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Abstract

In this paper, we further extend the derivative-based finite-volume multi-resolution Hermite weighted

essentially non-oscillatory (MR-HWENO) scheme proposed in our previous article (Li, Shu and Qiu, J.

Comput. Phys., 446:110653, 2021) to simulate the steady-state problem. When dealing with the steady-

state problem, the process of updating and reconstructing the function values is similar to the previous

scheme, but the treatment of the derivative values is changed. To be more specific, instead of evolving in

time, in the sense of cell averages, the scheme uses the derivative at the current time step and the function

at the next time step to reconstruct the derivative at the next time step by direct linear interpolation. There

are two advantages for this approach: the first is its high efficiency, when handling the derivative, neither the

update on time nor the calculation of nonlinear weights is required; in the meantime, the CFL number can

still be taken up to 0.6 as the original scheme; the second is its strong convergence, the corresponding average

residual can quickly converge to machine accuracy, thus obtaining the desired steady-state solution. One-

and two-dimensional numerical experiments are given to verify the high efficiency and strong convergence of

the proposed MR-HWENO scheme for the steady-state problems.
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1 Introduction

In this paper, we apply the derivative-based finite-volume multi-resolution Hermite weighted essentially

non-oscillatory (MR-HWENO) scheme [25] to solve the following steady-state problem:

∇ · F (U) = s(U ,X), (1.1)

where U is the unknown variable to be determined, F (U) is the (usually nonlinear) flux function, s(U ,X)

is the given source term and X = (x1, ..., xd). Only one- and two-dimensional cases are considered in this

paper, i.e. d=1 or 2, accordingly, we use x to denote x1, and y to denote x2.

The steady-state problem is an important mathematical model, which is widely used in a variety of fields

such as compressible fluid dynamics, wave motion, advective transport of matter and so on. However, it

is not easy to obtain the solution of these problems either theoretically or numerically. One way to solve

equation (1.1) numerically is to solve the corresponding unsteady hyperbolic conservation balance law by

adopting an appropriate time marching method






Ut +∇ · F (U) = s(U ,X),

U(X, 0) = U0(X).

(1.2)

With the advance of time, when the residual of above unsteady hyperbolic conservative balance law (1.2) is

sufficiently small, the corresponding solution is considered acceptable as the steady-state solution of (1.1).

In this way, we transform the steady-state problem into a time-dependent hyperbolic conservation balance

law problem. But in this case, especially for those equations with a nonlinear flux function, discontinuities

may appear even if the initial condition is smooth enough. To address this issue, there have existed many

works devoted to designing efficient numerical methods to solve these problems with strong shocks or contact

discontinuities. A partial list includes essentially non-oscillatory (ENO) schemes in [18, 33, 34], weighted

ENO (WENO) schemes in [21, 23] and Hermite WENO (HWENO) schemes in [29, 30, 40, 41, 43, 44].

When solving the steady-state problem using the classical WENO schemes [21, 23] with an appropriate

time discretization method [11], we must address the problem that slight post-shock oscillations may propa-

gate downward from the region near the shock to the smooth region, causing the residual to hang at a high

truncation error level rather than to stabilize to machine accuracy, see [45]. Although reconstructing the nu-

merical flux using a limiter or an upwind-biased interpolation technique can improve the convergence of the
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numerical solution to steady-state as shown in some later papers [32, 42], the residual still fails to converge

to machine accuracy for many two-dimensional test cases. Another method is to skip the time advance and

use the Newton iteration or a more robust method, like the homotopy method [19], which directly solves the

nonlinear system derived from a high-order WENO spatial dispersion. A possible difficulty of this approach

is that such a nonlinear system may have multiple solutions, so we have to screen these solutions carefully

to pick out the one we want. Chen proposed a fixed-point fast sweeping WENO method for steady-state

solution of scalar hyperbolic conservation laws [7] and since then a series of improved schemes have been put

forward, see [24, 27, 28, 38]. Although the convergence of these methods is much improved over the previous

schemes, there are still cases where the residual fails to converge to the machine accuracy. Therefore, it is

still very urgent to design a numerical scheme that can solve the steady-state problem efficiently.

In order to reduce the computational cost and improve the numerical resolution of the high-resolution

scheme near the discontinuities, the multi-resolution method came into being. Initially, Harten proposed

the original multi-resolution method for solving the hyperbolic equations in [12–17]. Then Dahmen et al.

extended such multi-resolution scheme to solve the conservation laws in [9] and Chiavassa et al. further put

forward a multi-resolution-based adaptive scheme to solve the hyperbolic conservation laws in [5]. Later,

Abgrall promoted this format to unstructured grids in [1–3]. Shi et al. designed the high-order multi-

resolution WENO scheme for complicated flow structures in [35] and Bürger et al. proposed an adaptive

multi-resolution WENO scheme for multi-species kinematic flow models in [4]. Recently, Zhu and Shu

came up with a new type of multi-resolution WENO (MR-WENO) scheme with increasing higher order of

accuracy on the structured and triangular meshes in [48, 50] and then further applied it to solve the steady-

state problem in [49]. In general, the main motivation of the multi-resolution method is to concentrate its

computation on those small regions which may contain strong shocks or contact discontinuities.

Inspired by the MR-WENO scheme [48, 50], we have proposed a new type of high-order MR-HWENO

scheme to solve the hyperbolic conservation laws on structured meshes in [25] and further improved it in

[26]. The main difference between the HWENO scheme and the WENO scheme is that both the function

and first-order derivative or moment values are evolved over time and used for reconstruction for HWENO

scheme, unlike WENO scheme which only evolves and uses the function values. This also allows the HWENO
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scheme to obtain the same order of accuracy as the WENO scheme with narrower stencil. When designing

this new type of MR-HWENO scheme, we just refer to the original idea of the MR-WENO method, but do

not introduce the multi-resolution representation of the solution and data compression. Compared with the

classical HWENO schemes, the biggest advantage of such MR-HWENO scheme is that only the function

values need to be reconstructed and evolved with HWENO procedure, the first-order derivative or moment

values are directly approximated by a high-order linear interpolation. In this paper, we will continue to

study the numerical performance of this new type of derivative-based finite-volume MR-HWENO scheme to

solve the steady-state problems. The biggest improvement is that the derivatives are not evolved but only

linearly reconstructed based on time-misaligned u and v values. It turns out that for both the one- and

two-dimensional cases in this paper, the residual of such proposed scheme combined with a third-order total

variation diminishing (TVD) Runge-Kutta method can be reduced to machine accuracy or to a tiny value

close to machine zero quickly.

The main context of this article is organized as follows. In Section 2, we briefly review the reconstruction

process of the derivative-based finite-volume MR-HWENO scheme in [25] and show how to apply it to the

steady-state problems in the one- and two-dimensional cases. In Section 3, several classical steady-state

testing problems are presented to demonstrate the high efficiency and strong convergence of the proposed

scheme. Concluding remarks are given in the last section.

