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Abstract. This paper proposes a second-order numerical method for solving nonlinear parabolic4
equations with degenerate mobility. The intrinsic degenerate mobility in the equation yields a globally5
bounded solution. A pivotal feature of our methodology is an appropriate reformulation of the6
equation into an equivalent form. After applying a discontinuous Galerkin spatial discretization7
method, we derive a fully nonlinear ordinary differential equation (ODE) with a splitting structure.8
By introducing a linear term into the ODE, an exponential temporal discretization method, which9
involves only linear solvers, is proposed based on integrating factors and strong stability preserving10
(SSP) Runge-Kutta methods. Our approach is proven to exhibit second-order accuracy, ensures11
bound preservation and mass conservation, and demonstrates a favorable CFL condition τ ∼ h,12
where τ and h are the temporal and spatial mesh sizes respectively. Comprehensive numerical tests13
validate the second-order accuracy and bound-preserving behaviors of our method.14
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1. Introduction. In this paper, we focus on designing numerical schemes for18

solving a class of degenerate parabolic equations of the form19

(1.1)

{
ρt = ∇f(ρ)∇ (H ′(ρ) + V (x) +W ∗ ρ) , x ∈ Ω, t > 0,

ρ(x, 0) = ρ0(x), x ∈ Ω.
20

Here Ω ⊂ Rd with d = 1 or 2, and ρ(x, t) : Ω× [0,+∞)→ R is the unknown particle21

density; f(ρ) is a nonlinear degenerate mobility function that may cause solutions22

to exhibit boundedness or non-smoothness; the H(ρ), V (x), and W (x) are given23

functions with various meanings depending on the specific context [8, 30]. In this24

work, we assume that H(ρ) is convex and W (x) = W (−x). The equation (1.1) can25

be written as a gradient flow26

ρt = ∇f(ρ)∇
(
δE(ρ)

δρ

)
27

with respect to the free energy functional28

E(ρ) =

∫
Ω

H(ρ) + V ρ+
1

2
(W ∗ ρ)ρ dx.29

The presence of the degenerate mobility f(ρ) introduces a complex layer of intri-30

cacy to the equation. Unlike its constant case, this type of mobility exerts a substantial31

influence over the global bound and continuity of solutions (see Section 4). Consider32

the mobility function f(ρ) = ρ(1 − ρ). It remains positive within the interval (0,1)33

and becomes degenerate at the endpoints 0 and 1. This characteristic ensures that34
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2 C. CHEN, AND C.-W. SHU

the solution to equation (1.1) with this specific mobility always stays confined within35

the range [0, 1] (such as [16]). For our subsequent analysis, we make the assumption,36

without loss of generality, that f(ρ) ≥ 0 for all ρ ∈ [0, 1] and the exact solution ρ of37

equation (1.1) adheres to the condition that38

(1.2) ρ(x, t) ∈ [0, 1] for all (x, t) ∈ Ω× [0,+∞).39

Given this framework, the importance of a numerical scheme ensuring bound preser-40

vation becomes evident when attempting to resolve (1.1).41

There are extensive bound-preserving and high-order spatial numerical methods42

for equation (1.1), such as the finite-difference method [26], finite-volume method [2,43

3], discontinuous Galerkin method [23, 29] and references therein. For temporal dis-44

cretization of (1.1), the implicit methods are commonly used to maintain stability and45

preserve physical properties [2, 9, 27]. However, implicit bound-preserving schemes are46

usually limited to first-order in time and necessitate the solution of a large non-linear47

algebraic system at each time-step. Explicit temporal discretizations are computa-48

tionally efficient at each iteration, but a parabolic CFL condition τ ∼ h2, where τ and49

h are temporal and spatial mesh sizes respectively, is normally required for explicit50

schemes [29]. To strike a balance between efficiency and stability, implicit-explicit51

(IMEX) methods are frequently utilized when the equation exhibits a splitting struc-52

ture. The work [6] rewrote the model (1.1) as a splitting form53

(1.3) ρt = ∆Φ(ρ) +∇f(ρ)∇ (V (x) +W ∗ ρ) = C(ρ) +D(ρ)54

with Φ(ρ) =
∫ ρ

0
f(s)H ′′(s) ds, and they dealt implicitly with C(ρ) and explicitly with55

D(ρ) following the idea as in [5]. However, nonlinear systems were still required to be56

solved using this splitting, and the preservation of positivity was only proven for the57

first-order temporal scheme. This issue of limited accuracy is pervasive in the devel-58

opment of bound-preserving schemes using classical IMEX-RK schemes, owing to the59

infeasibility of implicit SSP-RK schemes with order higher than one [18]. Recently,60

the IMEX-RK incorporating multi-derivatives [11, 17, 22] has offered the potential to61

obtain high-order bound-preserving schemes. However, the assumption of high-order62

derivatives is not easily applicable to the equation (1.1). Even if (1.1) is simplified63

to the heat equation ρ = ∆ρ, the second-order derivative ∆2 no longer satisfies the64

maximum bound principle. Furthermore, a variety of novel techniques have been de-65

veloped for bound preservation, including Lagrange multiplier approaches [10, 31] and66

the energy variational approach [14]. These approaches primarily confront challenges67

in solving fully nonlinear implicit schemes or conducting rigorous error analysis for68

general models.69

An alternative prevalent way to explore high-order bound-preserving schemes is70

by employing the exponential integrator (see [19] for a review). To the best of our71

knowledge, no previous work has studied an exponential bound-preserving scheme for72

(1.1), but numerous research studies have explored similar models from the insights73

of exponential integrators. In contrast to (1.3), we reformulate (1.1) with a distinct74

splitting structure75

(1.4) ρt = ∇F (ρ)∇ρ+∇f(ρ)∇ (V (x) +W ∗ ρ) = L(ρ)ρ+N (ρ),76

where F (ρ) = f(ρ)H
′′
(ρ) ≥ 0. By introducing a term Lρ as an approximation of77

