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Flow states of two dimensional active gels driven
by external shear†

Wan Luo, *ab Aparna Baskaran, c Robert A. Pelcovits de and
Thomas R. Powers *abde

Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow of

active gels in straight and annular two-dimensional channels subject to an externally imposed shear. The

gels are isotropic in the absence of externally- or activity-driven shear, but have nematic order that

increases with shear rate. Using the finite element method, we determine the possible flow states for a

range of activities and shear rates. Linear stability analysis of an unconfined gel in a straight channel shows

that an externally imposed shear flow can stabilize an extensile fluid that would be unstable to spontaneous

flow in the absence of the shear flow, and destabilize a contractile fluid that would be stable against

spontaneous flow in the absence of shear flow. These results are in rough agreement with the stability

boundaries between the base shear flow state and the nonlinear flow states that we find numerically for a

confined active gel. For extensile fluids, we find three kinds of nonlinear flow states in the range of

parameters we study: unidirectional flows, oscillatory flows, and dancing flows. To highlight the activity-

driven spontaneous component of the nonlinear flows, we characterize these states by the average

volumetric flow rate and the wall stress. For contractile fluids, we only find the linear shear flow and a

nonlinear unidirectional flow in the range of parameters that we studied. For large magnitudes of the

activity, the unidirectional contractile flow develops a boundary layer. Our analysis of annular channels

shows how curvature of the streamlines in the base flow affects the transitions among flow states.

1 Introduction

The defining property of an active fluid is that energy is added
to the system at the small length scales of the particles that make
up the fluid, instead of at the large length scales of the bounding
walls or inlets of the system.1 Commonly studied examples include
cytoplasm2 or its reconstituted components,3–5 collections of
swimming microorganisms,6–8 and model two-dimensional layers
of cells.9 The interplay of the energy injected at small scales and
the interactions among the constituent particles lead to non-
equilibrium collective behavior, including spontaneous coherent
flows,10–12 sustained oscillations,1,13 active turbulence,14–16 and
two-dimensional4 or three-dimensional17,18 topological defects in
active liquid crystalline fluids. These phenomena suggest that
active fluids may be used for novel microfluidics applications,
including fluids that pump themselves or mix themselves. Since

these applications require a degree of control over active fluids,
recent investigations have studied how confinement of active
fluids affects flows and the formation of defects.13,19–26 In this
paper, we build on these investigations by studying the flow states
of an active gel in a channel with moving boundaries to see how an
imposed shear affects the possible flow states and the transitions
among them.

By ‘active gel’ we mean a model liquid crystal which tends to
the isotropic phase away from boundaries with strong anchoring
conditions and in the absence of shear flow. The motionless,
isotropic state of an unbounded two-dimensional active gel is
unstable to spontaneous flow and nematic ordering above a
critical activity.27,28 Recent numerical calculations have identified
the spontaneous flow states in straight three-dimensional29,30

and two-dimensional channels13,29,31 with stationary walls. In a
two dimensional channel with no-torque anchoring conditions at
the walls, the critical activity for spontaneous flow increases as
the channel width decreases.29 Thus, confinement is stabilizing,
as has been found in other related situations.32 For a given value
of the activity parameter, new flow states emerge as the channel
width increases, with the flow progressing through unidirec-
tional, undulating (also known as ‘oscillatory’,13) and dancing
flow states.29,33 A similar sequence of flow states is found for
fixed channel width and increasing activity.29
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Our work is motivated by the experimental observation that
imposed shear can prevent30 the spontaneous instability of a
solution12 of microtubule bundles and kinesin motors in the
presence of the molecular fuel ATP. Instead of a motionless
state, our base state is the state of simple shear in which the
flow field is given by the solution to the Stokes equation for our
straight or annular channel geometry. Working at fixed channel
width, we find that increasing the activity leads to a sequence of
flow states which are reminiscent of the ones seen in the case of
no external shear, but with some important new elements. For
example, the imposed shear rate can be stabilizing in the same
sense that confinement is stabilizing: for an extensile active gel,
we find that the critical activity for the imposed simple shear
flow to develop a spontaneous flow component increases with
the imposed shear rate. A similar result was established using
linear stability analysis of the effects of external shear on active
nematics by Muhuri, Rao, and Ramaswamy.34 Cates et al.35

have studied the effects of shear close to the isotropic-nematic
transition, primarily on the nematic side of the transition
where the isotropic phase is metastable. Here we give a more
systematic treatment of this problem for two-dimensional
materials in the equilibrium isotropic phase (in two dimen-
sions there is no metastable isotropic phase above the transi-
tion), revealing that the imposed shear also leads to oscillatory
behavior in the unstable modes. For a contractile active gel, we
find that shear is destabilizing. Earlier work has also examined
the rheology of active nematics and gels, showing that polar
active particles have a nonmonotonic stress–strain relation at
high activity,36 and illuminating the nature of shear banding in
apolar active gels.37 Our work extends these investigations to
the case of an annular channel, illustrating the role of the
curvature of the streamlines of the base flow.