2 Derivative-based finite-volume MR-HWENO scheme

In this section, we will describe the procedure of derivative-based finite-volume MR-HWENO scheme for

solving the steady-state problem in one and two dimensions in detail.

2.1 One-dimensional case

To begin with, let us consider the following one-dimensional steady-state problem with a source term on

the right side

f(u)x = s(u, x), x ∈ [xL, xR], (2.1)
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where the source term s(u, x) is related to both the unknown quantity u and the position coordinate x. To

solve (2.1), we add the partial derivative of the unknown quantity u with respect to time t to its left side

and transform it into the following conservation balance law:

ut + f(u)x = s(u, x). (2.2)

Noting that as t → ∞, the solution of (2.2) tends to the steady-state solution independent of time t,

that is, the solution of (2.1). For simplicity, we divide the computational domain by a uniform cell mesh

{xi+1/2}Ni=0, where N is the number of cells and xi+1/2 is the node. Then, we denote the mesh size by

△x = xi+1/2−xi−1/2 = (xR−xL)/N , the cell by Ii = [xi−1/2, xi+1/2] and its center by xi =
1
2 (xi−1/2+xi+1/2).

We integrate (2.2) over the target cell Ii to obtain its integral formulation

dui(t)

dt
= − 1

△x

[

f
(

u
(

xi+1/2, t
))

− f
(

u
(

xi−1/2, t
))]

+
1

△x

∫

Ii

s(u, x)dx, (2.3)

where ui(t) is the cell average of u over the target cell Ii, which is defined as

ui(t) =
1

△x

∫

Ii

u(x, t)dx. (2.4)

Then, we approximate (2.3) by the following semi-discrete conservative scheme

dui(t)

dt
= − 1

△x
(f̂i+1/2 − f̂i−1/2) + Si = L(u)i, (2.5)

here the numerical flux f̂i+1/2 is chosen to be the Lax-Friedrichs flux, which satisfies the Lipschitz continuity

and consistency, and is defined as

f̂i+1/2 = f̂(u−
i+1/2, u

+
i+1/2) =

1

2

[

f
(

u−
i+1/2

)

+ f
(

u+
i+1/2

)

− α
(

u+
i+1/2 − u−

i+1/2

)

]

, (2.6)

where u±
i+1/2 are the left and right approximations to the point value u(xi+1/2, t) by the derivative-based

finite-volume MR-HWENO scheme and α = max
u

|f ′(u)| is a global quantity. Si is the approximation of the

integral term in the conservative scheme (2.5) by the four-point Gauss-Lobatto integration

1

△x

∫

Ii

s(u, x)dx ≈
4
∑

l=1

ωls
(

u(xGL
i+σl

, t), xGL
i+σl

)

:= Si, (2.7)

where σl and wl represent the corresponding quadrature points and weights defined in the interval [− 1
2 ,

1
2 ]

σ1 = −1

2
, σ2 = −

√
5

10
, σ3 =

√
5

10
, σ4 =

1

2
;

ω1 = ω4 =
1

12
, ω2 = ω3 =

5

12
.

(2.8)
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So here we go, the spatial discretization is complete and our next target is to obtain the values of u at

these Gauss-Lobatto points i.e. {u+
i−1/2, ui−

√
5/10, ui+

√
5/10, u

−
i+1/2} by the derivative-based finite-volume

MR-HWENO scheme in [25].

As for the time discretization, we use the third-order TVD Runge-Kutta method































u
(1)
i = un

i +∆tL(un)i,

u
(2)
i =

3

4
un
i +

1

4
u
(1)
i +

1

4
∆tL(u(1))i,

un+1
i =

1

3
un
i +

2

3
u
(2)
i +

2

3
∆tL(u(2))i,

(2.9)

where n corresponds to time step tn = tn−1 +△t and the nonconstant time step satisfies

△t max
1≤i≤N

( |f ′(ui)|
△x

)

= CFL = 0.6. (2.10)

At this point, we have finished the description of the complete algorithm process. The specific reconstruction

and evolution procedure is as follows:

One-dimensional Reconstruction and Evolution Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u i.e.{(un
i−1/2)

+, un
i−

√
5/10

, un
i+

√
5/10

, (un
i+1/2)

−}

at the current time step tn using the given cell averages {un
l , v

n
l |l = i − 1, i, i + 1} by the MR-HWENO

scheme in [25]. Here, like the definition of ui in (2.4), vi represents the cell average of v = ux over the target

cell Ii, which can be expressed as

vi(t) =
1

△x

∫

Ii

v(x, t)dx =
1

△x

∫

Ii

ux(x, t)dx. (2.11)

Step 1.1. Select a series of central spatial stencils and reconstruct four polynomials with different

degrees, which meet the following conditions respectively

1

△x

∫

Ik

q1(x)dx = un
k , k = i;

1

△x

∫

Ik

q2(x)dx = un
k , k = i− 1, i, i+ 1;

1

△x

∫

Ik

q3(x)dx = un
k , k = i− 1, i, i+ 1;

1

△x

∫

Ikx

q′3(x)dx = vnkx
, kx = i;

1

△x

∫

Ik

q4(x)dx = un
k , k = i− 1, i, i+ 1;

1

△x

∫

Ikx

q′4(x)dx = vnkx
, kx = i− 1, i, i+ 1.

(2.12)

Here, q1(x) is a zeroth degree polynomial, q2(x) is a quadratic polynomial, q3(x) is a cubic polynomial and
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q4(x) is a quintic polynomial. Then, we rewrite these polynomials as

pl2(x) =















q1(x), l2 = 1,

1

γl2,l2
ql2(x)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x), l2 = 2, 3, 4,
(2.13)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are the linear weights

and are defined as

γl1,l2 =
γl1,l2

l2
∑

l=1

γl,l2

; γl1,l2 = 10l1−1; l1 = 1, ..., l2; l2 = 2, 3, 4. (2.14)

Step 1.2. Compute the smoothness indicator βl2 of polynomial pl2(x) in the interval Ii:

βl2 =
κ
∑

α=1

∫

Ii

△x2α−1

(

dαpl2(x)

dxα

)2

dx, l2 = 2, 3, 4, (2.15)

where κ = 2, 3, 5 for l2 = 2, 3, 4. As for the special case β1, we refer to the specific algorithm in article [25]

and skip the details here. After all these βl2 , l2 = 1, 2, 3, 4 are obtained, we adopt the logic of WENO-Z to

define the corresponding nonlinear weights

ωl1,4 =
ωl1,4

4
∑

l=1

ωl,4

, ωl1,4 = γl1,4

(

1 +

(

τ4
βl1 + ε

)p)

, l1 = 1, ..., 4, (2.16)

where p = 2, ε is taken to be 10−10 and the quantity τ4 is used to measure the average difference between

β4 and the other three smoothness indicators βl2 , l2 = 1, 2, 3, whose expression is

τ4 =









3
∑

l=1

|β4 − βl|

3









2

. (2.17)

Step 1.3. Obtain a convex combination of the above polynomials pl2(x) as follows:

un
i (x) =

4
∑

l=1

ωl,4pl(x), (2.18)

to approximate u at the current time step tn and its corresponding Gauss-Lobatto point values are

(un
i−1/2)

+ = un
i (xi−1/2), un

i∓
√
5/10

= un
i (xi∓

√
5/10), (un

i+1/2)
− = un

i (xi+1/2). (2.19)

It is worth noting that we no longer require the reconstructed polynomial of v, which differs from [25].