L(ρ)ρ, the equation (1.4) can be further written as78

(1.5)
(
eT (t)ρ

)
t

= eT (t) ((L(ρ)− L)ρ+N (ρ)) .79
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SECOND-ORDER BOUND-PRESERVING EXPONENTIAL SCHEME 3

where T (t) =
∫ t

0
L(s) ds is the integrating factor associated with L. The work [23]80

took L = µI with a constant µ > 0, which makes its computation similar to that of81

explicit methods. However, their scheme required the parabolic CFL condition τ ∼ h282

analogous to explicit methods when attempting to apply it to our equation (1.4). In83

cases where L(ρ) is independent of ρ, several exponential linear schemes employing84

L = L have been effectively utilized for (1.4) to generate bounded numerical solu-85

tions [13, 24, 25]. In these works, the operator L possesses a specific special structure,86

resulting in a symmetry of either Toeplitz matrices or circulant matrices. Conse-87

quently, FFT-based algorithms are adequate to achieve enhanced efficiency. Moreover,88

the very recent study [7] also implemented a fixed constant approximation to L that89

depends only on the spatial vector x, although the issue of bound-preservation has not90

been addressed in their context. For L(ρ) depending on ρ, the work [21] introduced91

a second-order exponential scheme that incorporates L = L(ρ). This scheme needed92

three to four evaluations of the fully nonlinear equation ρt = L(ρ)ρ per iteration.93

When applied to our model (1.4), the computational burden generally resembles that94

of implicit methods, despite their provision of detailed techniques for distinct stiff95

kinetic equations.96

Above all, it remains a significant challenge to compute a bound-preserving solu-97

tion to (1.1) while achieving both high-order accuracy and efficiency. In this paper,98

we adopt the splitting (1.4) and present a second-order scheme using an exponential99

integrator associated with L = L(ρ∗), where ρ∗ is explicitly given. At each itera-100

tion, our scheme only requires three times of computation for the linear equation101

ρ = L(ρ∗)ρ, which can be efficiently evaluated by numerous existing algorithms (see102

the review [28]). As evidenced in prior studies, the Krylov- or Leja-based method-103

ologies often surpass implicit schemes in many practical applications [12, 15]. Impor-104

tantly, we demonstrate that our method is mass-conservative, bound-preserving and105

benefits from a favorable CFL condition τ ∼ h.106

2. Spatial discretization. In this section, we present a spatial discretization107

method for parabolic equations (1.1) using a discontinuous Galerkin (DG) approach.108

We only consider the one-dimensional case (d = 1) as an demonstration and the two-109

dimensional case (d = 2) can be derived in the same way (see [29, Section 3]). In our110

following statement, we denote x = x as a spatial variable in one-dimensional space.111

Let Ii = (xi− 1
2
, xi+ 1

2
) and I = ∪Ni=1Ii be a partition of the domain Ω. For112

simplicity, we consider uniform meshes h = xi+ 1
2
− xi− 1

2
, but this assumption is not113

essential. The discontinuous piecewise polynomial space is defined as114

Vh = {vh : vh|Ii ∈ P k(Ii), i = 1, 2 · · · , N},115

where P k(Ii) is the space of k-th order polynomial. We use the notation v+
h and v−h as116

the right and left limit of vh ∈ Vh respectively. For a function s = s(ρ) or s = s(ρ, x),117

we denote by sh = s(ρh) or sh = s(ρh, x) respectively. Furthermore, the notation s+
h118

stands for s(ρ+
h ) or s(ρ+

h , x), and s−h stands for s(ρ−h ) or s(ρ−h , x). For the purpose of119

this paper, we only consider the second-order DG scheme (k = 1) and choose120

(2.1) φ
(1)
i =

xi+ 1
2
− x

h
, φ

(2)
i =

x− xi− 1
2

h
,121

as the basis for P 1(Ii). Note that xi± 1
2

are the k+1 Gauss–Lobatto quadrature points
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4 C. CHEN, AND C.-W. SHU

on Ii when k = 1. The Gauss–Lobatto quadrature on xi± 1
2

can be defined by∫̃
Ii

ηζ dx =
h

2

(
(ηζ)+

i− 1
2

+ (ηζ)−
i+ 1

2

)
and ∫̃

Ii

η∂xζ dx =
h

2

(
(η∂x(Iζ))+

i− 1
2

+ (η∂x(Iζ))−
i+ 1

2

)
,

where the operator I returns the first-order polynomial interpolating at xi± 1
2
. As a122

convention,
∫̃

Ω
stands for

∑
i

∫̃
Ii

.123

To define the DG method, we first introduce auxiliary variables to split the original124

problem (1.4) into the following system of first-order equations:125

ρt = ∂x (F (ρ)η) + ∂x (f(ρ)u) ,

η = ∂xρ,

u = ∂xξ,

ξ = V (x) +W ∗ ρ.

126

A periodic or compactly supported boundary condition is considered in this work,127

but our work can extend to more general types of boundary conditions, such as zero-128

flux boundary conditions. Then our DG approximation can be described as: Find129

ρh, ηh, uh, ξh ∈ Vh such that for any φh, ψh, ϕh ∈ Vh,130

(2.2)∫̃
Ii

(ρh)tφh dx = −
∫̃
Ii

(Fhηh)∂xφh dx+ (F̂hηh)i+ 1
2
(φh)−

i+ 1
2

− (F̂hηh)i− 1
2
(φh)+

i− 1
2

−
∫̃
Ii

(fhuh)∂xφh dx+ (f̂huh)i+ 1
2
(φh)−

i+ 1
2

− (f̂huh)i− 1
2
(φh)+

i− 1
2∫̃

Ii

ηhψh dx = −
∫̃
Ii

ρh∂xψh dx+ (ρ̂h)i+ 1
2
(ψh)−

i+ 1
2

− (ρ̂h)i− 1
2
(ψh)+

i− 1
2∫̃

Ii

uhϕh dx = −
∫̃
Ii

ξh∂xϕh dx+ (ξ̂h)i+ 1
2
(ϕh)−

i+ 1
2

− (ξ̂h)i− 1
2
(ϕh)+

i− 1
2

(ξh)i = V (xi) + (W ∗ ρh)(xi)

131

When W is smooth, the convolution can be approximated by132

(W ∗ ρh)(xi) ≈
∫̃

Ω

W (xi − y)ρh(y) dy.133

The numerical fluxes are chosen in the following way134

F̂hηh = (Fhηh)+, ρ̂h = ρ−h or F̂hηh = (Fhηh)−, ρ̂h = ρ+
h ,(2.3a)135

f̂huh =
1

2

(
(fhuh)+ + (fhuh)− + α(g+ − g−)

