u‖2k+2. (2.15)

Proof. For any fixed p, r, we denote

βi,j =

∫
τx
i

β|x,j+ 1
2
Li,p(x)Li,r(x)dx =

h

2

∫ 1

−1

β(xi +
hs

2
, yj+ 1

2
)Lp(s)Lr(s)ds.

For smooth function β, we have

|βi,j | . h, |D1β
i,j |+ |D2β

i,j | . h2, |D1D2β
i,j | . h3. (2.16)

Recalling the definition of ζ0 in (2.10), we have, from a direct calculation∫
τx
i

βζ−0 |x,j+ 1
2
Li,r(x)dx−

∫
τx
i−1

βζ−0 |x,j+ 1
2
Li−1,r(x)dx

=
∑

p+q=k+1

(ui,jp,qβ
i,j − ui−1,j

p,q βi−1,j) =
∑

p+q=k+1

βi,jD1u
i,j
p,q + ui−1,j

p,q D1β
i,j , (2.17)

and thus

|
∫
τx
i

βζ−0 |x,j+ 1
2
Li,r(x)dx−

∫
τx
i−1

βζ−0 |x,j+ 1
2
Li−1,r(x)dx| .

∑
p+q=k+1

(h|D1u
i,j
p,q|+h2|ui−1,j

p,q |).

Then (2.12) follows by summing up all τi,j and using the estimates in (2.11). Following
the same argument, there holds∫

τx
i

Dy(βζ0)−j Li,r(x)dx−
∫
τx
i−1

Dy(βζ0)−j Li−1,r(x)dx

=
∑

p+q=k+1

D2(βi,jui,jp,q)−D2(βi−1,jui−1,j
p,q )

=
∑

p+q=k+1

βi,jD1D2u
i,j
p,q +D1β

i,jD2u
i−1,j
p,q +D1u

i,j−1
p,q D2β

i,j + ui−1,j−1
p,q D1D2β

i,j .
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Summing up all τi,j and using (2.11) and (2.16) again, we get (2.13) directly.
Similarly, for any fixed q ≥ 1, we denote

αi,j =

∫
τy
j

α(xi+ 1
2
, y)Lj,q(y)Lj,r(y)dy.

Then ∫
τy
j

(αζ0|−i+ 1
2 ,y
− αζ0|−i− 1

2 ,y
)Lj,r(y)dy =

∑
p+q=k+1

αi,jD1u
i,j
p,q + ui−1,j

p,q D1α
i,j .

Noticing that for r ≥ 1, we have

|αi,j | . h, D1α
i,j . h2.

While for r = 0, we use the orthogonality of Legendre polynomials to get

αi,j =

∫
τx
i

(α(xi+ 1
2
, y)− α(xi+ 1

2
, yj+ 1

2
))Lj,q(y)dx . h2, D1α

i,j . h3.

Summing up all τi,j and using (2.11) again yields the desired results (2.14)-(2.15).

2.2.2. Construction of the correction function. Define

V 0
h = {v ∈ Vh :

∫
τ

v = 0, ∀τ ∈ Th}, V̄h = {v : v|τ ∈ P0(x, y), ∀τ ∈ Th}.

Denote by ᾱ, β̄ ∈ V̄h the cell average of α, β, respectively. That is,

ᾱ|τ =
1

|τ |

∫
τ

αdxdy, β̄|τ =
1

|τ |

∫
τ

βdxdy.

For all τ = τi,j , define

bτ (u, v;α, β) = −
∫
τi,j

αuvxdxdy +

∫
τy
j

αu(x−
i+ 1

2

, y)
(
v−|i+ 1

2 ,y
− v+|i− 1

2 ,y

)
dy

−
∫
τi,j

βuvydxdy +

∫
τx
i

βu(x, y−
j+ 1

2

)
(
v−|x,j+ 1

2
− v+|x,j− 1

2

)
dx,

and

Hτ (u, v;α, β) =

∫
τy
j

(αu−v−|i+ 1
2 ,y
− αu−v+|i− 1

2 ,y
)dy +

∫
τx
i

(βu−v−|x,j+ 1
2
− βu−v+|x,j− 1

2
)dx,

H1
τ (u, v;α, β) = (ut, v)τ + bτ (u, v;α− ᾱ, β − β̄)

+

∫
τy
j

Dx(αu)−i v
+|i− 1

2 ,y
dy +

∫
τx
i

Dy(βu)−j v
+|x,j− 1

2
dx.

Given any function ψ, let Rhψ ∈ V 0
h and R1

hψ ∈ V 0
h be two special projections of

ψ such that for all v ∈ V 0
h

bτ (Rhψ, v; ᾱ, β̄) = −Hτ (ψ, v;α, β), (2.18)

bτ (R1
hψ, v; ᾱ, β̄) = −H1

τ (ψ, v;α, β). (2.19)
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Lemma 2.3. The operators Rh and R1
h are well-defined.

Proof. Noticing that the only difference between Rh and R1
h lies in the right hand

side, we only prove the uniqueness of Rh since the similar argument can be applied
to R1

h. Towards this end, we need to show that the zero right hand side ψ = 0 will
yields a zero solution Rhψ=0.

Denoting w = Rhψ. By choosing v = w in (2.18), we easily get

ᾱ

∫
τy
j

(w−|i+ 1
2 ,y
− w+|i− 1

2 ,y
)2dy + β̄

∫
τx
i

(w−|x,j+ 1
2
− w+|x,j− 1

2
)2dx = 0,

which yields

w−|i+ 1
2 ,y

= w+|i− 1
2 ,y
, w−|x,j+ 1

2
= w+|x,j− 1

2
, ∀(x, y) ∈ τ.

Consequently, ∫
τ

wxdxdy =

∫
τ

wydxdy = 0.

Consequently, wx, wy ∈ V 0
h . On the other hand, we use the integration by parts to

derive that

bτ (w, v) = (ᾱwx + β̄wy, v)τ .

By choosing v = ᾱwx + β̄wy ∈ V 0
h in the above inequality yields

ᾱwx + β̄wy = 0,

and thus w is a constant in each element τ . Since w ∈ V 0
h , we have w ≡ 0. Then

w = Rhψ is uniquely defined. This finishes our proof.
Now we define two correction functions by

ζ1 = Rhζ0, ζ2 = R1
hζ1. (2.20)

We have the following properties for ζ1 and ζ2.
Lemma 2.4. There hold for l = 1, 2 and r = 0, 1 that

‖ζl‖0 . hk+l‖u‖k+l, (2.21)(∑
τi,j

∫
τy
j

|Dx(αζl)
−
i |

2dy +

∫
τx
i

|Dy(βζl)
−
j |

2dx
) 1

2 . hk+l+ 1
2 ‖u‖k+1+l, (2.22)

(∑
τi,j

|
∫
τy
j

Dr
x(αζl)

−
i dy|

2 + |
∫
τx
i

Dr
y(βζl)

−
j dx|

2
) 1

2 . hk+2+r‖u‖k+2+r. (2.23)

Here for any function v, D0
xv
−
i = v−|i+ 1

2 ,y
, D0

yv
−
j = v−|x,j+ 1

2
.