Step 2. Substitute the values obtained in the previous step into the first stage of the Runge-Kutta

formula (2.9), then the cell average u
(1)
i at the next time stage t(1) can be obtained.
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Step 3. Calculate the cell average v
(1)
i at the next time stage t(1) using the given cell averages

{u(1)
i−1, u

(1)
i , u

(1)
i+1; v

n
i−1, v

n
i+1} by a direct linear interpolation. That is, we reconstruct a quartic polynomial,

which satisfies

1

△x

∫

Ik

p0(x)dx = u
(1)
k , k = i− 1, i, i+ 1;

1

△x

∫

Ikx

p′0(x)dx = vnkx
, kx = i− 1, i+ 1, (2.20)

and then, the cell average v
(1)
i at the next time stage t(1) can be expressed as

v
(1)
i =

1

△x

∫

Ii

p′0(x)dx =
1

△x
(−3

4
u
(1)
i−1 +

3

4
u
(1)
i+1)−

1

4
vni−1 −

1

4
vni+1. (2.21)

Step 4. In Step 1, replace un
i with u

(1)
i , vni with v

(1)
i , and then repeat it to obtain {(u(1)

i−1/2)
+, u

(1)

i−
√
5/10

,

u
(1)

i+
√
5/10

, (u
(1)
i+1/2)

−}. Then, in Step 2, plug these values into the second stage of the Runge-Kutta formula

(2.9) to obtain the cell average u
(2)
i at the next time stage t(2). Finally, in Step 3, replace u

(1)
i with u

(2)
i , vni

with v
(1)
i , and then repeat it to obtain v

(2)
i .

Step 5. In Step 1, replace un
i with u

(2)
i , vni with v

(2)
i , and then repeat it to obtain {(u(2)

i−1/2)
+, u

(2)

i−
√
5/10

,

u
(2)

i+
√
5/10

, (u
(2)
i+1/2)

−}. Then, in Step 2, plug these values into the third stage of the Runge-Kutta formula

(2.9) to obtain the cell average un+1
i at the next time step tn+1. Finally, in Step 3, replace u

(1)
i with un+1

i ,

vni with v
(2)
i , and then repeat it to obtain vn+1

i .

Step 6. Define the average residual as

N
∑

i=1

m
∑

k=1

|(Rk)i|

mN
, (2.22)

where (Rk)i =
∂(uk)
∂t |i ≈ (uk)

n+1

i −(uk)
n
i

△t is the local residual of the k-th component of the variable u in cell Ii,

m is the number of components of the variable u and N is the total number of grid cells. Repeat the whole

algorithm until the average residual is smaller than the given tolerance value ǫ = 10−13 (this is also the

so-called machine accuracy) or the step number reaches 4000 (except for 40000 for the nozzle flow problem

in Example 3.4).

2.2 Two-dimensional case

Let us now move on to the two-dimensional case

f(u)x + g(u)y = s(u, x, y), (x, y) ∈ [xL, xR]× [yD, yU ], (2.23)
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where there is a source term s(u, x, y) on the right side of equation (2.23), which depends on both the

unknown quantity u and the position coordinate (x, y). Similar to the operation in one dimension, we add

the partial derivative of the unknown quantity u with respect to time t to the left side of equation (2.23)

and rewrite it as the following conservation balance law:

ut + f(u)x + g(u)y = s(u, x, y). (2.24)

Likewise, the solution of (2.24) approaches to the steady-state solution independent of time t, that is, the solu-

tion of (2.23) when t → ∞. For the sake of simplicity, we consider a uniform cell mesh {(xi+1/2, yj+1/2)}Nx,Ny

i=0,j=0,

where Nx and Ny are the numbers of cells in the x and y directions, respectively, and (xi+1/2, yj+1/2)

is the node. Next, we define the mesh size as △x = xi+1/2 − xi−1/2 = xR−xL

Nx
in the x-direction and

△y = yj+1/2 − yj−1/2 = yU−yD

Ny
in the y-direction, the cell as Ii,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] and its

center as (xi, yj) =
(

1
2

(

xi−1/2 + xi+1/2

)

, 12
(

yj−1/2 + yj+1/2

))

.

We integrate (2.24) over the target cell Ii,j to obtain the corresponding integral formulation

dũi,j(t)

dt
=− 1

△x△y

∫ yj+1/2

yj−1/2

[

f
(

u(xi+1/2, y, t)
)

− f
(

u(xi−1/2, y, t)
)]

dy

− 1

△x△y

∫ xi+1/2

xi−1/2

[

g
(

u(x, yj+1/2, t)
)

− g
(

u(x, yj−1/2, t)
)]

dx

+
1

△x△y

∫∫

Ii,j

s(u, x, y)dxdy,

(2.25)

where ũi,j(t) is the cell average of u on the target cell Ii,j , which can be expressed as

ũi,j(t) =
1

△x△y

∫∫

Ii,j

u(x, y, t)dxdy. (2.26)

Next, we approximate (2.25) by the following semi-discrete conservative scheme

dũi,j(t)

dt
= − 1

△x

(

F̂i+ 1
2
,j − F̂i− 1

2
,j

)

− 1

△y

(

Ĝi,j+ 1
2
− Ĝi,j− 1

2

)

+ Si,j = L(u)i,j, (2.27)

again the Lax-Friedrichs flux is used to define the numerical flux and the integral terms in the scheme (2.27)

are approximated by a four-point Gauss-Lobatto integration, for instance

1

△x△y

∫∫

Ii,j

s(u, x, y)dxdy ≈
4
∑

k=1

4
∑

l=1

ωkωls
(

u
(

xGL
i+σk

, yGL
i+σl

)

, xGL
i+σk

, yGL
i+σl

)

:= Si,j ,

1

△y

∫ yj+1/2

yj−1/2

f̂
(

u(xi+1/2, y, t)
)

dy ≈
4
∑

l=1

ωlf̂
(

u(xi+1/2, y
GL
j+σl

, t)
)

:= F̂i+1/2,j ,

1

△x

∫ xi+1/2

xi−1/2

ĝ
(

u(x, yj+1/2, t)
)

dx ≈
4
∑

k=1

ωkĝ
(

u(xGL
i+σk

, yj+1/2, t)
)

:= Ĝi,j+1/2,

(2.28)
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where the definitions of the weights ωl and the quadrature points σl are the same as those in the formula (2.8).