)
, α = max{|uh|+, |uh|−},(2.3b)136

ξh =
1

2

(
ξ+
h + ξ−h

)
,(2.3c)137

138

where g is chosen to satisfy sign[gh] = sign[fh] or sign[gh] = 0, and αg ± fu ∈ [0, α]139

when all ρ ∈ [0, 1]. For the case f = ρ(1 − ρ), we can take g = ρ. Using the fact140

α ≥ |u|, it is straightforward to confirm that αg ± fu ∈ [0, α] for ρ ∈ [0, 1].141
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SECOND-ORDER BOUND-PRESERVING EXPONENTIAL SCHEME 5

Remark 2.1. If only positivity preservation is required, g in (2.3) can be relaxed142

to satisfy αg ± fu ≥ 0 as suggested by [29].143

Subsequently, we reformulate (2.2) into a vector ODE corresponding to the values144

on all Gauss-Lobatto nodes. Let145

(2.4) ρh(x, t) = ρ
(1)
i (t)φ

(1)
i (x) + ρ

(2)
i (t)φ

(2)
i (x), x ∈ Ii, t ≥ 0,146

where φ
(1)
i , φ

(2)
i are given in (2.1). Define ρh(t) = (ρ

(1)
1 (t), ρ

(2)
1 (t), . . . , ρ

(1)
N (t), ρ

(2)
N (t))>147

as the vector representing the values of ρh on all Gauss-Lobatto nodes. By employing148

the basis functions φ
(1)
i and φ

(2)
i in the DG discretization (2.2), we can derive an ODE149

of the following form:150

(2.5) (ρh)t = Lh(ρh)ρh +Nh(ρh),151

where Lh(ρh) ∈ R2N×2N is a matrix linked to the discretization of ∂xF (ρ)∇, and152

Nh(ρ) ∈ R2N is a vector associated with the discretization of ∂x(f(ρ)u). Employing153

the flux (2.3a) along with periodic boundary conditions, two asymmetric operator154

Lh(ρ) are obtained with off-diagonal elements involving difference F (ρ
(1)
i )−F (ρ

(2)
i ) or155

F (ρ
(2)
i )−F (ρ

(1)
i ), which can be negative. In this work, we average the two asymmetric156

operators to obtain a symmetric one157

(2.6)

Lh(ρh) =
1

h2



d1
1 0 F 2

1 F 2
N a1

0 d2
1 a2 F 1

2 F 1
1

F 2
1 a2 d1

2 0 F 2
2

F 1
2 0 d2

2 a3 F 1
3

. . .
. . .

. . .
. . .

. . .

F 2
i−1 ai d1

i 0 F 2
i

F 1
i 0 d2

i ai+1 F 1
i+1

. . .
. . .

. . .
. . .

F 2
N F 2

N−1 aN−1 d1
N 0

a1 F 1
1 F 1

N 0 d2
N


2N×2N

158

where F `i = F (ρ
(`)
i ) and159

d1
i = −(F 2

i + F 1
i + 2F 2

i−1), d2
i = −(2F 1

i+1 + F 2
i + F 1

i ), ai = F 1
i + F 2

i−1.160161

Consequently, using the fact F = fH ′′ ≥ 0, one obtains that Lh(ρh) = (`ij)2N×2N is162

symmetric and has the following properties:163

• Zero row sums: Lh(ρh)1 = 0 with 1 = (1, 1, · · · , 1)> ∈ R2N .164

• Pattern of signs: `ij ≥ 0 if i = j, and `ij ≤ 0 if i 6= j.165

Matrices exhibiting both of these characteristics are known as graph Laplacians [4],166

which lead to an ODE that guarantees both mass conservation and bound preserva-167

tion. For a vector ρ, we denote ρ ∈ [0, 1] or 0 ≤ ρ ≤ 1 to indicate that every element168

of ρ falls within the range of 0 to 1. Based on this notation, we present the following169

classical conclusion:170

Lemma 2.2 ([4, Proposition 1.1]). Let the matrix Lh(ρh) be defined as (2.6) and171

u(t) be a solution to the ODE172

(2.7) ut = Lh(ρh)u, u(0) = u0173

with u0 ∈ [0, 1]. Then for all t ≥ 0, u(t) ∈ [0, 1] and 1>u(t) = 1>u0.174
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6 C. CHEN, AND C.-W. SHU

Alternatively, we can express the solution of the ODE (2.7) using an exponential175

matrix as176

u(t) = etLh(ρh)u0.177

Therefore, Lemma 2.2 demonstrates that the exponential matrix etLh(ρh) ensures both178

mass conservation and bound preservation.179

3. Temporal discretization. In this section, we present first- and second-order180

bound-preserving temporal discretizations for the ODE (2.5). Our schemes are de-181

signed by incorporating an auxiliary linear term independent of ρh and then employ-182

ing an exponential integrator. For simplicity, the time domain is discretized using183

equispaced points with time-stepping τ > 0, and we define the nth point given by184

tn = nτ(n = 0, 1, 2, · · · ). Considering the ODE (2.5) on the interval [tn, tn+1], we185

reformulate it as186

(3.1) (ρh)t = Lp(t)ρh +Nh(ρh) + (Lh(ρh)− Lp(t))ρh, (x, t) ∈ Ω× [tn, tn+1],187

where Lp(t) is a pth-order approximation of Lh(ρh(t)) satisfying188

(3.2) Lh(ρh(tn + s)) = Lp(tn + s) +O(sp), s ∈ [0, τ ].189

Define the integrating factor190

(3.3) T (t) =

∫ t

0

Lp(s) ds.191

Then, the equation (3.1) can be written as192

(3.4)
(
e−T (t)ρh(t)

)
t

= e−T (t) (Nh(ρh(t)) + (Lh(ρh(t))− Lp(t))ρh(t))193

Define w(t) = e−T (t)ρh(t). We get194

(3.5) (w(t))t = e−T (t) (Nh(ρh(t)) + (Lh(ρh(t))− Lp(t))ρh(t)) = H(w, t).195

Next, we introduce first- and second-order bound-preserving schemes for (3.5) using196