The proof of Lemma 2.4 is given in the appendix.

2.3. Weak estimates of the projection. With the correction function defined
in (2.20), we design a special projection of u by

ulI = Phu− wlh, with wlh =

l∑
r=1

ζr, 1 ≤ l ≤ 2. (2.24)
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Theorem 2.5. Let u ∈ Hk+1+l(Ω), 1 ≤ l ≤ 2 be the solution of (2.1), and
uh ∈ Vh be solution of (2.2). Suppose ulI ∈ Vh is defined by (2.24). Then

|a(u− ulI , v)| . hk+l‖u‖k+l+1‖v‖0, ∀v ∈ Vh. (2.25)

Proof. Recalling the definition of a(·, ·) and using the orthogonality of Q3u, we
have

aτ (P−h u− Phu, v) = aτ (Q3u+ ζ0, v) = −(ζ0 +Q3u, αvx + βvy)τ +Hτ (ζ0, v;α, β).

Noticing that

aτ (ζr, v) = bτ (ζr, v; ᾱ, β̄) +H1
τ (ζr, v;α, β), 1 ≤ r ≤ 2,

we have

aτ (P−h u− u
l
I , v) = bτ (wlh, v; ᾱ, β̄) +H1

τ (wlh, v;α, β) +Hτ (ζ0, v;α, β)− Jτ .

where

Jτ = (ζ0 +Q3u, αvx + βvy)τ .

In light of (2.18)-(2.19), we have for all v ∈ V 0
h that

aτ (P−h u− u
l
I , v) = H1

τ (ζl, v;α, β)− Jτ .

By using the Cauchy-Schwartz inequality and the inverse inequality,

|H1
τ (ζl, v;α, β)| . ‖∂tζl‖0,τ‖v‖0,τ + h‖ζl‖0,τ‖v‖1,τ + ‖ζl‖0,τ‖v‖0,τ

+ h−
1
2 ‖v‖0,τ

(∫
τy
j

|Dx(αζl)
−
i |

2dy +

∫
τx
i

|Dy(βζl)
−
j |

2dx

) 1
2

.

On the other hand, using the orthogonality of ζ0 and Q3u again yields

|Jτ | = |((ζ0 +Q3u), (α− πx1π
y
1α)vx + (β − πx1π

y
1β)vy)τ | . h2‖ζ0 +Q3u‖0,τ‖v‖1,τ .

Consequently, for all v ∈ V 0
h ,

|aτ (P−h u− u
l
I , v)| . (‖ζl‖0,τ + ‖∂tζl‖0,τ + h‖ζ0 +Q3u‖0,τ )‖v‖0,τ

+ h−
1
2 ‖v‖0,τ

(∫
τy
j

|Dx(αζl)
−
i |

2dy +

∫
τx
i

|Dy(βζl)
−
j |

2dx

) 1
2

.

Summing up all element τ , and using (2.21)-(2.22) and the estimates of ζ0, Q3u, we
have for all v ∈ V 0

h

|a(P−h u− u
l
I , v)| . hk+l(‖ut‖k+l + ‖u‖k+l+1)‖v‖0 . hk+l‖u‖k+1+l‖v‖0.

For all v0 ∈ V̄h, a direct calculation yields

a(P−h u− u
l
I , v0) =

∑
τi,j

l∑
r=0

v0

( ∫
τy
j

Dx(αζr)
−
i dy +

∫
τx
i

Dy(βζr)
−
j dx

)
.
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If l = 1, we use (2.15), (2.22) and the Cauchy-Schwarz inequality to derive that

|a(P−h u− u
l
I , v0)| .

(∑
τi,j

hv2
0

) 1
2

 l∑
r=0

∑
τi,j

( ∫
τy
j

|Dx(αζr)
−
i |

2dy +

∫
τx
i

|Dy(βζr)
−
j |

2dx
) 1

2

. hk+1‖u‖k+2‖v0‖0.

By using (2.15), (2.23) and the Cauchy-Schwarz inequality again, we have for l = 2,

|a(P−h u− u
l
I , v0)| .

(∑
τi,j

v2
0

) 1
2

 l∑
r=0

∑
τi,j

|
∫
τy
j

Dx(αζr)
−
i dy|

2 + |
∫
τx
i

Dy(βζr)
−
j dx|

2

 1
2

. hk+2‖u‖k+3‖v0‖0.

Consequently,

|a(P−h u− u
l
I , v0)| . hk+l‖u‖k+1+l‖v0‖0, ∀v0 ∈ V̄h.

Since any function v ∈ Vh can be decomposed into v = v1 + v0 with v1 ∈ V 0
h and

v0 ∈ V̄h, then we conclude from the last two inequalities that

|a(P−h u− u
l
I , v)| = |a(P−h u− u

l
I , v0) + a(P−h u− u

l
I , v1)| . hk+l‖u‖k+l+1‖v‖0.

Note that (see [4])

|a(u− P−h u, v)| . hk+1+r‖v‖0‖u‖k+r+2, ∀v ∈ Vh, 1 ≤ r ≤ k.

Consequently,

|a(u−ulI , v)| = |a(u−P−h u, v)+a(P−h u−u
l
I , v)| . hk+l‖u‖k+l+1, ∀v ∈ Vh, 1 ≤ l ≤ 2.

This finishes the proof of (2.25).

2.4. Optimal error estimates and superconvergence. Define the cell aver-
age error and downwind edge average error as follows:

ec :=

(
1

nm

∑
τ∈Th

( 1

|τ |

∫
τ

(u− uh)dxdy
)2) 1

2

,

ed :=

 1

nm

∑
τi,j∈Th

( 1

hyj

∫
τy
j

(u− uh)−
i+ 1

2 ,y
dy
)2

+ (
1

hxi

∫
τx
i

(u− uh)−
x,j+ 1

2

dx)2

 1
2

.

Now we are ready to present the optimal error estimates in L2 norm and super-
convergence for the cell error and downwind edge average error.