Our paper begins with a minimal hydrodynamic model for
active gels. We then study the linear stability of an active gel in
a straight channel subject to a uniform shear flow imposed by a
moving plate. In the stable region, the linear rheology, orienta-
tional order, and the shear stress exerted by the active fluids on
the moving boundary are analytically calculated for the state of
uniform shear. Then we turn to the other flow states using the
finite element method to characterize the flow transitions for
the extensile and contractile fluids. Next, we turn to an annular
channel and carry out similar analytical and numerical studies
to assess the effects of the curvature of the boundaries.

2 Minimal hydrodynamic model

We use a simple continuum hydrodynamic model for nematic
liquid crystals38,39 to describe apolar microtubules, adding to
the Stokes equation a term corresponding to non-equilibrium
active forces, as was done in the ‘‘minimal’’ model used by
Varghese et al.29 In two dimensions, the orientational order of
apolar active matter is described by a traceless, symmetric
tensor—the tensor order parameter that is used in the theory
of nematic liquid crystals—Qij = S(2ninj � dij), with i, j = x, y.40

The unit vector n(x) is the director at position x and the scalar

order parameter S represents the degree of alignment. The
equilibrium state of the microtubule bundles is governed by a
Landau–Ginzburg free energy density,

F ¼ K

2
@iQjk@iQjk þ

A

2
QijQij þ

C

4
QijQij

� �2
; (1)

where repeated indices are summed over. The single Frank
elastic constant K penalizes gradients of Qij. Since we focus on a
low concentration isotropic phase, A will be positive to guaran-
tee that the minimizing state is disordered. In two dimensions
there is no term cubic in Qij, and the isotropic–nematic transi-
tion is continuous. In the isotropic phase we consider in this
paper, the term proportional to C can be neglected, as was done
in previous studies of two-dimensional and three-dimensional
channel flow.29,30

A minimal hydrodynamic model for incompressible flow in
two dimensions is given by29

0 = r�v (2)

0 = �rp + Zr2v � ar�Q (3)

0 = �n(qtQ + v�rQ + Q�O � O�Q) � AQ + Kr2Q + 2lnE,
(4)

where Z is the shear viscosity, n is the rotational viscosity, p is
pressure, (v�rQ)ij = vkqkQij, E = [rv + (rv)T]/2 is the strain rate
tensor, O = [rv � (rv)T]/2 [i.e. Oij = (qjvi � qivj)/2] is the vorticity
tensor, and a is the strength of the activity. A positive value of a
corresponds to extensile particles, and a negative value of a
corresponds to contractile particles. The shape parameter l is
positive for prolate particles and negative for oblate particles;
l = 1 corresponds to needle-like particles. Note that in three
dimensions there will be additional nonlinear terms propor-
tional to l appearing in eqn (4).

We study two-dimensional Couette flows in straight and
annular channels by moving one of the boundaries. On both
boundaries, we assume no-slip conditions for the fluid velocity
and torque-free anchoring conditions for the director field. We
disregard inertial effects because the Reynolds number of the typical
active flows we study is small. In this minimal hydrodynamic model,
passive nematic backflow effects are disregarded in order to simplify
the model. Thus, in our model, the order parameter field Q only
affects the flow through the active stress �aQ. A more complete
active nematic hydrodynamic model, including backflow effects,
has been considered by other authors.41

The active time scale which results from the competition
between viscosity and activity is given by Z/|a|. From the
dynamical equation for Q, eqn (4), it is apparent that the
relaxation time t for distortions away from the equilibrium

isotropic state is t = n/A. Likewise,
ffiffiffiffiffiffiffiffiffiffi
K=A

p
is a correlation length

for the liquid crystalline order, which we write in nondimen-

sional form as ‘ ¼
ffiffiffiffiffiffiffiffiffiffi
K=A

p
=W ; where W is the width of the

straight or annular channel. In the next section, we will see that
in the limit of small correlation length, c { 1, an active gel
flows spontaneously in a channel when the active time scale Z/a is
comparable to the liquid crystal relaxation time n/A. Thus, when
we numerically solve the governing equations in Section 4, it is
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natural to define the dimensionless activity a = alt/Z. The factor
ln in eqn (4) characterizes the flow birefringence of a passive
(a = 0) liquid crystal.42 When weak shear _g { 1/t is applied to a
nematic liquid crystal in the isotropic state, the rods align such
that AQ E 2lnE, which implies that the scalar order parameter is
proportional to the shear rate: S p _gt.