Up to now, we have finished the description of the spatial discretization and our next objective is to recon-

struct the values of these Gauss-Lobatto points i.e. {u±
i∓1/2,j+σl

, u±
i+σk,j∓1/2|k, l = 1, 2, 3, 4;ui+σk,j+σl

|k, l =

2, 3} by the derivative-based finite-volume MR-HWENO scheme in [25].

To discretize time, we still use the third-order TVD Runge-Kutta method






























ũ
(1)
i,j = ũ

n
i,j +∆tL(un)i,j ,

ũ
(2)
i,j =

3

4
ũ
n
i,j +

1

4
ũ
(1)
i,j +

1

4
∆tL(u(1))i,j ,

ũ
n+1
i,j =

1

3
ũ
n
i,j +

2

3
ũ
(2)
i,j +

2

3
∆tL(u(2))i,j ,

(2.29)

where n also corresponds to the time step tn = tn−1 +△t and the nonconstant time step satisfies

△t max
1≤i≤Nx,1≤j≤Ny

( |f ′(ũi,j)|
△x

+
|g′(ũi,j)|

△y

)

= CFL = 0.6. (2.30)

At this point, we have obtained the complete discrete scheme and the detailed process is displayed as follows:

Two-dimensional Reconstruction and Evolution Algorithm:

7 8 9 j + 1
4 5 6 j
1 2 3 j − 1

i− 1 i i+ 1
The big stencil and its new labels.

Step 1. Reconstruct the Gauss-Lobatto point values of u i.e. {(un
i∓1/2,j+σl

)±, (un
i+σk,j∓1/2)

±|k, l =

1, 2, 3, 4; un
i+σk,j+σl

|k, l = 2, 3} at the current time step tn using the given cell averages {ũn
k,l, ṽ

n
k,l, w̃

n
k,l|k =

i − 1, i, i+ 1; l = j − 1, j, j + 1} by the derivative-based finite-volume MR-HWENO scheme in [25]. Again,

like the definition of ũi,j in (2.26), ṽi,j and w̃i,j indicate the cell averages of v = ux and w = uy over the

target cell Ii,j respectively, which can be taken as



















ṽi,j(t) =
1

△x△y

∫∫

Ii,j

v(x, y, t)dxdy =
1

△x△y

∫∫

Ii,j

ux(x, y, t)dxdy,

w̃i,j(t) =
1

△x△y

∫∫

Ii,j

w(x, y, t)dxdy =
1

△x△y

∫∫

Ii,j

uy(x, y, t)dxdy.

(2.31)

Step 1.1. Select a series of nested central templates and reconstruct four polynomials of different degrees,

which satisfy the following conditions respectively

For q1(x, y) :
1

△x△y

∫∫

Ik

q1(x, y)dxdy = ũ
n
k , k = 5.
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For q2(x, y) :
1

△x△y

∫∫

Ik

q2(x, y)dxdy = ũ
n
k , k = 1, ..., 9.

For q3(x, y) :
1

△x△y

∫∫

Ik

q3(x, y)dxdy = ũ
n
k , k = 1, ..., 9;

1

△x△y

∫∫

Ikx

∂q3(x, y)

∂x
dxdy = ṽ

n
kx
, kx = 5;

1

△x△y

∫∫

Iky

∂q3(x, y)

∂y
dxdy = w̃

n
ky
, ky = 5.

For q4(x, y) :
1

△x△y

∫∫

Ik

q4(x, y)dxdy = ũ
n
k , k = 1, ..., 9;

1

△x△y

∫∫

Ikx

∂q4(x, y)

∂x
dxdy = ṽ

n
kx
, kx = 1, 3, 4, 5, 6, 7, 9;

1

△x△y

∫∫

Iky

∂q4(x, y)

∂y
dxdy = w̃

n
ky
, ky = 1, 2, 3, 5, 7, 8, 9. (2.32)

Compared to the one-dimensional case, the similarity is that the degrees of q1(x, y), q2(x, y), q3(x, y) and

q4(x, y) are the same as those of q1(x), q2(x), q3(x) and q4(x) in (2.12) respectively, but the difference is

that except for q1(x, y), the other three polynomials do not satisfy all the required equalities exactly. This is

because the number of unknowns in finding the coefficients of these polynomials is smaller than the number

of equations. Thus we require these three polynomials to have the same cell average as u on the target cell

Ii,j(to ensure conservation) and in the meantime we match the other conditions in the sense of least squares

as described in [20]. Next, we rewrite the polynomials above as

pl2(x, y) =















q1(x, y), l2 = 1,

1

γl2,l2
ql2(x, y)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x, y), l2 = 2, 3, 4,
(2.33)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are still the linear

weights and are defined the same as (2.14).

Step 1.2. Compute the smoothness indicator βl2 of the polynomial pl2(x, y) in the target cell Ii,j :

βl2 =

κ
∑

|α|=1

∫∫

Ii,j

|Ii,j ||α|−1

(

∂|α|

∂xαx∂yαy
pl2(x, y)

)2

dxdy, l2 = 2, 3, 4, (2.34)

where α = (αx, αy), |α| = αx + αy and κ = 2, 3, 5 for l2 = 2, 3, 4. For the special choice of β1, please see

the detailed algorithm in [25], and we omit the details here for brevity. Then the idea of WENO-Z is still

adopted to define the corresponding nonlinear weights, the specific definition is shown in (2.16).

Step 1.3. Combine the above polynomials pl2(x, y) to get a new polynomial as follows:

un
i,j(x, y) =

4
∑

l=1

ωl,4pl(x, y), (2.35)
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to approximate u at the current time step tn and its corresponding Gauss-Lobatto point values are

(un
i∓1/2,j+σl

)± = un
i,j(xi∓1/2, yj+σl

), l = 1, 2, 3, 4;

(un
i+σk,j∓1/2)

± = un
i,j(xi+σk

, yj∓1/2), k = 1, 2, 3, 4; (2.36)

un
i+σk,j+σl

= un
i,j(xi+σk

, yj+σl
), k, l = 2, 3.

We note that it is still not necessary to obtain the reconstructed polynomials of v and w as in [25].

Step 2. Plug the values obtained in the previous step into the first stage of the Runge-Kutta formula

(2.29) to obtain the cell average ũ
(1)
i,j at the next time stage t(1).