Theorem 2.6. Let u ∈ Hk+2(Ω) be the solution of (2.1) and ulI ∈ Vh be the
special projection of u defined by (2.24). Assume that uh ∈ Vh is the solution of (2.2)
using uniform meshes with the initial value chosen as uh(x, y, 0) = ulI(x, y, 0). Then

‖(u− uh)(·, t)‖0 . hk+1‖u‖k+2. (2.26)
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Furthermore, if u ∈ Hk+3(Ω), then for k ≥ 1,

eu,c . hk+2‖u‖k+3, ed . hk+2‖u‖k+3. (2.27)

Proof. Choosing v = uh−ulI in (2.3) and using the orthogonality a(u−uh, v) = 0
for all v ∈ Vh, we have

‖ulI − uh‖0
d

dt
‖uI − uh‖0 ≤

∣∣a(uh − ulI , ulI − uh)
∣∣+ ‖ulI − uh‖20

=
∣∣a(u− ulI , uI − uh)

∣∣+ ‖ulI − uh‖20.

Due to the special choice of initial values and the estimates in (2.25), we have

‖ulI − uh‖0 . hk+l‖u‖k+l+1, 1 ≤ l ≤ 2. (2.28)

Consequently, if u ∈ Hk+2, then

‖u− uh‖0 ≤ ‖u1
I − u‖0 + ‖u1

I − uh‖0 . hk+1‖u‖k+2.

This finishes the proof of (2.26).

Noticing that ∫
τ

(u− ulI)dxdy =

∫
τ

(u− Phu+ wlh)dxdy = 0,

we have

ec =

(
1

nm

∑
τ∈Th

( 1

|τ |

∫
τ

(ulI − uh)dxdy
)2) 1

2

. ‖ulI − uh‖0,

which yields (together with (2.28)) the first inequality of (2.27). Similarly, using the
orthogonality of Legendre polynomials,∫

τy
j

(u− ulI)(x−i+ 1
2

, y)dy =

∫
τy
j

(P−h u− u
l
I)(x

−
i+ 1

2

, y)dy =

∫
τy
j

wlh(x−
i+ 1

2

, y)dy,∫
τx
i

(u− ulI)(x, y−j+ 1
2

)dx =

∫
τy
j

wlh(x, y−
j+ 1

2

)dx.

Consequently,

|ed|2 =
1

nm

∑
τi,j

∣∣ 1
h

∫
τy
j

(wlh + ulI − uh)(x−
i+ 1

2

, y)dy
∣∣2 +

∣∣ 1
h

∫
τx
i

(wlh + ulI − uh)(x, y−
j+ 1

2

)dx
∣∣2

. ‖ulI − uh‖20 +
∑
τi,j

∣∣ ∫
τy
j

wlh(x−
i+ 1

2

, y)dy
∣∣2 +

∣∣ ∫
τx
i

wlh(x, y−
j+ 1

2

)dx
∣∣2.

Then the second inequality of (2.27) follows by choosing r = 0 in (2.23) and l = 2 in
(2.28).
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3. DG method for nonlinear hyperbolic equations. In this section, we
consider the DG method for the two-dimensional nonlinear hyperbolic conservation
laws with periodic boundary condition

ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, 0) = u0(x, y),
(3.1)

where f(u), g(u) are smooth functions. In this paper, we suppose that f ′(u) and g′(u)
do not change sign.

The DG solution for (3.1) is to find uh ∈ Vh such that

(∂tuh, v)τi,j = (f(uh), vx)τi,j −
∫
τy
j

(
f̂(uh)v−|i+ 1

2 ,y
− f̂(uh)v−|i− 1

2 ,y

)
dy

+ (g(uh), vy)τi,j −
∫
τx
i

(
g̃(uh)v−|x,j+ 1

2
− g̃(uh)v+|x,j+ 1

2

)
dx,

(3.2)

where f̂(uh), g̃(uh) denote the numerical fluxes, which are single-valued functions
defined at each cell interface and in general depends on the values of the numerical
solution uh from both sides of the interface. Here we still choose the upwind monotone
numerical fluxes, i.e.,

f̂(uh) =

{
f(u−h ), if f ′(u) ≥ 0,
f(u+

h ), if f ′(u) < 0,
g̃(uh) =

{
g(u−h ), if g′(u) ≥ 0,
g(u+

h ), if g′(u) < 0,

Without loss of generality, we assume that f ′(u) > 0, g′(u) > 0. To deal with the
nonlinearity, we first adopt the Taylor expansion for f(u) and g(u),

f(u) = f(uh) + f ′(u)(u− uh)− 1

2
f̄ ′′u (u− uh)2,

g(u) = g(uh) + g′(u)(u− uh)− 1

2
ḡ′′u(u− uh)2,

where

f̄ ′′u = f
′′
(θ1u+ (1− θ1)uh), ḡ′′u = g

′′
(θ1u+ (1− θ1)uh), 0 ≤ θ1, θ2 ≤ 1.

Second, we need a priori assumption for the error u− uh, i.e.,

‖u− uh‖0,∞ . h. (3.3)

This assumption is frequently used in the DG error analysis for nonlinear problems
(see, e.g., [5, 22]). We will justify this assumption for k ≥ 1.

Third, we slightly modified the correction function ζ1, ζ2.

bτ (ζ1, v; f̄ ′(u), ḡ′(u)) = −Hτ (ζ0, v; f ′(u), g′(u)),

bτ (ζ2, v; f̄ ′(u), ḡ′(u)) = −H1
τ (ζ1, v; f ′(u), g′(u)).

Let ulI = Phu− wlh with wlh =
∑l
r=1 ζr, and denote

e = u− uh, η = u− ulI , ξ = ulI − uh.

Following the same argument as what we did for the linear problems, we have

|A(u− ulI , v)| . hk+l‖u‖k+l+1‖v‖0, 1 ≤ l ≤ 2, (3.4)
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where

A(w, v) = (∂tw, v)− (f ′(u)w, vx) +
∑
τi,j

∫
τy
j

(
f ′(u)ŵv−|i+ 1

2 ,y
− f ′(u)ŵv−|i− 1

2 ,y

)
dy

− (g′(u)w, vy) +
∑
τi,j

∫
τx
i

(
g′(u)w̃v−|x,j+ 1

2
− g′(u)w̃v+|x,j+ 1

2

)
dx.