SSP-RK methods [18]. It is noteworthy that our proposed schemes are simplified to197

the exponential SSP-RK methods [24] when Lh(ρh) is a constant matrix independent198

of ρh.199

3.1. First-order scheme. Consider the approximation L0(t) = Lh(ρh(tn)).200

Then the integrating factor (3.3) becomes T (t) = tLh(ρh(tn)). By applying the201

first-order forward Euler scheme to (3.5), we derive the scheme202

(3.6) ρn+1
h = eτLh(ρnh) (ρnh + τNh(ρnh)) ,203

which is equivalent to204

ρn+1,1
h = ρnh + τNh(ρnh)(3.7a)205

ρn+1
h = eτLh(ρnh)ρn+1,1

h .(3.7b)206207
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SECOND-ORDER BOUND-PRESERVING EXPONENTIAL SCHEME 7

Let ρh(t) be an exact solution of (2.5) and denote ρ = ρh(tn). Using Taylor’s expan-208

sion, we have209

ρh(tn+1)− ρn+1
h = ρh(tn+1)− eτLh(ρ) (ρ+ τNh(ρ))

= ρh(tn+1)− (I + τLh(ρ) +O(τ2)) (ρ+ τNh(ρ))

= ρh(tn+1)− (ρ+ τ(Lh(ρ)ρ+Nh(ρ))) +O(τ2)

= O(τ2).

210

Hence. the scheme (3.7) is a first-order temporal discretization for (2.5).211

Alternatively, we can express the scheme (3.7) in a weak form: Find ρn+1,1
h , ρn+1

h ∈212

Vh such that for all φh, ψh ∈ Vh,213

∫̃
Ii

ρn+1,1
h − ρnh

τ
φh dx = −

∫̃
Ii

(fnh u
n
h)∂xφh dx+ (f̂nh u

n
h)i+ 1

2
(φh)−

i+ 1
2

− (f̂nh u
n
h)i− 1

2
(φh)+

i− 1
2

,

(3.8a)

214

∫̃
Ii

unhϕh dx = −
∫̃
Ii

ξnh∂xϕh dx+ (ξ̂nh )i+ 1
2
(ϕh)−

i+ 1
2

− (ξ̂nh )i− 1
2
(ϕh)+

i− 1
2

,

(3.8b)

215

(ξnh )i = V (xi) + (W ∗ ρnh)(xi),(3.8c)216217

and ρn+1
h = (ρ̃Lh (τ) + ρ̃Rh (τ))/2 with ρ̃h : [0, τ ]→ Vh solving the system218 ∫̃

Ii

(ρ̃h)tφh dx = −
∫̃
Ii

(Fnh ηh) ∂xφ dx+ (F̂nh ηh)i+ 1
2
φ−
i+ 1

2

− (F̂nh ηh)i− 1
2
φ+
i− 1

2

,(3.9a)219 ∫̃
Ii

ηhψh dx = −
∫̃
Ii

ρ̃h∂xψh dx+ (̂̃ρh)i+ 1
2
(ψh)−

i+ 1
2

− (̂̃ρh)i− 1
2
(ψh)+

i− 1
2

,(3.9b)220

ρ̃h(0) = ρn+1,1
h .(3.9c)221222

and ρ̃Lh , ρ̃Rh correspond to the solutions using two different fluxes according to (2.3a).223

Lemma 3.1. Given ρnh, the ρn+1,1
h solved in (3.8) satisfies224

• Mass conservation:
∫̃

Ω
ρn+1,1
h dx =

∫̃
Ω
ρnh dx;225

• Bound-preservation for the cell average: Assuming that ρnh is within the226

range [0, 1] at the Gauss-Lobatto quadrature, i.e., ρnh ∈ [0, 1], the cell average227

(ρ̄h)n+1,1
i = 1

h

∫̃
Ii
ρn+1,1
h dx ∈ [0, 1] if228

(3.10) αλg ≤ ρ and αλ(1− g) ≤ 1− ρ,229

where λ = τ/h. Specifically, when g = ρ, it reduces to the CFL condition230

(3.11) τ ≤ h

max
i=1,··· ,N

αi± 1
2

.231

Proof. Let φh ≡ 1 in (3.8a), we obtain that232

(3.12)

∫̃
Ii

ρn+1,1
h dx =

∫̃
Ii

ρnh dx+ τ
(

(f̂nh u
n
h)i+ 1

2
− (f̂nh u

n
h)i− 1

2

)
, i = 1, 2, · · · , N.233
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8 C. CHEN, AND C.-W. SHU

Summing i from 1 to N , one get234 ∫̃
Ω

ρn+1,1
h dx =

∫̃
Ω

ρnh dx+ τ
(

(f̂nh u
n
h)N+ 1

2
− (f̂nh u

n
h)− 1

2

)
.235

The numerical flux at the right boundary is equal to the numerical flux at the left236

boundary, as required by the periodic boundary condition and the definition of the237

numerical flux. Therefore, we can conclude that
∫̃
I
ρn+1,1
h dx =

∫̃
I
ρnh dx.238

Multiplying both side of (3.12) with 1/h, it becomes239

(ρ̄h)n+1,1
i = (ρ̄h)ni + λ

(
(f̂nh u

n
h)i+ 1

2
− (f̂nh u

n
h)i− 1

2

)
, i = 1, 2, · · · , N.240

Note that the Gauss–Lobatto quadrature is exact for evaluating the cell average (ρ̄h)ni241

since (ρh)ni is a first-order polynomial. For simplicity, we omit the indices n and h for242

the notation ρnh in the subsequent proof. Then243

(ρ̄)n+1,1
i =

1

2

(
ρ−
i+ 1

2

+ ρ+
i− 1

2

)
+
λ

2

(
(fu)+

i+ 1
2

+ (fu)−
i+ 1

2

+ αi+ 1
2
(g+
i+ 1

2

− g−
i+ 1

2

)
)

− λ

2

(
(fu)+

i− 1
2

+ (fu)−
i− 1

2

+ αi− 1
2
(g+
i− 1

2

− g−
i− 1

2

)
)

=
1

2

[
ρ−
i+ 1

2

+ λ
(

(fu)+
i+ 1

2

+ (fu)−
i+ 1

2

+ αi+ 1
2
(g+
i+ 1

2

− g−
i+ 1

2

)
)