Step 3. Calculate the cell averages ṽ
(1)
i,j and w̃

(1)
i,j at the next time stage t(1) using the given cell averages

{ũ(1)
i−1,j , ũ

(1)
i,j , ũ

(1)
i+1,j ; ṽ

n
i−1,j , ṽ

n
i+1,j} and {ũ(1)

i,j−1, ũ
(1)
i,j , ũ

(1)
i,j+1; w̃

n
i,j−1, w̃

n
i,j+1} by a direct linear interpolation,

respectively. That is, reconstruct two quartic polynomials, which satisfy

1

△x

∫ xk+1/2

xk−1/2

p01(x)dx = ũ
(1)
k,j , k = i− 1, i, i+ 1;

1

△x

∫ xkx+1/2

xkx−1/2

p′01(x)dx = ṽ
n
kx,j , kx = i− 1, i+ 1;

1

△y

∫ yk+1/2

yk−1/2

p02(y)dy = ũ
(1)
i,k , k = j − 1, j, j + 1;

1

△y

∫ yky+1/2

yky−1/2

p′02(y)dy = w̃
n
i,ky

, ky = j − 1, j + 1,

(2.37)

and next, define the cell averages ṽ
(1)
i,j and w̃

(1)
i,j at the next time stage t(1) as

ṽ
(1)
i,j =

1

△x

∫ xi+1/2

xi−1/2

p′01(x)dx =
1

△x
(−3

4
ũ
(1)
i−1,j +

3

4
ũ
(1)
i+1,j)−

1

4
ṽ
n
i−1,j −

1

4
ṽ
n
i+1,j ,

w̃
(1)
i,j =

1

△y

∫ yj+1/2

yj−1/2

p′02(y)dy =
1

△y
(−3

4
ũ
(1)
i,j−1 +

3

4
ũ
(1)
i,j+1)−

1

4
w̃

n
i,j−1 −

1

4
w̃

n
i,j+1. (2.38)

Step 4. In Step 1, replace ũ
n
i,j with ũ

(1)
i,j , ṽ

n
i,j with ṽ

(1)
i,j , w̃

n
i,j with w̃

(1)
i,j and then repeat it to obtain

the Gauss-Lobatto point values {(u(1)
i−1/2,j+ηl

)+, (u
(1)
i+1/2,j+ηl

)−| l = 1, 2, 3, 4; (u
(1)
i+ξk,j−1/2)

+, (u
(1)
i+ξk,j+1/2)

−|

k = 1, 2, 3, 4; u
(1)
i+ξk,j+ηl

|k, l = 2, 3}. Then, in Step 2, plug these values into the second stage of the Runge-

Kutta formula (2.29) to obtain the cell average ũ
(2)
i,j at the next time stage t(2). Finally, in Step 3, replace

ũ
(1)
i,j with ũ

(2)
i,j , ṽ

n
i,j with ṽ

(1)
i,j , w̃

n
i,j with w̃

(1)
i,j and then repeat it to obtain ṽ

(2)
i,j and w̃

(2)
i,j .

Step 5. In Step 1, replace ũ
n
i,j with ũ

(2)
i,j , ṽ

n
i,j with ṽ

(2)
i,j , w̃

n
i,j with w̃

(2)
i,j and then repeat it to obtain

the Gauss-Lobatto point values {(u(2)
i−1/2,j+ηl

)+, (u
(2)
i+1/2,j+ηl

)−| l = 1, 2, 3, 4; (u
(2)
i+ξk,j−1/2)

+, (u
(2)
i+ξk,j+1/2)

−|

k = 1, 2, 3, 4; u
(2)
i+ξk,j+ηl

|k, l = 2, 3}. Then, in Step 2, plug these values into the third stage of the Runge-

Kutta formula (2.29) to obtain the cell average ũ
n+1
i,j at the next time step tn+1. Finally, in Step 3, replace

ũ
(1)
i,j with ũ

n+1
i,j , ṽ

n
i,j with ṽ

(2)
i,j , w̃

n
i,j with w̃

(2)
i,j and then repeat it to obtain ṽ

n+1
i,j and w̃

n+1
i,j .
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Step 6. Repeat the whole reconstruction algorithm until the average residual (2.22) with N = Nx ×Ny

is smaller than the given tolerance value ǫ = 10−13 or the step number reaches 4000.

Remark. For one-dimensional systems, the definition of α in (2.6) will become the maximum value of

the absolute value of its eigenvalues, i.e. α = max
u

|λ(u)|, and the CFL condition (2.10) will become

△t max
1≤k≤m,1≤i≤N

( |λk(ui)|
△x

)

= CFL = 0.6, (2.39)

where λk denotes the k-th eigenvalue of the matrix f ′(u) and i refers to the i-th cell. Similarly, for two-

dimensional systems, the definition of α in (2.6) will become α = max
u

|λx(u)| in the x-direction and α =

max
u

|λy(u)| in the y-direction, and the CFL condition (2.30) will become

△t max
1≤k≤m,1≤i≤Nx,1≤j≤Ny

(

|λk
x(ũi,j)|
△x

+
|λk

y(ũi,j)|
△y

)

= CFL = 0.6, (2.40)

where λk
x denotes the k-th eigenvalue of the matrix f ′(u), λk

y denotes the k-th eigenvalue of the matrix g′(u)

and i, j refers to the cell in column i, row j.

3 Numerical tests

In this section, we present a number of numerical experiments to test the performance of the proposed

derivative-based finite-volume MR-HWENO scheme for scalar and system steady-state problems with source

terms in one and two dimensions. Here “MR-HWENO5” represents the fifth-order multi-resolution HWENO

scheme, “MR-WENO5” represents the fifth-order multi-resolution WENO scheme and “WENO5-Z” repre-

sents the fifth-order WENO-Z scheme. The third-order TVD Runge-Kutta method is used in time for all

numerical simulations. The CFL number is taken to be 0.6 for both the one- and two-dimensional cases.

Unnormalized linear weights are set to be γ1,4 = 1, γ2,4 = 10, γ3,4 = 100 and γ4,4 = 1000.

3.1 The one-dimensional problems

Example 3.1. The one-dimensional Burgers’ equation:

(

u2

2

)

x

= sinx cos x, x ∈ [0, π], (3.1)
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with a source term at its right end, which depends only on the position x. The initial condition is

u0(x) = β sinx, (3.2)

and the boundary condition is u(0) = u(π) = 0.

This problem has been treated as a characteristic initial value problem with multiple steady-state solutions

in [31], and its steady-state solution depends on the value of β, to be more specific:

(1) If −1 < β < 1, there will be a shock wave within the computational domain. This shock wave

consists of two branches (sin x and − sinx) and is located at xs = π−arcsin
√

1− β2 (derived from the

conservation of mass
∫ π

0
udx = 2β). Under such a circumstance, we take β = 0.5 to test the resolution

of our scheme near the discontinuity. At this point, the shock wave is roughly located at xs = 2.0944.

The numerical results of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes versus the exact

solution are shown in Figure 3.1. Figure 3.2 shows the convergence history of the average residual

varying with the number of iterations. It is observed that the convergence rates of these three schemes

are almost the same, but the MR-HWENO5 scheme reaches the steady state with a much smaller

residual than the other two schemes.

x

u

0 0.5 1 1.5 2 2.5 3

1

0.5

0

0.5

1

Exact
MRHWENO5

MRWENO5
WENO5Z

Figure 3.1: 1D-Burgers’ equation: s(x) = sinx cos x, β = 0.5. The numerical results versus the exact
solution. Number of cells: 100.