Theorem 3.1. Let u ∈ Hk+2(Ω) be the solution of (3.1) and ulI ∈ Vh be the
special projection of u. Assume that uh ∈ Vh is the solution of (3.2) using uniform
meshes with the initial value chosen as uh(x, y, 0) = ulI(x, y, 0). Then

‖(u− uh)(·, t)‖0 . hk+1‖u‖k+2. (3.5)

Furthermore, if u ∈ Hk+3(Ω), there hold for k ≥ 1

ec . hmin(2k,k+2)‖u‖k+3, ed . hmin(2k,k+2)‖u‖k+3. (3.6)

Proof. Noticing that the exact solution u also satisfy the equation (3.2), we have
the following error equation

2A(e, v) = (f̄
′′

u e
2, vx)+(ḡ′′ue

2, vy)+
∑
τi,j

∫
τy
j

(f̄
′′

u e
2)−[v]|i+ 1

2 ,y
dy+

∫
τx
i

(ḡ′′ue
2)−[v]|x,j+ 1

2
)dx.

By denoting

J = (f̄
′′

u e
2, ξx) + (ḡ′′ue

2, ξy) +
∑
τi,j

∫
τy
j

(f̄
′′

u e
2)−[ξ]|i+ 1

2 ,y
dy +

∫
τx
i

(ḡ′′ue
2)−[ξ]|x,j+ 1

2
)dx,

we have

A(ξ, ξ) = A(η, ξ) +
J
2
. (3.7)

We next estimate the term J . By using the Cauchy-Schwarz inequality,

J . ‖e‖0,∞(‖e‖0‖ξ‖1 + ‖ξ‖2Γh
+ ‖ξ‖Γh

‖η‖Γh
), (3.8)

where

‖ξ‖2Γh
=
∑
τi,j

∫
τy
j

(ξ2(x−
i+ 1

2

, y) + ξ2(x+
i+ 1

2

, y))dy +

∫
τx
i

(ξ2(x, y−
j+ 1

2

) + ξ2(x, y+
j+ 1

2

))dx.

Using the inverse inequality and the approximation property of ulI , we have

‖ξ‖2Γh
. h−1‖ξ‖20, ‖η‖2Γh

. h2k+1‖u‖2k+1.

Substituting the above inequality into (3.8) and using the inverse inequality yields

J . h−1‖e‖0,∞(‖e‖0‖ξ‖0 + ‖ξ‖20 + hk+1‖u‖k+1‖ξ‖0).

Recalling the definition of A(·, ·), we obtain from a direct calculation,

A(ξ, ξ) = (ξt, ξ) +
1

2
(∂xf

′(u) + ∂yg
′(u), ξ2)

+
∑
τi,j

∫
τy
j

f ′(u)[ξ]2|i+ 1
2 ,y
dy +

∫
τx
i

f ′(u)[ξ]2|x,j+ 1
2
dx.

(3.9)
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Combining (3.4), (3.7), (3.9) and the estimates of J together, we get

(ξt, ξ) . (1 + h−1‖e‖0,∞)‖ξ‖20 + h2k‖e‖20,∞‖u‖2k+1 + hk+1+l‖u‖k+2+l‖ξ‖0. (3.10)

In light of (3.3), we have

1

2

d

dt
‖ξ‖20 ≤ (ξt, ξ) . ‖ξ‖20 + h2k+2‖u‖2k+1,

and thus

‖ξ‖0 . hk+1‖u‖k+2.

Then (3.5) follows from the triangle inequality.
To derive the superconvergence result, we first adopt the inverse inequality from

the last inequality to derive

‖ξ‖0,∞ . hk‖u‖k+2.

Then

‖e‖0,∞ ≤ ‖ξ‖0,∞ + ‖η‖0,∞ . hk‖u‖k+2.

Substituting the above inequality into (3.10), we have

(ξt, ξ) . (1 + hk−1)‖ξ‖20 + h4k‖u‖2k+1 + hk+2‖u‖k+3‖ξ‖0.

Consequently, for sufficiently small h, we have from the Gronwall inequality that

‖ξ‖0 . hmin(2k,k+2)‖u‖k+3.

Following the same argument as that in Theorem 2.6, we obtain (3.6).
Remark 3.2. Now we show that the a priori assumption (3.3) is reasonable and

justify it. Actually, we have from the optimal error estimate (3.5) that

‖uI − uh‖0 . hk+1.

Using the inverse inequality and triangle inequality, there holds

‖u− uh‖0,∞ ≤ ‖u− uI‖0,∞ + ‖uI − uh‖0,∞
. ‖u− Phu‖0,∞ + h−1‖uI − uh‖∞ + h−1‖ζ1 + ζ2‖0
. hk.

Consequently, the assumption (3.3) holds true for k ≥ 1.

4. Numerical results. In this section, we present some numerical experiments
to verify our theoretical findings. In our numerical experiments, we adopt the upwind
DG scheme using Pk elements with 0 ≤ k ≤ 3 for solving the linear constant coefficient
equation, the linear variable coefficient equation, and the nonlinear equation, and we
test the standard L2 error ‖e‖0, the error for the cell average ec, and the error for
the downwind edge average ed on both uniform and nonuniform meshes. The uniform
mesh is obtained by equally dividing the computational domain [0, 2π] × [0, 2π] into
N ×N rectangles. Nonuniform meshes of N ×N rectangles are obtained by randomly
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and independently perturbing each node in the x and y axes of a uniform mesh by up
to some percentage. That is,

xi =
2πi

N
+

π

2N
randn(), yj =

2πj

N
+

π

2N
randn(), 1 ≤ i, j ≤ N − 1.

Here randn denotes the random number in the interval [−1, 1]. To diminish the time
discretization error, forth-order Runge-Kutta method is used with the time step size
∆t = 0.05h2

min with hmin = min(hxi , h
y
j ).

Example 1. We first consider the following linear constant hyperbolic equation{
ut + ux − 2uy = f, (x, y, t) ∈ [0, 2π]× [0, 2π]× (0, 1),

u(x, y, 0) = sin(x+ y)

with the periodic boundary condition

u(0, y, t) = u(2π, y, t) and u(x, 0, t) = u(x, 2π, t).

The right-hand side function f is chosen such that the exact solution is

u(x, y, t) = sin(x+ y − 2t).

Listed in Tables 4.1-4.2 are errors and the corresponding convergence rates cal-
culated from the DG method for k = 0, 1, 2, 3 in uniform meshes and nonuniform
meshes, respectively. We observe an optimal convergence rate of k + 1 for the L2

error ‖e‖0, a superconvergence rate of k + 2 for the downwind edge average error ed
for k ≥ 1 in uniform meshes, which confirm our theoretical results in Theorem 2.6. As
for the cell average error ec, Table 4.1 demonstrate a superconvergence rate of 2k+ 1
for k = 1, 2 and 2k for k = 3 in uniform meshes, which is better than the theoretical
result k + 2 given in (2.27). While in nonuniform meshes, Table 4.2 shows the op-
timal convergence rate k + 1 for all the errors ‖e‖0, ec, ed, and the superconvergence
phenomena for the cell average error and edge average error disappear.