3 Straight channel: start-up problem
and linear stability analysis

Let us begin by reviewing the linear stability analysis of an
unbounded two-dimensional active gel.43 An isotropic (Q = 0),
motionless (v = 0) gel is unstable to shear flow and nematic
ordering when the effective shear viscosity (Zeff � Z � alt)
vanishes, which occurs for a critical activity ac = Z/(lt).27,28 The
form of the effective shear viscosity shows that extensile particles
tend to reduce the shear viscosity, whereas contractile particles
tend to increase it. In the unstable state of the unconfined
geometry, the pattern of alignment of the bundles follows a sine
wave, appearing like a bent filament, or like the nematic configu-
ration of bend.40

Next, let us consider Couette flow of an active gel confined to
an infinite straight channel of width W and subject to a steady
uniform shear flow v0 = _g(W � y)x̂ as shown in Fig. 1. We
assume no-slip boundary conditions on the channel walls for
the velocity field, and Neumann conditions, (qiQjk = 0) or ‘‘zero-
torque conditions’’ for the order parameter field on the walls.
Given the parallel planar channel walls and zero-torque bound-
ary conditions, the nematic order parameter is uniform and
divergenceless for the imposed uniform shear flow. In our
hydrodynamic model, activity only appears in eqn (3), and thus,
when activity is below the critical value for the instability, the
order parameter field is unaffected by the activity.

Before considering the stability of simple shear flow, we solve
the startup problem, assuming an initially stationary isotropic gel
with activity below the critical value (to be deduced below). Since
the Reynolds number is assumed to be small, the flow immedi-
ately assumes its steady-state value v0. But the order parameter
field attains its steady-state value only after a time comparable to
the liquid crystal relaxation time t.44 Given the boundary condi-
tions on the order parameter, we may assume that Q is uniform
in space. Since Q is uniform, the divergence of the active stress

vanishes and the flow remains simple shear as the order-
parameter field evolves. The order parameter equations (eqn (4))
reduce to

@tQxx ¼ �
1

t
Qxx � _gQxy (5)

@tQxy ¼ _gQxx �
1

t
Qxy � l _g: (6)

Assuming Q(t = 0) = 0, we find

Qxx = Q(0)
xx [1 � e�t/t cos( _gt)] + Q(0)

xy e�t/t sin( _gt) (7)

Qxy = Q(0)
xy [1 � e�t/t cos( _gt)] � Q(0)

xx e�t/t sin( _gt), (8)

where the steady-state order parameter tensor Q0 is given by

Qð0Þxx ¼
l _g2t2

1þ _g2t2
; (9)

Qð0Þxy ¼ �
l _gt

1þ _g2t2
: (10)

The order parameter rises to its steady state, with oscillations that
become apparent when the shear rate is greater than the relaxation
rate 1/t. These oscillations are reminiscent of the oscillations
observed45 in the apparent viscosity during the startup flow of
8CB, a director-tumbling nematogen.46 In simple shear, the direc-
tor of a tumbling nematic makes a complete revolution, like a rod
undergoing a Jeffery orbit in shear flow.46 In our case, as long as t
is finite, the directors oscillate about their final steady state. Fig. 2
shows the director angle f = arctan[Qxy/(S + Qxx)] (measured
counterclockwise from the x-axis) as a function of time.

The steady-state scalar order parameter and the director
angle are given by

S ¼ l _gtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _g2t2

p (11)

f ¼ � arctan
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _g2t2
p

þ _gt

 !
: (12)

Eqn (11) and (12) show that in steady state, the flow aligns the
nematic director at a nonzero angle with the horizontal

Fig. 1 The base state for the flow field and tensor order parameter field
Qij of a Couette flow of an active gel in a straight channel with the bottom
wall moving at a fixed speed _gW. The double-headed arrows correspond
to the director field n of the extensile apolar active bundles. The tensor
order parameter field is uniform throughout the channel because the flow
is uniform and because we impose Neumann boundary conditions on Qij.

Fig. 2 Director angle f as a function of time for various shear rates for the
startup problem of the liquid crystal order parameter in the case of steady
simple shear. From top to bottom, the shear rates are _gt = 5 (green curve),
_gt = 1 (gold curve), and _gt = 0.2 (blue curve).
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streamlines, with a degree of order that increases with increas-
ing shear rate. At low shear rates, _gt { 1, the bundles are
oriented at an angle of f = �p/4 with the streamlines, and the
order is weak (S { 1). At high shear rates, the bundles tend to
align parallel to the streamlines, and S E l. For needle-like
particles, with l E 1, the order is strong in the limit of high
shear rate. The shear stress on the moving plate in the stable
region is

sW ¼ �Z _g� aQð0Þxy ¼ _g �Zþ alt
1þ _g2t2

� �
; ao ac: (13)

From eqn (13), it is easy to see the wall shear stress increases
linearly with activity but the dependence on the imposed shear
is not linear when the activity is below the critical value.