(2) Otherwise, the solution will be smooth at first, but then forms a shock at the boundary x = π(β ≥ 1)
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Number of iteration

lg
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Figure 3.2: 1D-Burgers’ equation: s(x) = sinx cosx, β = 0.5. The convergence history of the average
residual. Number of cells: 100.

or x = 0(β ≤ −1), and later converges to a smooth steady state u(x,∞) = sinx(β ≥ 1) or u(x,∞) =

− sinx(β ≤ −1), respectively. In this case, we take β = 2 to test the accuracy of our scheme in the

smooth region. The corresponding errors and convergence orders of the MR-HWENO5, MR-WENO5

and WENO5-Z schemes are listed in Table 3.1. We can see that these three schemes are all of the

fifth-order in L1 norm and the fourth-order in L∞ norm due to the effect of the shock at the boundary

x = π(β = 2 ≥ 1). The error of MR-HWENO5 scheme is smaller than that of the other two schemes

for the same mesh size. The convergence history of the average residual varying with the number

of iterations is shown in Figure 3.3. It is observed that although the residuals corresponding to all

schemes can reach machine accuracy, the residual of the MR-HWENO5 scheme declines faster.

Example 3.2. The following is still a one-dimensional Burgers’ equation:

(

u2

2

)

x

= −π cos(πx)u, x ∈ [0, 1], (3.3)

but unlike Example 3.1, the source term on the right side hinges on both the position x and the solution u

itself. The initial condition is

u0(x) =

{

1, if 0 ≤ x < 0.5,
−0.1, if 0.5 ≤ x ≤ 1,

(3.4)

and the boundary condition is u(0) = 1 and u(1) = −0.1.

15



Table 3.1: 1D-Burgers’ equation: s(x) = sinx cos x, β = 2.0. The initial condition u(x, 0) = 2 sin(x). The
boundary condition u(0) = u(π) = 0. L1 and L∞ error.

MR-HWENO5 scheme WENO5-Z scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

20 4.48E-07 2.33E-06 3.48E-06 2.39E-05
30 6.99E-08 4.77 5.18E-07 3.87 5.16E-07 4.90 3.98E-06 4.60
40 1.84E-08 4.78 1.70E-07 3.98 1.32E-07 4.89 1.26E-06 4.12
50 6.45E-09 4.79 7.04E-08 4.04 4.53E-08 4.89 5.07E-07 4.17
60 2.73E-09 4.80 3.38E-08 4.09 1.89E-08 4.88 2.39E-07 4.21
70 1.32E-09 4.81 1.81E-08 4.12 9.00E-09 4.88 1.26E-07 4.24

MR-WENO5 scheme
grid points L1 error order L∞ error order

20 3.47E-06 2.38E-05
30 5.16E-07 4.90 3.98E-06 4.59
40 1.32E-07 4.89 1.26E-06 4.11
50 4.53E-08 4.89 5.07E-07 4.17
60 1.89E-08 4.88 2.39E-07 4.21
70 9.00E-09 4.88 1.26E-07 4.24

Number of iteration
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WENO5Z

Figure 3.3: 1D-Burgers’ equation: s(x) = sinx cosx, β = 2.0. The convergence history of the average
residual. Number of cells: 70.

This problem was studied as an example of multiple steady states for one-dimensional transonic flows in

[10], which has two steady-state solutions involving shock wave

u(x) =

{

u+ = 1− sin(πx), if 0 ≤ x < xs,
u− = −0.1− sin(πx), if xs ≤ x ≤ 1,

(3.5)

where xs = 0.1486 or xs = 0.8514. Even though both of these solutions satisfy the Rankine-Hugoniot jump

condition and the entropy condition, only the first one with a shock at xs = 0.1486 is stable for a small
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perturbation. For this reason, this problem is always used to demonstrate the good convergence of the

scheme. That is to say, although there is a reasonable perturbation in the steady state at the beginning,

the numerical solution can still converge to the stable one. Note that the jump in the initial condition lies

between the shock waves of above two admissible steady-state solutions. The numerical results of the MR-

HWENO5, MR-WENO5 and WENO5-Z schemes versus the exact solution are shown in Figure 3.4. Figure

3.5 shows the convergence history of the average residual varying with the number of iterations. It is easy

to see that the residuals of these three schemes can reduce to machine precision, and the MR-HWENO5

scheme drops slightly faster than the other two schemes.

x

u

0.2 0 0.2 0.4 0.6 0.8 1 1.2

1

0.5

0

0.5

1 Exact
MRHWENO5
MRWENO5

WENO5Z

Figure 3.4: 1D-Burgers’ equation: s(u, x) = −π cos(πx)u. The numerical results versus the exact solution.
Number of cells: 100.

Example 3.3. The one-dimensional shallow water equations:

(

hu
hu2 + 1

2gh
2

)

x

=

(

0
−ghbx

)

, x ∈ [0, 10], (3.6)

where h is the height of the water to the bottom, u is the velocity of the fluid, g is the gravitational constant

and function b(x) represents the bottom topography, which is given to be b(x) = 5 exp−
2
5
(x−5)2 . Both the

initial condition and the boundary condition are

h+ b = 10, hu = 0. (3.7)

Notice that the initial condition above is stationary, which itself is also a steady-state solution of (3.6).
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Figure 3.5: 1D-Burgers’ equation: s(u, x) = −π cos(πx)u. The convergence history of the average residual.
Number of cells: 100.

Starting from such a stationary initial condition, we can test out how well our scheme performs in the smooth

region. The corresponding errors and convergence orders of the MR-HWENO5, MR-WENO5 and WENO5-

Z schemes are listed in Table 3.2, where the sixth-order super-convergence rate of these three schemes is

observed in L1 norm and L∞ norm. Also, the error of the MR-HWENO5 scheme is smaller than that of the

other two schemes for the same mesh size. The convergence history of the average residual varying with the

number of iterations is shown in Figure 3.6, where there is not much difference between the residuals when

the steady state is reached and the rates at which the residuals decrease among these three schemes.

Example 3.4. The one-dimensional nozzle flow problem:




ρu
ρu2 + p
u(E + p)





x

= −A′(x)

A(x)





ρu
ρu2

u(E + p)



 , x ∈ [0, 1], (3.8)

where ρ is the density, u is the velocity of the fluid, E is the total energy, γ = 1.4 is the gas constant,

p = (γ − 1)
(

E − 1
2ρu

2
)

is the pressure and A(x) represents the area of the cross-section of the nozzle, which

is determined by the following relation

A(x)f(Mach number at x) = constant, ∀x ∈ [0, 1],

where

f(w) =
w

(1 + δ0w2)
p0
, δ0 =

1

2
(γ − 1), p0 =

1

2
· γ + 1

γ − 1
.
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Table 3.2: 1D shallow water equation. The stationary initial condition h + b = 10, hu = 0. The exact
boundary condition. L1 and L∞ error.