−λ
(

(fu)−
i+ 1

2

+ (fu)+
i− 1

2

+ αi+ 1
2
(g−
i+ 1

2

− g+
i− 1

2

)
)]

+

1

2

[
ρ+
i− 1

2

+ λ
(

(fu)−
i+ 1

2

+ (fu)+
i− 1

2

+ αi+ 1
2
(g−
i+ 1

2

− g+
i− 1

2

)
)

−λ
(

(fu)+
i− 1

2

+ (fu)−
i− 1

2

+ αi− 1
2
(g+
i− 1

2

− g−
i− 1

2

)
)]

=
1

2

[
λαi+ 1

2
K+(ρ+

i+ 1
2

, αi+ 1
2
) + λαi+ 1

2
K−(ρ+

i− 1
2

, αi+ 1
2
)

+
(
ρ−
i+ 1

2

− 2λαi+ 1
2
g−
i+ 1

2

)]
1

2

[
λαi− 1

2
K−(ρ−

i− 1
2

, αi− 1
2
) + λαi+ 1

2
K+(ρ−

i+ 1
2

, αi+ 1
2
)

+
(
ρ+
i− 1

2

− λ(αi+ 1
2

+ αi− 1
2
)g+
i− 1

2

)]
,

244

where K± = g±fu/α. Note that K± ∈ [0, 1] by the choice of g. To make (ρ̄h)n+1,1
i ∈245

[0, 1], it is sufficient to ensure ρ − λαg ∈ [0, 1 − λα], which reduces to the restriction246

(3.10).247

Remark 3.2. In the definition of ξh, it is continuous and (3.8b) gives uh = ∂xI (ξh)248

on Ii after integration by parts. Hence the CFL condition (3.11) becomes249

τ ≤ h

maxi ‖∂xI (ξh)‖L∞(Ii)

∼ h,250

which is a favorable CFL condition for parabolic equations.251

Remark 3.3. For efficient implementation, we can approximate the exponential252

matrix in (3.7b) as253

(3.13) ρn+1
h = (I − τLh(ρnh))

−1
ρn+1,1
h ,254

This manuscript is for review purposes only.



SECOND-ORDER BOUND-PRESERVING EXPONENTIAL SCHEME 9

which is also a first-order scheme [5] and the bound preservation still holds using the255

similar proving process.256

As stated in Lemma 3.1, the Euler forward stage (3.7a) only maintains bound-257

preservation on the cell average, not across all Gauss-Lobatto quadrature points.258

Following the methodology developed by [32], we can apply a bound-preserving limiter259

to enforce the boundedness of nodal values on all Gauss–Lobatto quadrature points260

without violating the mass conservation and accuracy. Precisely, let261

ρn+1,2
h (x∓

i± 1
2

) = (ρ̄h)
n+1,1
i + θi

(
ρn+1,1
h (x∓

i± 1
2

)− (ρ̄h)
n+1,1
i

)
,262

with263

θi = min

{
(ρ̄h)

n+1,1
i

(ρ̄h)
n+1,1
i −mi

,
1− (ρ̄h)

n+1,1
i

Mi − (ρ̄h)
n+1,1
i

, 1

}
,

mi = min ρn+1,1
h (x∓

i± 1
2

), Mi = max ρn+1,1
h (x∓

i± 1
2

).

264

Then we get ρn+1,2
h (x∓

i± 1
2

) ∈ [0, 1] and (ρ̄h)
n+1,2
i = (ρ̄h)

n+1,1
i (see [32]). Furthermore,

the interpolation polynomial of {ρn+1,2
h (x∓

i± 1
2

)} on Ii satisfies mnloodsxwe∣∣∣ρn+1,2
h (x)− ρn+1,1

h (x)
∣∣∣ ≤ Ck max

x∈{x∓
i± 1

2

}

∣∣∣ρ (x, tn+1)− ρn+1,1
h (x)

∣∣∣ ,
where ρ (x, tn+1) is the exact solution at time tn+1 and Ck is a constant depending265

only on the polynomial degree k. Consequently, we can update266

ρn+1
h = eτL(ρnh)ρn+1,2

h .267

and conclude that ρn+1
h ∈ [0, 1] by Lemma 2.2. Denote the bound limiter as P. The268

first-order bound-preserving scheme can be summarized as269

(3.14) ρn+1
h = eτL(ρnh)P (ρnh + τNh(ρnh)) .270

Using the approximation (3.13), a more efficient first-order scheme is given by271

(3.15) ρn+1
h = (I − τL(ρnh))

−1 P (ρnh + τNh(ρnh)) .272

273

Theorem 3.4. The updates (3.14) and (3.15) are bound preserving and mass274

conservative, provided the time step restriction specified in Lemma 3.1 is satisfied.275

3.2. Second-order scheme. Based on the first-order scheme (3.14) or (3.15),276

we can construct a first-order approximation for Lh(ρh). Specially, let277

ρn+1,1
h = ρnh + τNh(ρnh),(3.16a)278

ρ̃n+1
h = (I − τLh(ρnh))

−1
ρn+1,1
h ,(3.16b)279280

and introduce the linear interpolation281

(3.17) L1(t) =
t− tn
τ
Lh(ρ̃n+1

h ) +

(
1− t− tn

τ

)
Lh(ρnh),282
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10 C. CHEN, AND C.-W. SHU

which provides a first approximation for Lh(ρh) on the interval [tn, tn+1]. Conse-283

quently, the integrating factor (3.3) becomes284

(3.18) T (t) =
(t− tn)2

2τ
Lh(ρ̃n+1

h )− τ

2

(
1− t− tn

τ

)2

Lh(ρnh).285

Applying the second-order SSP Runge-Kutta [18] for (3.4), we obtain the scheme286

ρn+1,2
h = eτL̃

n+1
h ρn+1,1

h ,(3.19a)287

ρn+1
h =

1

2
eτL̃

n+1
h ρnh +

1

2

(
ρn+1,2
h + τNh(ρn+1,2

h )
)
,(3.19b)288

289

where290

L̃n+1
h =

1

2
(L(ρ̃n+1

h ) + Lh(ρnh)).291

Remark 3.5. Due to the properties L1(tn) = Lh(ρnh) and L1(tn+1) = Lh(ρ̃n+1
h ),292

the stiff term Lh(ρh)ρh does not appear in the explicit Euler steps (3.16a) and (3.19b),293

even though it exists in the ODE (3.5). Hence, the stability of the explicit Euler step294

only depends on the nonlinear term Nh.295

Let ρh(t) be an exact solution for (2.5), we next show that (3.19) is second-order296

in time. Denote G(ρh) = Lh(ρh)ρh + Nh(ρh) and ρ = ρh(tn) for simplicity. The297

Taylor’s expansion gives that298

(3.20)