To analyze the stability of the base configuration with flow
rate v0 and the confinement W, we consider a perturbation that
is independent of x, the channel axis.‡ Thus, v = v0 + v1 and Q =
Q0 + Q1, with the perturbations

v1 = vx sin(npy/W)exp(bt)x̂, (14)

Q1 ¼
Qxx Qxy

Qxy �Qxx

� �
cosðnpy=WÞ exp btð Þ; (15)

where vx, Qxx, and Qxy are constants, n is a nonzero positive
integer, and b is the growth rate of the perturbation. With these
assumptions, the x component of the force equation eqn (3)
implies

vx ¼
aQxyW

npZ
: (16)

Using eqn (16) in the linearized equations for Q1 yields

b� ¼ �
1

t
1þ p2Kn2

AW2

� �
þ la
2Z 1þ _g2t2ð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la

2Z 1þ _g2t2ð Þ

� �2
� _g2 1þ lat=Z

1þ _g2t2

� �s
:

(17)

There are two modes. In the limit of a passive fluid, a = 0, the
modes collapse to a single mode corresponding to oscillations
of the order parameter as it decays to its equilibrium value
given by eqn (11): b� = �l/t[1 + p2K/(AW2)] � i _g. Note the
similarity between these damped oscillations and the damped
oscillations in the startup problem, eqn (7) and (8). A nonzero
activity makes the two modes distinct. In the limit of zero shear
rate, b� is negative and independent of activity even if a a 0,
and corresponds to the decay of the scalar order parameter of a
passive isotropic nematic when it is perturbed from the iso-
tropic value S = 0. The other mode corresponds to the sponta-
neous flow and ordering of an active isotropic nematic when
a 4 ac = [1 + p2K/(AW2)]Z/(lt). Note that the confining channel
walls raise the critical activity above the previously quoted
critical value for unbounded space. The elastic constant K only
enters the growth rate if the channel width is finite.

In general, the critical activity for instability depends on the
shear rate, and is found by determining when Re(b+) = 0 for
n = 1. The modes are oscillatory when the square root in
eqn (17) is imaginary, or when a� o a o a+, where

a� ¼
2Z _g
l

1þ _g2t2
� �

_gt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _g2t2

p	 

: (18)

When a�o a o a+, the critical curve Re[b+(n = 1)] = 0 in the _g–a
plane is given by

a1c ¼ 2
Z
lt

1þ _g2t2
� �

1þ p2‘2
� �

; (19)

where c is the dimensionless correlation length defined in the
previous section. When a o a� or a 4 a+, the growth rate is
purely real, and the critical curve b+(n = 1) = 0 is given by

a2c ¼
Z
t

1þ _g2t2
� �

1þ p2‘2
� �2þ _g2t2
h i

l 1þ p2‘2 � _g2t2ð Þ (20)

Note that a2c 4 0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2‘2
p

4 _gt; and a2c o 0 forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2‘2
p

o _gt.
The stability boundaries are plotted in Fig. 3 for the case of

c = 0.1 (i.e., a small value of the dimensionless nematic
correlation length). We choose c = 0.1 to match the value we
have chosen for the nonlinear numerical calculations pre-
sented in the next section. The region of oscillatory growth
rates, a�o a o a+, is the region between the dashed lines. The
stable region is the shaded blue region between the solid blue
curves, whereas the unstable regions are the white regions.
Note that the upper stability boundary is given by a1c in the
oscillatory region, and a2c in the non-oscillatory region. The
lower stability boundary lies wholly in the non-oscillatory
region, and is therefore given by a2c. Since the upper stability
boundary near _g = 0 increases with shear rate, our results are in
agreement with Muhuri et al.,34 who found that shear counter-
acts the instability for extensile particles. Surprisingly, we also

Fig. 3 Linear stability analysis results for a two-dimensional active gel in a
straight channel of width W subject to a shear flow with rate _g. The Frank
elasticity is small: K = 0.01AW2. Simple shear flow is stable against
perturbations in the shaded blue region, and the perturbations are oscilla-
tory in the region between two dashed lines.

‡ A more general assumption would be to suppose the perturbation depends on
both x and y, but here we forbid x-dependence to simplify the analysis. The more
general analysis using pseudospectral methods will be reported elsewhere.
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find that shear can be destablizing for contractile active parti-
cles if the magnitude of the activity is large enough.