Example 2. We solve the following linear variable equation with periodic bound-
ary condition{

ut + (α(x, y)u)x + (β(x, y)u)y = f, (x, y, t) ∈ [0, 2π]× [0, 2π]× (0, 1),

u(x, y, 0) = sin(x+ y),

where α(x, y) = sin(x+ y) + 2, β(x, y) = cos(x+ y)− 2, and f is chosen such that the
exact solution is u(x, y, t) = sin(x+ y − 2t).

The computational results in uniform and nonuniform meshes are given in Table
4.3 and Table 4.4, respectively, from which, we can observe similar results as given in
Example 1 for the linear constant coefficient problem, which indicates that optimal
error estimates in the L2 norm and superconvergence results for the cell/edge average
errors hold true for the linear variable coefficient equation in uniform meshes.

Example 3. We consider the following nonlinear equation with periodic bound-
ary condition{

ut + (u3)x − (eu)y = f, (x, y, t) ∈ [0, 2π]× [0, 2π]× (0, 1),

u(x, y, 0) = sin(x+ y).
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Table 4.1
Errors and convergence rates for the constant coefficient equation in uniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 1.49e-0 – 2.08e-1 – 3.51e-1 –
32× 32 8.32e-1 0.84 1.20e-1 0.80 1.95e-1 0.84

k = 0 64× 64 4.42e-1 0.91 6.44e-2 0.90 1.03e-1 0.92
128× 128 2.28e-1 0.96 3.34e-2 0.95 5.32e-2 0.96
256× 256 1.16e-1 0.98 1.70e-2 0.97 2.70e-2 0.98
16× 16 8.42e-2 – 4.19e-3 – 1.01e-2 –
32× 32 2.07e-2 2.03 5.73e-4 2.87 1.38e-3 2.87

k = 1 64× 64 5.14e-3 2.01 7.34e-5 2.96 1.77e-4 2.96
128× 128 1.28e-3 2.00 9.24e-6 2.99 2.23e-5 2.99
256× 256 3.21e-4 2.00 1.16e-6 3.00 2.80e-6 3.00
16× 16 4.72e-3 – 2.05e-5 – 1.67e-4 –
32× 32 5.85e-4 3.01 6.54e-7 4.97 1.08e-5 3.95

k = 2 64× 64 7.29e-5 3.00 2.06e-8 4.99 6.79e-7 3.99
128× 128 9.11e-6 3.00 6.44e-10 5.00 4.25e-8 4.00
256× 256 1.14e-6 3.00 2.00e-11 5.01 2.66e-9 4.00
16× 16 2.84e-4 – 1.54e-7 – 7.17e-6 –
32× 32 1.75e-5 4.02 3.53e-9 5.45 1.93e-7 5.22

k = 3 64× 64 1.09e-6 4.00 5.53e-11 6.00 6.46e-9 4.90
128× 128 6.82e-8 4.00 8.62e-13 6.00 1.99e-10 5.02
256× 256 4.26e-9 4.00 1.64e-14 5.71 6.09e-12 5.03

Table 4.2
Errors and convergence rates for the constant coefficient equation in nonuniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 1.54e-0 – 2.13e-1 – 3.55e-1 –
32× 32 8.72e-1 0.88 1.25e-1 0.83 2.00e-1 0.89

k = 0 64× 64 4.65e-1 0.96 6.75e-2 0.94 1.07e-1 0.96
128× 128 2.40e-1 0.98 3.50e-2 0.97 5.49e-2 0.98
256× 256 1.22e-1 0.98 1.78e-2 0.97 2.79e-2 0.97
16× 16 1.04e-1 – 6.80e-3 – 1.35e-2 –
32× 32 2.35e-2 2.12 1.25e-3 2.42 2.79e-3 2.25

k = 1 64× 64 5.83e-3 2.03 2.54e-4 2.32 5.59e-4 2.34
128× 128 1.50e-3 2.15 5.81e-5 2.34 1.21e-4 2.43
256× 256 3.75e-4 2.00 1.40e-5 2.05 2.94e-5 2.04
16× 16 7.53e-3 – 2.99e-4 – 8.27e-4 –
32× 32 7.70e-4 3.39 2.17e-5 3.90 6.28e-5 3.83

k = 2 64× 64 9.84e-5 3.00 2.47e-6 3.16 8.12e-6 2.98
128× 128 1.25e-5 3.04 3.43e-7 2.91 1.03e-6 3.05
256× 256 1.55e-6 3.01 3.97e-8 3.05 1.26e-7 3.03
16× 16 4.22e-4 – 7.15e-6 – 2.76e-5 –
32× 32 2.76e-5 4.52 7.33e-7 3.77 2.29e-6 4.12

k = 3 64× 64 1.89e-6 3.91 5.32e-8 3.83 1.68e-7 3.82
128× 128 1.22e-7 4.04 3.74e-9 3.91 1.17e-8 3.92
256× 256 7.72e-9 3.98 2.24e-10 4.06 6.78e-10 4.11
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Table 4.3
Errors and convergence rates for the linear variable coefficient equation in uniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 2.00e-0 – 2.98e-1 – 4.57e-1 –
32× 32 1.23e-0 0.70 1.88e-1 0.66 2.82e-1 0.70

k = 0 64× 64 7.21e-1 0.78 1.11e-1 0.76 1.64e-1 0.78
128× 128 4.03e-1 0.84 6.26e-2 0.83 9.18e-2 0.84
256× 256 2.17e-1 0.89 3.39e-2 0.89 4.94e-2 0.89
16× 16 1.00e-1 – 9.06e-3 – 1.47e-2 –
32× 32 2.22e-2 2.18 1.42e-3 2.67 2.20e-3 2.74

k = 1 64× 64 5.24e-3 2.08 1.90e-4 2.90 2.89e-4 2.92
128× 128 1.29e-3 2.02 2.41e-5 2.98 3.65e-5 2.99
256× 256 3.21e-4 2.01 3.01e-6 3.00 4.57e-6 3.00
16× 16 4.64e-3 – 4.32e-5 – 1.83e-4 –
32× 32 5.74e-4 3.02 1.39e-6 4.96 1.12e-5 4.03

k = 2 64× 64 7.15e-5 3.00 4.32e-8 5.00 6.95e-7 4.01
128× 128 8.92e-6 3.00 1.34e-9 5.01 4.34e-8 4.00
256× 256 1.11e-6 3.00 4.18e-11 5.01 2.71e-9 4.00
16× 16 2.84e-4 – 3.84e-6 – 9.16e-6 –
32× 32 1.73e-5 4.04 1.20e-8 8.32 2.55e-7 5.17

k = 3 64× 64 1.08e-6 4.01 8.67e-11 7.11 7.32e-9 5.12
128× 128 6.72e-8 4.00 1.26e-12 6.10 2.24e-10 5.03
256× 256 4.20e-9 4.00 3.25e-14 5.28 6.90e-12 5.02