MR-HWENO5 scheme WENO5-Z scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

20 6.34E-05 3.24E-04 2.44E-04 7.70E-04
30 8.30E-06 6.04 4.45E-05 5.90 3.86E-05 5.48 1.29E-04 5.31
40 1.85E-06 5.97 1.01E-05 5.91 8.72E-06 5.91 3.13E-05 5.64
50 5.55E-07 6.00 3.03E-06 5.98 2.62E-06 6.00 9.66E-06 5.86
60 2.03E-07 6.02 1.12E-06 5.98 9.72E-07 5.92 3.55E-06 5.99
70 8.66E-08 5.95 4.74E-07 5.98 4.16E-07 5.94 1.49E-06 6.05

MR-WENO5 scheme
grid points L1 error order L∞ error order

20 2.77E-04 1.87E-03
30 3.53E-05 6.13 2.87E-04 5.58
40 7.49E-06 6.17 6.89E-05 5.68
50 2.28E-06 5.92 2.12E-05 5.88
60 8.62E-07 5.83 7.85E-06 5.94
70 3.74E-07 5.84 3.35E-06 5.96
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Figure 3.6: 1D shallow water equation. The convergence history of the average residual. Number of cells:
70.

The initial condition is an isentropic initial value with a shock at x = 0.5. As for the boundary condition,

it is taken to be ρ(x → −∞) = p(x → −∞) = 1. The inlet Mach number at x = 0 is 0.8, the outlet

Mach number at x = 1 is 1.8, and the Mach number is linearly distributed before and after the shock wave.

The numerical results of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes versus the exact solution

are shown in Figure 3.7. Figure 3.8 shows the convergence history of the average residual varying with the
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number of iterations. It is observed that there is little difference in the residuals corresponding to these three

schemes when the steady state is reached, and the MR-HWENO5 scheme converges faster than the other

two schemes.
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Figure 3.7: 1D nozzle flow problem. The numerical results versus the exact solution. Number of cells: 100.

3.2 The two-dimensional problems

Example 3.5. The two-dimensional Burgers’ equation:

(

1√
2

u2

2

)

x

+

(

1√
2

u2

2

)

y

= sin

(

x+ y√
2

)

cos

(

x+ y√
2

)

, (x, y) ∈
[

0,
π√
2

]

×
[

0,
π√
2

]

, (3.9)
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Figure 3.8: 1D nozzle flow problem. The convergence history of the average residual. Number of cells: 100.

where there is a source term that depends only on the position (x, y) at its right end. The initial condition

is

u0(x, y) = β sin

(

x+ y√
2

)

, (3.10)

and the boundary condition is taken to be the exact solution of this steady-state problem.

In terms of the equation form, this problem seems to be a special case of the one-dimensional Example

3.1 along the northeast-southwest diagonal, but essentially it is a two-dimensional problem. This is due

to the fact that this diagonal is at a 45◦ angle from our grid lines. Here, we take β = 1.2, and the

corresponding smooth steady-state solution of this problem is u(x, y) = sin
(

x+y√
2

)

. The corresponding

errors and convergence orders of the MR-HWENO5, MR-WENO5 and WENO5-Z schemes are listed in

Table 3.3. Similar to the results in Table 3.1, the L1 error can still reach fifth-order precision, while the

L∞ error is only fourth-order precision. The error of the MR-HWENO5 scheme is smaller than that of the

other two schemes for the same mesh size. The convergence history of the average residual varying with

the number of iterations is shown in Figure 3.9. As shown in the figure, the residuals corresponding to all

schemes can be reduced to machine accuracy, and the residual of MR-HWENO5 scheme reduces faster than

that of the other two schemes.
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Table 3.3: 2D-Burgers’ equation: s(x, y) = sin
(

x+y√
2

)

cos
(

x+y√
2

)

, β = 1.2. The initial condition u(x, y, 0) =

1.2 sin
(

x+y√
2

)

. The exact boundary condition. L1 and L∞ error.

MR-HWENO5 scheme WENO5-Z scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
20×20 3.86E-07 5.88E-06 2.20E-08 3.16E-07
30×30 1.18E-09 17.2 1.51E-08 17.7 4.06E-09 5.02 8.03E-08 4.07
40×40 1.43E-10 8.39 3.72E-09 5.57 1.15E-09 5.01 2.90E-08 4.05
50×50 5.20E-11 5.04 1.68E-09 3.96 4.21E-10 5.01 1.26E-08 4.14
60×60 2.32E-11 4.83 8.67E-10 3.96 1.83E-10 5.01 6.25E-09 4.21
70×70 1.19E-11 4.70 4.96E-10 3.90 8.92E-11 5.00 3.40E-09 4.26

MR-WENO5 scheme
grid points L1 error order L∞ error order
20×20 2.20E-08 3.16E-07
30×30 4.06E-09 5.02 8.03E-08 4.07
40×40 1.15E-09 5.01 2.90E-08 4.05
50×50 4.22E-10 5.01 1.26E-08 4.14
60×60 1.83E-10 5.01 6.25E-09 4.21
70×70 8.92E-11 5.00 3.40E-09 4.26
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Figure 3.9: 2D-Burgers’ equation: s(x, y) = sin
(

x+y√
2

)

cos
(

x+y√
2

)

, β = 1.2. The convergence history of the

average residual. Number of cells: 70×70.

Example 3.6. The two-dimensional Euler equations:









ρu
ρu2 + p
ρuv

u(E + p)









x

+









ρv
ρuv

ρv2 + p
v(E + p)









y

= 0, (x, y) ∈ [0, 2π]× [0, 2π], (3.11)

here ρ is the density, (u, v) is the velocity, E is the total energy, γ is the gas constant which is again taken as
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1.4 and p = (γ−1)(E− 1
2 (ρu

2+ρv2)) is the pressure. For this problem, there are many possible steady-state

solutions, for example:

(1) ρ(x, y,∞) = 1 + 0.2(x− y), u(x, y,∞) = 1, v(x, y,∞) = 1, p(x, y,∞) = 1;

(2) ρ(x, y,∞) = 1 + 0.2(2(x− y)), u(x, y,∞) = 1, v(x, y,∞) = 1, p(x, y,∞) = 1.

We take the initial conditions and boundary conditions in both directions to be the two exact steady-state

solutions above, respectively. The corresponding errors and convergence orders of the MR-HWENO5, MR-

WENO5 and WENO5-Z schemes are listed in Table 3.4, where the expected fifth-order accuracy in L1 norm

and L∞ norm is observed. The error of MR-HWENO5 scheme is still much smaller than that of the other

two schemes under the same mesh size. The convergence history of the average residual varying with the

number of iterations is shown in Figure 3.10. As shown in the figure, although all these schemes can converge

to machine accuracy, the residual of the MR-HWENO5 scheme is smaller than that of the other two schemes

in the initial stage and achieves machine accuracy in fewer steps.
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Figure 3.10: 2D-Euler equations. Left: case(1); right: case(2). The convergence history of the average
residual. Number of cells: 70×70.