4 Straight channel: nonlinear
spontaneous flows

The linear analysis of the previous section predicts that simple
shear flow with uniform nematic order is stable as long as the
activity and externally imposed shear rate lie in the shaded
region of Fig. 3. However, there may be transitions to flow
states that are not captured by linear stability analysis, and
furthermore, the linear equations cannot describe the fully-
developed flow states. Thus, we explore the activity-induced
flow states and the transitions between them by numerically
solving the full nonlinear equations, eqn (2)–(4) which describe
the Couette flows of active gels. We use the open source finite
element software FEniCS47–49 to solve the nonlinear equations,
employing a backwards Euler scheme to solve for the time
dependence. We characterize the flow states by the sponta-
neous volumetric flow rate as well as the wall shear stress.

The system is initialized with a small value of the nematic
order parameter S, appropriate for an isotropic state. For
sufficiently small values of the external shear, the direction of
the activity-induced flow for a 4 ac depends on the configu-
ration of the nematic order. We can achieve positive flow—flow
in the same direction the bottom wall moves—or negative
flow—flow against the direction the bottom wall moves—by
imposing appropriate initial conditions on the directors. These
conditions will be described below for the extensile and con-
tractile cases. The initial director fields also have small random
fluctuations. Because we are neglecting inertial effects, we do
not need to initialize the velocity field, which is determined
from eqn (2)–(4). Instead of attempting to simulate a very long
channel, we use periodic boundary conditions on the left and
right boundaries of the channel. The length L of the channel is
chosen to be five times the width W; we found this length to be
the longest channel length we could simulate in a reasonable
amount of computing time. We focus on situations in which
the width W of the channel is large compared to the correlation

length
ffiffiffiffiffiffiffiffiffiffi
K=A

p
of the liquid crystal. Therefore, our simulations

are carried out with a small nematic correlation length,ffiffiffiffiffiffiffiffiffiffi
K=A

p
¼ 0:1W (i.e. c = 0.1). In our numerical calculations, W

is the unit of length, t is the unit of time, and Z/t is the unit of
pressure. We restrict our simulations to the case of needle-like
particles, l = 1. As mentioned in Section 2, we use the
dimensionless activity a defined via a = alt/Z.

4.1 Extensile fluids

For extensile fluids, we find three types of flow states when the
activity is above the critical value ac: unidirectional, oscillatory,
and dancing. These states are similar to three of the states
found by Samui et al.,13 who studied an active nematic fluid
confined to a channel in the absence of external shear. These
authors also found an active turbulent state at high activity,
which we do not explore here. The unidirectional flow is steady,

consisting of a superposition of spontaneous flow and simple
shear flow. The oscillatory flow is unsteady, with a pattern of
flow and order that translates at a constant velocity along the
channel, which makes the spatially-averaged wall stress con-
stant in time. The dancing flow is truly unsteady, with a
spatially-averaged wall stress that oscillates in time. These states
will be described in more detail below. Fig. 4 shows the phase
diagram for flow states for dimensionless activity in the range
0 r a t 2.5 and shear rate in the range 0 r _gt t 1. To get
positive spontaneous flow, we imposed initial conditions with
the directors converging to the right, as in Fig. 5b. To get
negative spontaneous flow, we imposed initial conditions with
the directors converging to the left, as in Fig. 5d. We ran each
simulation until either all transients died out, or t = 600t,
whichever came first. The final state could either be a steady
state or a state with regular periodic behaviour. Then we
classified the states as follows. The simple shear and unidirec-
tional flow states generally emerge at times t o 600t. Both states
are steady with negligible y-component of velocity, and these
two flow states are easily distinguished since simple shear has
the standard linear flow profile vx = _g(W � y), whereas unidirec-
tional flow has a spontaneous flow component added to the
linear flow. If there is a nonzero y-component of the velocity at
the end of the simulation, we check for oscillations in the

average wall stress, �sw ¼
Ð L
0 dxsxyðx; y ¼ 0Þ=L, for times in the

range 550t–600t. Negligible oscillation in the average wall stress
implies an oscillatory flow state, while non-negligible values
imply a dancing state. Most of the points shown in Fig. 4
reached a steady or regular periodic state by t = 600t, or came
very close to doing so. But a few cases near transitions between
flow states needed much longer to fully develop.