ρh(tn+1) = ρ+ τG(ρ) +
τ2

2
Gt(ρ) +O(τ3)

= ρ+ τG(ρ) +
τ2

2
((L′h(ρ)G(ρ))ρ+ Lh(ρ)G(ρ)) + τ2N ′h(ρ)G(ρ) +O(τ3)

299

Substitute the exact solution into (3.16) and (3.19), we get300

ρ̃n+1
h = ρ+ τG(ρ) +O(τ2)301

Lh(ρ̃n+1
h ) = Lh(ρ) + τL′h(ρ)G(ρ) +O(τ2)302

ρn+1,2
h = ρ+ τ

(
L̃h

n+1
ρ+Nh(ρ)

)
+
τ2

2
L̃h

n+1
(
L̃h

n+1
ρ+ 2Nh(ρ)

)
+O(τ3)303

= ρ+ τG(ρ) +
τ2

2
Lh(ρ) (G(ρ) +Nh(ρ)) +

τ

2
(Lh(ρ̃n+1

h )− Lh(ρ))ρ+O(τ3)304

= ρ+ τG(ρ) +
τ2

2
Lh(ρ) (G(ρ) +Nh(ρ)) +

τ2

2
(L′h(ρ)G(ρ))ρ+O(τ3)305

Nh(ρn+1,2
h ) = Nh(ρ) + τN ′h(ρ)G(ρ) +O(τ2)306

ρn+1
h =

1

2

(
I + τ L̃h

n+1
+
τ2

2
(L̃h

n+1
)2

)
ρ+

1

2

(
ρn+1,2
h + τNh(ρn+1,2

h )
)

+O(τ3)307

= ρ+
τ

2
(Lh(ρ)ρ+Nh(ρ)) +

τ2

4
(Lh(ρ))

2
ρ+

1

2
(ρn+1,2
h − ρ)308

+
τ

4
(Lh(ρ̃n+1

h )− Lh(ρ))ρ+
τ

2
(Nh(ρn+1,2

h )−Nh(ρ)) +O(τ3)309

= ρ+ τG(ρ) +
τ2

4
(Lh(ρ))

2
ρ+

τ2

4
Lh(ρ) (G(ρ) +Nh(ρ))310
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+
τ2

2
(L′h(ρ)G(ρ))ρ+

τ2

2
N ′h(ρ)G(ρ) +O(τ3)311

= ρ+ τG(ρ) +
τ2

2
((L′h(ρ)G(ρ))ρ+ Lh(ρ)G(ρ)) +

τ2

2
N ′h(ρ)G(ρ) +O(τ3).312

313

Together with (3.20), one has314

ρh(tn+1)− ρn+1
h = O(τ3),315

which implies that the scheme (3.19) is a second-order temporal discretization for316

ODE (2.5). When the bound-preserving limiter is applied immediately after each317

Euler forward stage, we obtain a second-order bound-preserving scheme318

ρn+1,1
h = (I − τLh(ρnh))

−1 P (ρnh + τNh(ρnh)) ,(3.21a)319

ρn+1,2
h = e

τ
2 (Lh(ρnh)+Lh(ρn+1,1

h ))P (ρnh + τNh(ρnh)) ,(3.21b)320

ρn+1
h =

1

2
e
τ
2 (Lh(ρnh)+Lh(ρn+1,1

h ))ρnh +
1

2
P
(
ρn+1,2
h + τNh(ρn+1,2

h )
)
.(3.21c)321

322

Similar to the first-order scheme (3.14), we have the following theorem for (3.21).323

Theorem 3.6. The time discretization (3.21) of the semi-discrete scheme (2.5)324

is bound preserving and mass conservative as long as the time step restriction in325

Lemma 3.1 is satisfied.326

Remark 3.7. For practical implementation, one can use the second-order approx-327

imation328

(3.22) eτL ≈
(
I − τL+

τ2

2
L2

)−1

329

in (3.21) to optimize computational efficiency. However, the guarantee of bound-330

preservation is compromised due to the inclusion of L2. A pragmatic approach would331

be to initially utilize the approximation from (3.22). If a value surpasses the expected332

density bounds, the respective step should be discarded. Subsequently, one should333

revert to computing using the exponential matrix.334

4. Numerical results. In this section, we examine the performance and accu-335

racy of our proposed numerical schemes (3.21) for computing several examples on336

domain Ω = [−L,L]d, d = 1, 2. The error is measured in the discrete norms337

(4.1)

errL1 =

∫̃
Ω

|ρh(x, t)− ρ(x, t)| dx =

(
h

2

)d
‖ρh − ρ‖`1 ,

errL2 =

√∫̃
Ω

|ρh(x, t)− ρ(x, t)|2 dx =

(
h

2

) d
2

‖ρh − ρ‖`2 ,

errL∞ = ‖ρh − ρ‖∞.