Table 4.4
Errors and convergence rates for the linear variable coefficient equation in nonuniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 2.05e-0 – 3.06e-1 – 4.66e-1 –
32× 32 1.28e-0 0.68 1.95e-1 0.65 2.91e-1 0.69

k = 0 64× 64 7.56e-1 0.85 1.16e-1 0.84 1.70e-1 0.86
128× 128 4.19e-1 0.88 6.50e-2 0.86 9.50e-2 0.87
256× 256 2.26e-1 0.88 3.51e-2 0.88 5.10e-2 0.88
16× 16 1.16e-1 – 7.06e-3 – 1.69e-2 –
32× 32 2.55e-2 2.22 1.88e-3 1.94 3.62e-3 2.26

k = 1 64× 64 6.21e-3 2.27 5.17e-4 2.07 8.95e-4 2.24
128× 128 1.48e-3 1.93 1.18e-4 1.99 2.10e-4 1.96
256× 256 3.52e-4 2.07 2.77e-5 2.09 5.02e-5 2.06
16× 16 6.89e-3 – 2.37e-4 – 7.03e-4 –
32× 32 7.44e-4 3.18 1.54e-5 3.91 6.16e-5 3.48

k = 2 64× 64 9.72e-5 3.15 2.61e-6 2.75 8.60e-6 3.05
128× 128 1.24e-5 2.97 3.47e-7 2.91 1.14e-6 2.92
256× 256 1.66e-6 2.91 4.20e-8 3.05 1.56e-7 2.87
16× 16 4.70e-4 – 1.85e-5 – 4.65e-5 –
32× 32 2.99e-5 4.20 1.31e-6 4.04 2.99e-6 4.19

k = 3 64× 64 1.94e-6 3.87 8.48e-8 3.87 1.94e-7 3.87
128× 128 1.17e-7 4.09 5.06e-9 4.11 1.17e-8 4.09
256× 256 7.19e-9 4.03 3.01e-10 4.07 6.69e-10 4.13
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Table 4.5
Errors and convergence rates for the nonlinear equation in uniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 1.77e-0 – 2.57e-1 – 4.02e-1 –
32× 32 1.09e-0 0.70 1.63e-1 0.66 2.48e-1 0.70

k = 0 64× 64 6.32e-1 0.78 9.66e-2 0.76 1.45e-1 0.78
128× 128 3.52e-1 0.85 5.42e-2 0.83 8.03e-2 0.85
256× 256 1.90e-1 0.89 2.93e-2 0.89 4.32e-2 0.89
16× 16 1.15e-1 – 1.10e-2 – 2.05e-2 –
32× 32 2.41e-2 2.25 1.84e-3 2.58 3.31e-3 2.63

k = 1 64× 64 5.42e-3 2.15 2.61e-4 2.81 4.64e-4 2.83
128× 128 1.30e-3 2.06 3.53e-5 2.89 6.17e-5 2.91
256× 256 3.22e-4 2.02 4.72e-6 2.90 8.08e-6 2.93
16× 16 4.88e-3 – 8.43e-5 – 3.15e-4 –
32× 32 5.91e-4 3.05 4.11e-6 4.36 1.80e-5 4.13

k = 2 64× 64 7.31e-5 3.02 1.81e-7 4.51 9.29e-7 4.27
128× 128 9.11e-6 3.00 7.05e-9 4.68 5.23e-8 4.15
256× 256 1.14e-6 3.00 2.52e-10 4.80 3.13e-9 4.06
16× 16 2.87e-4 – 1.41e-6 – 1.09e-5 –
32× 32 1.77e-5 4.02 2.83e-8 5.64 3.20e-7 5.09

k = 3 64× 64 1.10e-6 4.01 2.46e-10 6.85 8.77e-9 5.19
128× 128 6.88e-8 4.00 2.70e-12 6.51 2.81e-10 4.96
256× 256 4.30e-9 4.00 4.76e-14 5.82 8.79e-12 5.00

Again we choose a special f such that the exact solution to this equation is u(x, y, t) =
sin(x+ y − 2t).

Tables 4.1-4.2 present errors and the corresponding convergence rates for k =
0, 1, 2, 3 in uniform meshes and nonuniform meshes, respectively. Similar to the linear
equations, the L2 error is convergent with (k + 1)-th order, and the error for the
downwind edge average ed is superconvergent, with an order of k + 2 in uniform
meshes. All these results are consistent with our theoretical findings given in Theorem
3.1. While the convergence rate for the cell average error ec is slightly better than
our theoretical result in Theorem 3.1, which is 2k + 1 for k = 1, 2 and 2k for k = 3.
As for the nonuniform meshes, the expected (k+ 1)-th order of accuracy are observed
and superconvergence results no longer exist.

5. Concluding remarks. We have studied the error estimates and supercon-
vergence behavior of the DG solution on uniform Cartesian meshes for linear and
nonlinear 2D hyperbolic equations using upwind fluxes and Pk elements. Optimal er-
ror estimates in the L2 norm and superconvergence for the cell average and downwind
edge average with an order of O(hk+2) are derived, under the condition that the wind
direction does not change sign on the whole domain.

Comparing with the counterpart Qk element, the degree of freedom for the Pk
element is almost cut in half. However, a interesting and surprising result is that
the superconvergence property for Pk element still remains on the uniform meshes.
Especially, evidences from our numerical experiments show that the highest super-
convergence rate for the cell average error can reach as high as the counterpart Qk
element, which turns out to be O(h2k+1) in some special cases (e.g., k = 1, 2). It is
surprising that the loss of degree of freedom is not at the expense of the accuracy for
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Table 4.6
Errors and convergence rates for the nonlinear equation in uniform meshes