Fig. 4 Numerically determined flow states for extensile fluids with c = 0.1
and l = 1 in a straight channel. See the text for an explanation of how the
flow states were determined. The blue shaded region and the dashed line
indicate the linearly stable states and the boundary for oscillatory modes,
respectively, for c = 0.1 (compare with Fig. 3). The location of the
transitions is generally insensitive to whether the initial splay of the nematic
directors converges to the right (as in Fig. 5b) or the left (as in Fig. 5d). Note
that depending on the noise in the initial conditions, some of states at
higher a can either be dancing or oscillatory-like states; an example is
shown in the ESI.†
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The limit of stability for the simple shear flow states in the
Fig. 4 is the boundary between the region with black crosses
and the regions with other symbols. We observe that the
numerical limit of stability for simple shear flow matches very
well with the prediction of linear stability analysis (filled blue
region), but only for the transition from the simple shear to

unidirectional flow, _gt t 0.3. The disagreement between the
linear stability boundary and the transition from simple shear
flow to oscillatory flow may be due to our neglect of the
possibility that the perturbation could depend on x as well as
y. In the region of simple shear flow (black crosses in Fig. 4),
our numerical results show that the wall stress decreases with
activity, in agreement with eqn (13). Fig. 6a shows the numeri-
cally computed wall stress, normalized by the passive (viscous)
stress. When the flow state is simple shear, activity reduces the
total wall stress in proportion to the activity, in accord with the
general understanding that extensile particles with activity
reduces the effective viscosity.43 Fig. 6b shows the normalized
wall stress, or, equivalently, the effective viscosity vs. imposed
shear rate. For the cases for which the flow is simple shear, we
see that the gel is shear-thickening, in accord with our analytic
expression eqn (13).

4.1.1 Unidirectional flow. When the externally imposed
shear is in the range 0 r _gt t 0.3, and the dimensionless
activity is in a relatively narrow band near aE 1 (Fig. 4), activity
creates a steady unidirectional flow along the x-axis (Fig. 5). The
activity-induced component spontaneously breaks the left-right
symmetry of the channel, with the actual direction of the active
flow component determined not by the imposed external shear
but instead by the initial conditions of the directors, as
described above. Since the total shear rate vanishes at the value
of y at which the flow rate has an extremum, the scalar
parameter vanishes at this same value of y (Fig. 5). Fig. 7 shows
the flow profile subtracting off the imposed shear flow for fixed
activity and various values of _g for both the left-moving and
right-moving spontaneous flows. It indicates that the sponta-
neous active component of the flow depends on _g; in other
words, the total flow is not simply a superposition of the
passive shear flow vx = _g(W � y) and the spontaneous flow at
zero externally imposed shear.

Fig. 5 Steady states of spontaneous flow and nematic order for dimen-
sionless activity a = 1.5 and dimensionless shear rate _gt = 0.2 (the bottom
wall moves to the right, and the top wall is stationary). In the velocity field
plots (panels (a) and (c)), color denotes flow speed, and arrows denote the
direction of the flow. In the order parameter field (panels (b) and (d)), color
denotes the scalar order parameter and lines denote the director field. The
length of the line is proportional to the scalar order parameter, and thus
provides a relative measure of the nematic order. Note that the leftward
spontaneous flow in (c) is not sufficient to reverse the net flow near the
moving wall, but leads to negative net flow near the stationary wall.

Fig. 6 Numerical results for spatially-averaged wall stress imposed by the active flow on the bottom wall of a straight channel, normalized by the passive
wall stress for simple shear and unidirectional flows, which is equivalent to the effective viscosity in the presence of activity normalized by the shear
viscosity, Zeff/Z. Panel (a) shows the dependence on the activity and panel (b) shows the dependence on the external shear rate. Note that form of
the straight lines in panel (a) is given by eqn (13). The nearly vanishing stress in the unidirectional flows accords with our weakly nonlinear analysis in
Section 4.3.
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To better characterize these flows, we subtract the passive
volumetric flow rate from the total volumetric flow rate to get
the dimensionless activity-induced volumetric flow rate (per
unit channel width),

qactive �
ðW
0

dyvx �
_gW2

2

� �
t

W2
; (21)

shown in Fig. 8. This quantity serves as an order parameter
describing the transitions among the various flow states. Fig. 8
shows that the activity-driven flow rate has the same magnitude
for the left-moving and right-moving flows, and also that the
amplitude of the unidirectional flows increases as the activity
increases.

For unidirectional flows we observe negligible difference in
the wall stress for the left-moving and right-moving flows.
Examining Fig. 6a for the case of _gt = 0.2 reveals that reduction

of the normalized wall stress with increasing activity ceases at
the onset of the unidirectional flow, and the normalized wall
stress at y = 0 starts to increase slightly as activity increases
further. The first two points of the curve corresponding to a =
1.4 in Fig. 6b illustrate the ‘superfluidity’ of active gels, in
which the active stress nearly cancels the viscous stress at the
wall when the activity is near the critical activity. We give an
analytical treatment of this phenomenon in our weakly non-
linear analysis of Section 4.3.