338

Here ρh is the numerical solution obtained by the scheme (3.21), and ρ is the exact339

solution for (1.1) or a reference solution computed by our approach in a finer mesh.340

Vectors ρh and ρ are the values of ρh and ρ on all Gauss–Lobatto quadrature points,341

respectively. We chose g = ρ in the flux (2.3) and use CFL condition τ = 1
4Lh for342

all following numerical tests. The exponential matrix is efficiently calculated by the343

techniques introduced in [20].344
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12 C. CHEN, AND C.-W. SHU

4.1. Accuracy test. We first examine the accuracy of (3.21) on an initial value345

problem with a source term S:346

(4.2)

ρt = ∇ρ(1− ρ)∇(ρ+ sin(1>x) +W ∗ ρ) + S(x, t), x ∈ [−π, π]d, t > 0,

ρ(x, 0) =
1

4

(
sin(1>x) + 1

)
,

347

where 1 = (1, · · · , 1)> ∈ Rd and W (x) = cos(1>x)/(2π). Here periodic boundary348

conditions are applied and the source term S is used to ensure that the exact solution349

is350

(4.3) ρ(x, t) =
1

4

(
sin(1>x+ t) + 1

)
.351

In this test, F = f = ρ(1− ρ), H ′ = ρ and V = sin(1>x). We calculate the error at352

T = 1. Table 1 and Table 2 show the corresponding second-order convergence in one353

and two dimensions.354

Table 1
Accuracy test in one dimension for computing a solution to the equation (4.2). The error is

calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
20 2.074e-02 9.966e-03 8.508e-03
40 5.032e-03 2.043 2.442e-03 2.029 2.639e-03 1.689
80 1.232e-03 2.030 6.006e-04 2.024 6.788e-04 1.959
160 3.029e-04 2.024 1.463e-04 2.038 1.752e-04 1.954

Table 2
Accuracy test in two dimensions for computing a solution to the equation (4.2). The error is

calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
10× 10 9.177e-01 1.884e-01 1.051e-01
20× 20 2.182e-01 2.073 4.636e-02 2.023 3.046e-02 1.787
40× 40 5.095e-02 2.098 1.038e-02 2.159 6.019e-03 2.339

4.2. Saturation experiment. To demonstrate the bound-preserving property355

of our numerical scheme, we consider the saturation experiment given by356

(4.4)

ρt = ∇
(
ρ(1− ρ)∇

(
D ln(ρ) +

C

2
|x|2

))
,

ρ(x, 0) = ρ0.

357

Here D and C are positive numbers. In this case, f = ρ(1− ρ), H = D (ρ ln(ρ)− ρ),358

F = fH ′′ = D(1 − ρ), V (x) = C
2 |x|

2 and W (x) = 0. The exact solution of (4.4) is359

bounded on [0, 1] and the steady state depends on the initial mass m = ‖ρ0‖L1 . There360

exists a threshold mc = ( 2πD
C )d/2 such that the steady state can be written as361

(4.5) ρ∞(x) =


A exp

(
− C

2D
|x|2

)
, m ≤ mc

B exp

(
− C

2D
max

{
|x|2 − `2, 0

})
, m > mc

362
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Fig. 1. Computation of a smooth solution to the one-dimensional saturation experiment (4.4)
with ρ0 ≡ 0.1. Left: Evolution of ρh(x, t); Right: Comparison between ρ∞ and the numerical
solution calculated at T = 15;

t = 0 t = 0.5 t = 1

t = 2 t = 5 t = 15

Fig. 2. Evolution of a solution ρ(x, t) with ρ0 ≡ 0.09375 in a two-dimensional saturation
experiment (4.4).

where A, B are positive constants such that ‖ρ∞‖L1 = ‖ρ0‖L1 = m, and ` can be363

determined from the initial datum (see reference [1]). Numerically, we solve the equa-364

tion (4.4) over the domain Ω = [−4, 4]d with parameters C = 1, D = 1. Consequently,365

the threshold mc = (2π)d/2 in (4.5).366

To verify the convergence order, we begin with a uniform initial data ρ0 ≡ 0.1 in367

one dimension and ρ0 ≡ 0.09375 in two dimensions. This ensures that ‖ρ0‖L1 ≤ mc368

and leads to a smooth steady state according to (4.5). We then calculate the numerical369

solution at T = 15 as the numerical steady state. Figure 1 and Figure 2 illustrate370

the numerical evolution to the steady state in one and two dimensions, respectively.371

Furthermore, Table 5 and Table 4 demonstrate the anticipated second-order accuracy372

in both one and two dimensions. In Figure 3, we present the behavior of the relative373

entropy E(t|∞) = E(ρh(t)) − E(ρ∞) and the associated bound of our solution. The374

results indicate that our scheme preserves the bound, aligning with our theoretical375

analysis, and also exhibits energy dissipation during this test.376

To observe saturation, we begin with a uniform initial density of ρ0 ≡ 0.415 in377
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14 C. CHEN, AND C.-W. SHU

Fig. 3. Computation of a smooth solution to the one-dimensional saturation experiment (4.4)
with ρ0 = 0.1. Left: Behaviour of the relative energy E(t;∞); Right: Behaviour of bound.

Table 3
Accuracy test in one dimension for computing the steady state to the equation (4.4) with a

uniform initial density ρ0 ≡ 0.1. The error is calculated at T = 15.

N L1 error Order L2 error Order L∞ error Order
20 2.091e-02 9.166e-03 6.682e-03
40 2.055e-03 3.347 9.324e-04 3.297 7.039e-04 3.247
80 5.159e-04 1.994 2.234e-04 2.062 1.557e-04 2.176
160 1.299e-04 1.989 5.502e-05 2.021 3.624e-05 2.103

Table 4
Accuracy test in two dimensions for computing a smooth steady state to the equation (4.4) with

uniform initial density ρ0 ≡ 0.09375. The error is calculated at T = 15

N L1 error Order L2 error Order L∞ error Order
10× 10 5.152e-01 8.907e-02 2.554e-02
20× 20 1.436e-01 1.843 2.486e-02 1.841 9.420e-03 1.439
40× 40 3.032e-02 2.243 5.063e-03 2.296 2.062e-03 2.192

one dimension and ρ0 ≡ 0.147 in two dimensions such that ‖ρ0‖L1 > mc. According378

to (4.5), this initial density results in a non-smooth steady state that is bounded379

between 0 and 1. A numerical solution obtained at T = 15 is considered as the380

numerical steady state. The evolution in both one and two dimensions can be found381

in Figure 4 and Figure 5. As depicted in Figure 4, in contrast to the results from [9,382

Section 4.1], our DG discretization method yields a superior approximation devoid of383

oscillations near the upper bound ρmax = 1. Additionally, we present the behavior384

of the relative entropy and the bound in Figure 6, which shows that the numerical385

solution generated by our scheme demonstrates bound preservation within the interval386

[0, 1] and also exhibits entropy dissipation. In order to test the accuracy of this387

example, we calculated the error at T = 1, employing reference solutions calculated388

at a finer mesh size with N = 320 for one-dimensional computations and N = 80×80389

for two-dimensional computations. Table 5 and Table 6 present the second-order390

accuracy of our approach in both one and two dimensions.391
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Fig. 4. Computation of a non-smooth steady state to the one-dimensional saturation experiment
(4.4) with ρ0 = 0.415. Left: Evolution of ρ(x, t); Right: Comparison between ρ∞ and the numerical
solution calculated at T = 15.

t = 0 t = 0.5 t = 1

t = 2 t = 5 t = 15

Fig. 5. Evolution of a solution ρ(x, t) with ρ0 = 0.147 in a two-dimensional saturation experi-
ment (4.4).