Example 3.7. The two-dimensional Euler equations (3.11) in region [0, 4]× [0, 1]. The initial condition is

(ρ, u, v, p) =

(

1, 2.9, 0,
1

γ

)

. (3.12)
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Table 3.4: 2D-Euler equations. The exact initial condition. The exact boundary condition. L1 and L∞

error.
case (1)

MR-HWENO5 scheme WENO5-Z scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
20×20 9.00E-06 4.12E-05 5.47E-05 2.40E-04
30×30 1.28E-06 5.01 5.87E-06 5.00 7.46E-06 5.12 3.45E-05 4.98
40×40 3.16E-07 5.00 1.47E-06 4.96 1.82E-06 5.03 8.39E-06 5.06
50×50 1.06E-07 5.00 4.95E-07 4.97 6.10E-07 5.02 2.81E-06 5.02
60×60 4.34E-08 5.00 2.03E-07 4.99 2.49E-07 5.02 1.14E-06 5.02
70×70 2.03E-08 5.00 9.50E-08 4.99 1.16E-07 5.01 5.34E-07 5.01

case (1) case (2)
MR-WENO5 scheme MR-WENO5 scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
20×20 5.16E-05 2.22E-04 3.10E-03 1.46E-02
30×30 7.39E-06 4.99 3.25E-05 4.93 4.61E-04 4.90 2.16E-03 4.90
40×40 1.82E-06 5.01 8.14E-06 4.95 1.16E-04 4.95 5.69E-04 4.77
50×50 6.10E-07 5.01 2.74E-06 4.98 3.91E-05 4.96 1.99E-04 4.82
60×60 2.49E-07 5.01 1.12E-06 4.98 1.61E-05 4.97 8.20E-05 4.95
70×70 1.16E-07 5.01 5.27E-07 5.00 7.53E-06 4.99 3.83E-05 5.02

case (2)
MR-HWENO5 scheme WENO5-Z scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
20×20 6.08E-04 2.89E-03 3.67E-03 1.56E-02
30×30 8.34E-05 5.10 4.57E-04 4.73 5.25E-04 4.99 2.42E-03 4.78
40×40 2.02E-05 5.08 1.08E-04 5.15 1.24E-04 5.15 6.14E-04 4.90
50×50 6.74E-06 5.03 3.65E-05 4.99 4.05E-05 5.14 2.10E-04 4.93
60×60 2.73E-06 5.03 1.48E-05 5.02 1.63E-05 5.08 8.56E-05 5.00
70×70 1.28E-06 5.01 6.88E-06 5.06 7.58E-06 5.04 3.98E-05 5.04

As for the boundary condition, it is taken to be (ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on the

upper boundary y = 1 and it is a reflective boundary on the lower boundary y = 0. The left boundary at

x = 0 is an inflow with (ρ, u, v, p) =
(

1, 2.9, 0, 1
γ

)

, and the right boundary at x = 4 is an outflow. This

problem was considered as a regular shock reflection problem of the two-dimensional Euler equations in [6].

The contours and the cross-sections at y = 0.1 and y = 0.5 of the numerical results by the MR-HWENO5,

MR-WENO5 and WENO5-Z schemes are displayed in Figure 3.11. Figure 3.12 displays the convergence

history of the average residual varying with the number of iterations. It is observed that the declining trend

of residual is almost the same for both the MR-HWENO5 scheme and the MR-WENO5 scheme, and the

residuals when they reach the steady state are much smaller than that of the WENO5-Z scheme.

Example 3.8. A supersonic flow past a plate with an attack angle α = 10◦ problem:
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Figure 3.11: Regular shock reflection problem of the 2D-Euler equations. Top: 15 equally spaced contours
for ρ of the numerical results by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes from 1.10 to 2.58;
bottom: the cross-sections at y = 0.1 and y = 0.5. Number of cells: 120×30.
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Figure 3.12: Regular shock reflection problem of the 2D-Euler equations. The convergence history of the
average residual. Number of cells: 120×30.

(1) the calculation region is chosen to be [0, 10]× [−5, 5] with a plate located at x ∈ [1, 2], y = 0;

(2) the calculation region is chosen to be [0, 7]× [−5, 5] with a plate located at x ∈ [2, 7], y = 0.

The governing equation is the two-dimensional Euler equations (3.11). The initial condition is (p, ρ, µ, ν) =

( 1
γ(Ma∞)2 , 1, cos(α), sin(α)), where the free stream Mach number is Ma∞ = 3. The physical values of

the inflow and outflow boundary conditions are applied in each direction, and the slip boundary condition

is imposed on the plate. The contours of the numerical results by the MR-HWENO5, MR-WENO5 and

WENO5-Z schemes are displayed in Figure 3.13. Figure 3.14 displays the convergence history of the average

residual varying with the number of iterations. We can observe that apart from the WENO5-Z scheme, the

residuals of the other two schemes can be reduced to machine accuracy, and the residual of MR-HWENO5

scheme decreases faster than that of MR-WENO5 scheme for both cases.

4 Concluding remarks

In this paper, we apply the derivative-based finite-volume MR-HWENO scheme in [25] to solve the

steady-state problems. The scheme in this paper possesses the same reconstruction and updating process for

the function value as in [25], but differs for the derivative value. Instead of evolving in time, the derivative
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Figure 3.13: A supersonic flow past a plate with an attack angle problem. Left: 30 equally spaced contours
for pressure p of the numerical results for case(1) by the MR-HWENO5, MR-WENO5 and WENO5-Z
schemes from 0.02 to 0.23 . Number of cells: 200×200. Right: 30 equally spaced contours for pressure p of
the numerical results for case(2) by the MR-HWENO5, MR-WENO5 and WENO5-Z schemes from 0.031 to
0.161. Number of cells: 140×200.
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Figure 3.14: A supersonic flow past a plate with an attack angle problem. The convergence history of the
average residual. Left: case(1). Number of cells: 200×200. Right: case(2). Number of cells: 140×200.

value at the next time step is obtained by a direct linear interpolation of the derivative value at the current

time step together with the function value at the next time step in the sense of cell average. Since the

problems we are dealing with are steady, such a misalignment in time does not have much effect on the

accuracy in the smooth region and the resolution near the discontinuity of the scheme. The main advantage

of the MR-HWENO scheme for steady-state problems is that it simplifies the calculation of the derivative.

Moreover, the CFL number can still be chosen to be 0.6 in both one- and two-dimensional cases, while

the CFL number is only 0.3 for the residual distribution WENO scheme in [22] and 0.2 for the residual

distribution HWENO scheme in two-dimensional case in [24]. The numerical results in the previous section

further show that the residual of MR-HWENO scheme can converge to machine accuracy or an extremely

small number, and falls either faster than or just as fast as the MR-WENO and WENO-Z schemes. The

extension on unstructured meshes remains one of our future research directions.
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