4.1.2 Oscillatory flow. Our phase diagram of flow states
shows that for _gt t 0.3, there is a transition with increasing
activity from the unidirectional flow states to two-dimensional
oscillatory flows (Fig. 9). When _gt\ 0.3, the simple shear states
transition directly to two-dimensional oscillatory flows as activ-
ity increases. Although the oscillatory flow states are unsteady,
with the velocity and order parameter taking the form of a
traveling wave, the flow pattern and order parameter configu-
ration rigidly translate in the x direction with wave speed vT. In
other words, in the frame moving relative to the channel walls
with speed vT, the streamlines meander in space but are steady.
Likewise, the configuration of the order parameter tensor is
steady in this frame. Because we use periodic boundary condi-
tions, the flow field and orientational order parameter must
have a period in x equal to the channel length L. But these fields

Fig. 7 Spontaneous component of velocity profiles in dimensionless units
for unidirectional flow at different rates of externally imposed shear. For
each value of the shear rate, there are two branches, with the upper
branch corresponding to the positive spontaneous flow, and the lower
branch corresponding to the negative spontaneous flow.

Fig. 8 Dimensionless activity-driven volumetric flow rate versus dimen-
sionless activity in a straight channel. The symbols denote the flow states
and the colors denote the externally imposed shear rate. The wavelength is
5W/4 for all cases with nonzero activity-driven flow rate shown in the
figure.

Fig. 9 Examples of the unsteady oscillatory flow state at t = 600t. Panels
(a)–(d) show the flow patterns and order parameter fields corresponding
to positive and negative spontaneous flows for small external shear rate.
Panels (e) and (f) show a case with larger shear rate. At this shear rate, we
only observe positive spontaneous flow.
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could also have a shorter period, which must evenly divide the
total channel length. Since we use a channel length L = 5W, the
possible wavelengths for a periodic configuration are 5W, 5W/2,
5W/3, . . .. Different wavelengths are selected in the dynamical
final state depending on the initial state of the nematic
directors, as well as the value of the activity and the imposed
shear. Because it is difficult to determine the relationship
between the random fluctuations imposed on the initial direc-
tors and the wavelength that is finally selected, we did not make
a systematic study of all the possible wavelengths and how the
corresponding wavespeeds depend on the parameters. It is
natural to worry that the steady translation of the flow field
and order parameter pattern could be an artifact of the periodic
boundary conditions. In Section 5, we study an annular geo-
metry as a single domain without the need for periodic bound-
ary conditions. Since we also observe an oscillatory flow state
with constant angular wave speed in that situation, we are
confident the occurrence of a pattern with constant wave speed
in the straight channel is not an artifact of the periodic
boundary conditions.

We measured the volumetric flux for times in the range t =
550–600t, which is when the system is generally in its final
dynamically stable state. In the final state, the volumetric flow
rate and wall shear stress of the oscillatory flows are constant.
For small externally imposed shear (e.g. _gt r 0.2 in Fig. 4), the
spontaneous activity-induced flows can be either positive or
negative, depending on the form of the splay in the initial
conditions for nematic order, as for the unidirectional flows. See
Fig. 9a–d (movies are in the ESI†). For positive spontaneous
flow, the streamlines undulate, but the externally imposed shear
breaks the up-down symmetry of the waves with respect to the
horizontal centerline of the channel. The velocity at the valleys
of the waves is higher than at the peaks. For negative sponta-
neous flow, since the activity-induced flow is opposite to the
direction of the externally imposed shear flow, the flow more
easily forms circular streamlines. Thus, for _g a 0, the absolute
value of the activity-driven flux of negative spontaneous flows is
slightly smaller than the flux for the positive spontaneous flows,
as can be seen by looking very closely at Fig. 8.

The direction of the spontaneous flow not only determines
the shape of the streamlines, but also determines the direction
of translation of the total flow pattern, including the passive
viscous flow. For positive spontaneous flow, the total flow
pattern translates in the +x direction, while for the negative
spontaneous flow case, it translates in the �x direction. The
activity-driven volumetric flow rate is nonzero but generally
decreases with increasing activity as shown in Fig. 8.

We now turn to larger externally imposed shear (e.g. _gtZ 0.3
in Fig. 4). In this case, only the positive spontaneous flow
appears; the symmetry is broken by the flow imposed by the
external shear. The activity-driven volumetric flow rate is zero
because the imposed shear rate is large enough to close the
streamlines. Interestingly, our numerical results indicate that
the wave speed for these oscillatory flows with zero activity-
driven flow rate is equal to the average volumetric flow rate of
simple shear, vT = _gW/2.