Fig. 6. Computation of a non-smooth steady state to the one-dimensional saturation experiment
(4.4) with ρ0 = 0.415. Left: Behaviour of the relative entropy E(t;∞); Right: Behaviour of bound.
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Table 5
Accuracy test in one dimension for computing a solution to the equation (4.4) with uniform

initial density ρ0 ≡ 0.415. The error is calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
20 3.022e-02 1.467e-02 1.158e-02
40 7.603e-03 1.991 3.811e-03 1.944 4.007e-03 1.531
80 1.789e-03 2.088 8.774e-04 2.119 9.146e-04 2.131
160 3.669e-04 2.285 1.792e-04 2.291 1.775e-04 2.365

Table 6
Accuracy test in two dimensions for computing a solution to the equation (4.4) with uniform

initial density ρ0 = 0.147. The error is calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
10× 10 5.152e-01 8.897e-02 2.555e-02
20× 20 1.436e-01 1.843 2.483e-02 1.841 9.405e-03 1.442
40× 40 3.032e-02 2.244 5.057e-03 2.296 2.059e-03 2.191

4.3. Aggregation–diffusion equation. We proceed with our study of the392

scheme (3.21) on the aggregation-diffusion equation393

(4.6) ρt = ∇ρ∇
(

νm

m− 1
ρm−1 +W ∗ ρ

)
= ν∆ρm +∇ρ∇(W ∗ ρ)394

with interaction kernel W = e|x|
2

/(2π)d/2. The parameters ν > 0 and m > 1 are set395

to ν = 0.05 and m = 3 in our computation. In this example, f = ρ, F = νmρm−1,396

V = 0, and the density ρ remains positive. For our tests, we utilize periodic boundary397

conditions and evaluate the solution over the domain [−6, 6] in one dimension and398

[−4, 4]2 in two dimensions.399

For the one-dimensional test, we compute the solution up to time T = 200, using a400

smooth initial datum ρ0 = 1√
2π

(e−(x−2)2/2 + e−(x+2)2/2). The evolution and behavior401

of entropy are plotted in Figure 7. As time progresses, the density starts at a smooth402

initial state with two peaks and then converges to a non-smooth steady state with only403

one peak and two discontinuity points. The entropy also shows dissipation throughout404

the computation. To ascertain the accuracy of this example, we compute the error at405

T = 1 and refer to a benchmark solution computed with a mesh of N = 320 points.406

Table 7 demonstrates the desired second-order accuracy of our scheme (3.21).407

Table 7
Accuracy test in one dimension for computing a solution to the equation (4.6) with ρ0 =

1√
2π

(e−(x−2)2/2 + e−(x+2)2/2). The error is calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
20 3.993e-02 1.489e-02 9.097e-03
40 1.608e-02 1.312 5.739e-03 1.376 3.056e-03 1.574
80 4.900e-03 1.714 1.742e-03 1.720 9.306e-04 1.715
160 1.040e-03 2.236 3.772e-04 2.208 2.113e-04 2.139

In two dimensions, we consider a test with a discontinuous initial state given by408

ρ0(x) = 1[−2,2]×[−2,2](x). Figure 8 shows the dynamic evolution used to compute a409
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Fig. 7. Computation of a steady state to the one-dimensional aggregation–diffusion equation

(4.6) with ρ0 = 1√
2π

(e−(x−2)2/2 + e−(x+2)2/2). Left: Evolution of ρ(x, t); Right: Behaviour of the

discrete entropy.

t = 0 t = 1 t = 2

t = 2 t = 10 t = 20t = 5

Fig. 8. Evolution of a solution ρ(x, t) to a two-dimensional aggregation–diffusion equation
(4.6) with ρ0 = 1[−2,2]×[−2,2].

solution at T = 20 with N = 40×40 cells. In this setting, ρ exhibits a transition from410

a discontinuous distribution to a concentrated central peak. To test the accuracy in411

this two-dimensional case, we computed the error at T = 1 with a reference solution412

calculated using a mesh of N = 80 × 80 cells. The error table and convergence rate413

are provided in Table 8. In this example, the L1 error shows second-order accuracy,414

while the observed degeneracy in L2 and L∞ accuracy is due to the discontinuity in415

the initial state and the non-smoothness of the solution.416

Conclusions. This paper presented a fully discrete scheme for solving a class417

of degenerate parabolic equations. Spatially, we applied a discontinuous Galerkin418

method to an appropriate reformulation of equations, resulting in an ODE with a419

splitting structure. Our numerical examples demonstrated that this spatial discretiza-420

tion induces fewer oscillations in the solution. Temporally, we proposed a second-order421

exponential scheme, which involves only linear solvers, by introducing integrating fac-422

tors into the ODE and utilizing SSP-RK methods. Notably, our approach consistently423
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Table 8
Accuracy test in two dimensions for computing a solution to the equation (4.6) with ρ0 =

1[−2,2]×[−2,2]. The error is calculated at T = 1.

N L1 error Order L2 error Order L∞ error Order
10× 10 1.674e+00 5.822e-01 2.587e-01
20× 20 4.250e-01 1.978 1.899e-01 1.616 1.188e-01 1.124
40× 40 1.110e-01 1.937 6.151e-02 1.627 5.446e-02 1.125

evidences second-order accuracy, bound preservation and mass conservation with a424

favorable CFL condition τ ∼ h both in theory and in practice. Nevertheless, the425

calculation of the exponential matrix partly limited our efficiency, and energy dissi-426

pation was only shown in our numerical tests but not proved theoretically. Indeed,427

devising an efficient linear scheme that simultaneously provides high-order accuracy428

in both space and time, while guaranteeing bound preservation, mass conservation,429

and energy dissipation, continues to be a major challenge.430
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