N ×N ‖e‖0 rate ec rate ed rate
16× 16 1.82e-0 – 2.64e-1 – 4.10e-1 –
32× 32 1.13e-0 0.78 1.69e-1 0.73 2.55e-1 0.78

k = 0 64× 64 6.53e-1 0.76 9.95e-2 0.74 1.48e-1 0.76
128× 128 3.65e-1 0.86 5.62e-2 0.84 8.29e-2 0.86
256× 256 1.98e-1 0.91 3.06e-2 0.90 4.48e-2 0.91
16× 16 1.41e-1 – 1.38e-2 – 2.48e-2 –
32× 32 2.80e-2 2.43 2.86e-3 2.36 4.94e-3 2.43

k = 1 64× 64 6.52e-3 2.09 5.97e-4 2.25 9.37e-4 2.39
128× 128 1.55e-3 2.15 1.39e-4 2.18 2.27e-4 2.11
256× 256 3.98e-4 1.96 3.94e-5 1.82 5.93e-5 1.94
16× 16 6.75e-3 – 2.30e-4 – 7.01e-4 –
32× 32 7.83e-4 3.23 1.87e-5 3.76 6.87e-5 3.48

k = 2 64× 64 9.76e-5 2.86 2.18e-6 2.95 7.51e-6 3.04
128× 128 1.26e-5 3.16 3.33e-7 2.90 1.08e-6 2.99
256× 256 1.62e-6 2.96 3.83e-8 3.12 1.43e-7 2.92
16× 16 4.52e-4 – 1.23e-5 – 3.44e-5 –
32× 32 2.70e-5 3.92 7.72e-7 3.86 1.91e-6 4.02

k = 3 64× 64 1.88e-6 4.30 7.27e-8 3.81 1.50e-7 4.11
128× 128 1.20e-7 4.16 4.17e-9 4.33 1.02e-8 4.08
256× 256 7.74e-9 3.96 2.62e-10 3.99 6.72e-10 3.92

superconvergence on the uniform meshes. However, different to the Qk element, where
superconvergence result are the same in both the uniform and nonuniform meshes, it
seems that the superconvergence for Pk element is dependent upon the mesh and the
superconvergence phenomenon disappears when the mesh is nonuniform.

Extension of this work to nonuniform meshes and to triangulations is interesting
and challenging, and constitutes our future work.

6. Appendix. This section is dedicated to the proof of Lemma 2.4.
Proof. We first prove (2.21)-(2.22) for l = 1. In each τi,j , we suppose

ζ1|τi,j =
∑

1≤p+q≤k

ci,jp,qLi,p(x)Lj,q(y). (6.1)

By choosing v = Li,p(x)Lj,q(y), 1 ≤ p + q ≤ k in (2.18), we easily obtain a linear
system for the coefficients ci,jp,q and thus,

h|ci,jp,q| .
∫
τy
j

∣∣ζ−0 |i+ 1
2 ,y

∣∣+
∣∣ζ−0 |i− 1

2 ,y

∣∣dy +

∫
τx
i

∣∣ζ−0 |x,j+ 1
2

∣∣+
∣∣ζ−0 |x,j− 1

2

∣∣dx,
which yields, together with the trace inequality,

‖ζ1‖20,τ ≤ |τ |
∑

1≤p+q≤k

|ci,jp,q|2 ≤ ‖ζ0‖20,τ + h2|ζ0|21,τ .

Recalling the definition of ζ0 and using the estimates for ζ0, we have

‖ζ1‖0 . hk+1‖u‖k+1.
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The (2.21) holds ture for l = 1.
To prove (2.22), we denoting

τ1 = τi,j , τ2 = τi−1,j , w1 = ζ1|τ1 , w2 = ζ1|τ2 .

Then

w1 =
∑

1≤p+q≤k

ci,jp,qLi,p(x)Lj,q(y), w2 =
∑

1≤p+q≤k

ci−1,j
p,q Li−1,p(x)Lj,q(y).

Recalling the definition of ζ1 in (2.18), we have

bτ1(w1, v1)− bτ2(w2, v2) = Hτ2(ζ0, v1)−Hτ1(ζ0, v2), ∀vi ∈ Pk(τi).

By choosing v1 = Li,r(x)Lj,r′(y), v2 = Li−1,r(x)Lj,r′(y) and using the fact that the
mesh is uniform, we obtain a linear system for the coefficients ci,jp,q − ci−1,j

p,q and thus

h|ci,jp,q − ci−1,j
p,q | . max

0≤r′≤k

∑
i′=i−1,i

|
∫
τy
j

Dx(αζ0)−i′Lj,r′dy|

+ max
0≤r≤k

∑
j′=j,j−1

|
∫
τx
i

βζ−0 |x,j′+ 1
2
Li,r(x)dx−

∫
τx
i−1

βζ−0 |x,j′+ 1
2
Li−1,r(x)dx|.

In light of (2.12)-(2.15), we have∑
τi,j

|D1c
i,j
p,q|2 . h2k+2‖u‖2k+2. (6.2)

Following the same argument, we can prove that∑
τi,j

|D2c
i,j
p,q|2 . h2k+2‖u‖2k+2,

∑
τi,j

|D1D2c
i,j
p,q|2 + |D2

1c
i,j
p,q|2 . h2k+4‖u‖2k+3. (6.3)

Noticing that∑
τi,j

∫
τx
i

|Dy(ζ1)−j |
2dx+

∫
τy
j

|Dx(ζ1)−i |
2dy .

∑
τi,j

∑
1≤p+q≤k

h|D1c
i,j
p,q|2 + h|D2c

i,j
p,q|2

. h2k+3‖u‖2k+2.

Noticing that

Dx(αζ1)−i = Dxα
−
i ζ
−
1 |i+ 1

2 ,y
+ α−|i− 1

2 ,y
Dx(ζ1)−i , |Dxα

−
i | . h,

we have∑
τi,j

∫
τy
j

|Dx(αζ1)−i |
2dy .

∑
τi,j

∫
τy
j

|Dx(ζ1)−i |
2 + h2|ζ−1 |i+ 1

2 ,y
|2dy . h2k+3‖u‖2k+2.

Similarly, we can prove∑
τi,j

∫
τx
i

|Dx(βζ1)−j |
2dx . h2k+3‖u‖2k+2.
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Then (2.22) holds true for l = 1.
By taking v = Li,1(x) in (2.18), we get

2ᾱ

∫
τy
j

ζ−1 |i+ 1
2 ,y
dy =

∫
τy
j

(αζ−0 |i+ 1
2 ,y

+ αζ−0 |i− 1
2 ,y

)dy +

∫
τx
i

(βζ−0 |x,j+ 1
2
− βζ−0 |x,j− 1

2
)Li,1(x)dx,

and thus

2

∫
τy
j

Dx(ᾱζ1)−i dy =

∫
τy
j

(αζ−0 |i+ 1
2 ,y
− αζ−0 |i− 3

2 ,y
)dy

+

∫
τx
i

Dy(βζ0)−j Li,1dx−
∫
τx
i−1

Dy(βζ0)−j Li−1,1dx,

which yields, together with (2.12)-(2.15)∑
τi,j

|
∫
τy
j

Dx(ᾱζ1)−i dy|
2 . h2(k+3)‖u‖2k+3,

∑
τi,j

(

∫
τy
j

ζ−1 |i+ 1
2 ,y
dy)2 . h2(k+2)‖u‖2k+2.

(6.4)
Noticing that∫

τy
j

Dx((α− ᾱ)ζ1)−i dy =

∫
τy
j

Dx(α− ᾱ)−i ζ
−
1 |i+ 1

2 ,y
+ (α− ᾱ)|−

i− 1
2 ,y
Dx(ζ1)−i dy

|(α− ᾱ)(x−
i− 1

2

, y)| . h, |Dx(α− ᾱ)−i | . h2, ∀y ∈ τyj ,

we have

|
∫
τy
j

Dx(αζ1)−i dy|
2 . |

∫
τy
j

Dx((α− ᾱ)ζ1)−i dy|
2 + |

∫
τy
j

Dx(ᾱζ1)−i dy|
2

. h5

∫
τy
j

|ζ−1 |i+ 1
2 ,y
|2dy + h3

∫
τy
j

|Dx(ζ1)−i |
2dy + |

∫
τy
j

Dx(ᾱζ1)−i dy|
2

Summing up all τi,j and using (2.22) for l = 1 and (6.4), we have∑
τi,j

|
∫
τy
j

Dx(αζ1)−i dy|
2 . h5

∑
τi,j

∫
τy
j

|ζ−1 |i+ 1
2 ,y
|2dy + h2k+6‖u‖2k+3

. h4‖ζ1‖20 + h2k+6‖u‖2k+3 . h2k+6‖u‖2k+3.

Here in the second step, we have used the inverse inequality. Following the same
argument, there hold∑

τi,j

|
∫
τx
i

Dy(βζ1)−j dx|
2 . h2(k+3)‖u‖2k+3,

∑
τi,j

(

∫
τx
i

ζ−1 |x,j+ 1
2
dx)2 . h2(k+2)‖u‖2k+2.

Combining the last two inequalities and the second inequality of (6.4) together yields
the desired result (2.23) for l = 1.

Following the same argument as what we did for l = 1, we obtain

‖ζ2‖0 . h(‖∂tζ1‖0 + ‖ζ1‖0) +
(∑
τi,j

h

∫
τy
j

|Dx(αζ1)−i |
2dy + h

∫
τx
i

|Dy(βζ1)−j |
2dx
) 1

2 .
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Using the estimates (2.21) and (2.22) for l = 1, we get

‖ζ2‖0 . hk+2(‖u‖k+2 + ‖ut‖k+1) . hk+2‖u‖k+2.

Here in the last step, we have used the fact that ut = −(αu)x− (βu)y. Consequently,
(2.21) holds true for l = 2. Similarly, we take v = Li,1 in (2.19) and then obtain

2

∫
τy
j

Dx(ᾱζ2)−i dy = (∂tζ1, Li,1)τ1 − (∂tζ1, Li−1,1)τ2 −
2

h
(α− ᾱ, ζ1)τ1 +

2

h
(α− ᾱ, ζ1)τ2

+

∫
τy
j

D2
x(αζ1)−i dy +

∫
τx
i

Dy(βζ1)−j Li,1(x)dx−
∫
τx
i−1

Dy(βζ1)−j Li−1,1(x)dx

+ 2

∫
τy
j

(α− ᾱ)ζ−1 |i+ 1
2 ,y
− (α− ᾱ)ζ−1 |i− 1

2 ,y
)dy := rhs.

In light of (6.1), we have, from a direct calculation,

|rhs| .
∑

1≤p+q≤k

h2(|∂tD1c
i,j
p,q|+ |D1c

i,j
p,q|) + h(|D2D1c

i,j
p,q|+ |D2

1c
i,j
p,q|).

Then we conclude from (6.2)-(6.3) that∑
τi,j

|
∫
τy
j

Dx(ᾱζ2)−i dy|
2 .

∑
τi,j

|rhs|2 . h2k+6(‖u‖2k+3 + ‖ut‖2k+2).

The rest proof of (2.23) and (2.22) for l = 2 is similar to that of l = 1 and thus we
omit it here.
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[17] P. Houston, C. Schwab, and E. Süli, stabilized hp finite element methods for first-order hyper-
bolic problems, SIAM J. Numer. Anal., 37 (2000), pp. 1618-1643.

[18] C. Johnson and J. Pitkaranta, An analysis of the discontinuous Galerkin method for a scalar
hyperbolic equation, Math. Comp., 46 (1986), pp. 1-26.

[19] P. LeSaint and P.A. Raviart, On a finite element method for solving the neutron transport
equation, In C de Boor, editor, Mathematical aspects of finite elements in partial differential
equations, pages 89-145, Academic Press, 1974.

[20] Q. Lin, N. Yan, and A. Zhou, An optimal error estimate of the discontinuous Galerkin method,
Journal of Engineering Mathematics, 13 (1996), pp. 101-105.

[21] Y. Liu, C.-W. Shu, and M. Zhang, Optimal error estimates of the semidiscrete discontinuous
Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using Pk

elements, ESAIM: M2AN, 54 (2020), pp. 705–726.
[22] X. Meng, C.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods

based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016),pp.
1225-1261.

[23] T. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar
hyperbolic equation, SIAM J. Numer. Anal., 28 (1991), pp. 133-140.

[24] W. H. Reed and T. R. Hill, Triangular Mesh for Neutron Transport Equation, Los Alamos
Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM, 1973.

[25] G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math.
Comp., 50 (1988), pp. 75-88.

[26] C.-W. Shu, Discontinuous Galerkin method for time-dependent problems: Survey and recent
developments, In: X. Feng O. Karakashian, Y. Xing, Recent Developments in Discontinuous
Galerkin Finite Element Methods for Partial Differential Equations. Lecture Notes in The
IMA Volumes in Mathematics and its Applications, vol. 157. Cham: Springer, 2014.

[27] Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method
for a singularly perturbed problem in 1-D, Math. Comp., 79 (2010), pp. 35-45.

[28] Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin
method for linear hyperbolic equations, SIAM J. Numer. Anal., 50 (2012), pp. 3110-3133.

[29] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous
Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), pp.
641-666.

[30] A. Zhou and Q. Lin, Optimal and sup erconvergence estimates of the finite element method for
a scalar hyperbolic equation, Acta. Math. Sci., 14 (1994), pp. 90-94.

24