4.1.3 Dancing flow. At higher activity, the flow field and
tensor order parameter field become unsteady in any frame,
and we find states (Fig. 10; movies are in the ESI†) analogous to
the dancing flows found by Shendruk et al.33 and Samui et al.13

in their study of active nematic flow in a two-dimensional
channel. The volumetric flow rate of dancing flow is still constant
with time. Additionally, in the range we study (a r 2.5), when
activity is large enough to dynamically close all streamlines for
the part of the flow that is activity-driven, the total flux is the
same as in the passive case. As in the case of the oscillatory flows,
sometimes we find multiple states at the same values of para-
meters. For example, noise in the initial conditions may cause the
system to exhibit oscillatory-like states in the region of the phase
diagram where dancing flows are also found.

Given a director configuration n̂ = cosfx̂ + sinfŷ, we may
define the topological charge inside a closed loop by computingÐ
df ¼ 2pm around the loop, where m is the charge. Applying

this definition to the configuration in Fig. 10b may be proble-
matic because the order parameter S vanishes not just in small
cores but in extended two-dimensional regions. If the loop
drawn to encircle a potential topological defect crosses a region
where S vanishes, the angle f and the topological charge are ill-
defined. Nevertheless, we can simply look at the director
configuration of dancing flow and see that there are parts of
the configuration around the regions of small S near the center
of the channel that closely approximate the director field of
+1/2 defects. The +1/2 defects appear in pairs, and the two defect
cores move with undulations of the flow in opposite directions
leading to the pairs exchanging partners with the pair to
the immediate left and immediate right, consistent with the
Ceilidh dance observed by Shendruk33 and Samui.13

The spatially averaged shear stress imposed by the active
flow on the moving wall also oscillates in time. The average wall
shear stress no longer decreases linearly with activity in the
spontaneous flow region.

4.2 Contractile fluids

Negative activity corresponds to contractile particles. When the
activity is sufficiently negative and the shear rate is large

enough, _gt4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2‘2
p

; we observe unidirectional flow states
in our finite-element calculations. The stability boundary that

Fig. 10 Snapshot of (a) flow field and (b) order parameter field of a
representative unsteady dancing flow state at t = 599.8t. In the velocity
field plot, panel (a), colors denote flow speed, and arrows denote flow
direction. In the order parameter field plot, panel (b), colors denote the
scalar order parameter, and lines denote directors.
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we find in our numerical calculations is consistent with the
results of our linear stability analysis (Fig. 11). As in the
extensile case, we get both positive and negative flows, depend-
ing on whether the initial configuration of the directors bends
downward as in Fig. 12b, or upward as in Fig. 12d. After
transients have died out, the active component of the volu-
metric flow rate is equal in magnitude for the positive and
negative flows, and the amplitude of the flow rate increases as
the magnitude of the activity increases. It is well-known that
contractile elongated particles in a shear flow enhance the
shear viscosity.43 Thus, the wall stress (normalized by passive
stress) increases linearly with the magnitude of the activity
when the flow is simple shear, according to eqn (13). When the
flow transitions to unidirectional flow, we also find that the
normalized wall stress increases linearly with the magnitude of
the activity, however with a slightly smaller absolute value of
slope. The figures showing the dependence of the active
component of flow rate and the dependence of the normalized
wall stress on activity are in the ESI.†

When the magnitude of the activity becomes large, we
observe a boundary layer in the flow velocity. Since we found
only steady-state unidirectional flow states for contractile activ-
ity, it is computationally more efficient to reduce the governing
partial differential equations to ordinary differential equations
[see eqn (23)–(26) below] and solve them using the bvp5c solver
of MATLAB.50 Fig. 13 shows the active component of the flow
for the positive and negative spontaneous flows of contractile
gels. When the absolute value of the activity is large, we observe
that the spontaneous component of the flow approaches simple
shear flow, with a boundary layer of dimensionless thickness cd
near one of the walls, which we define as the displacement
boundary layer thickness51

‘d �
ÐW
0 dy _g0y� vx � vpassivex

� �� �
ÐW
0 dy _g0y

; (22)

where _g0 = d(vx � vpassive
x )/dy at y = 0 for positive spontaneous flow.

The boundary layer thickness is the same for positive and negative
spontaneous flow. Fig. 13 shows that the peak flow speed of the
active component is higher and the boundary layer is thinner for
larger magnitudes of the activity. From Fig. 14, we find that cd p
|a� ac|

z, where z is close to�0.5, but its magnitude increases with
_gt. This dependence will be studied in another publication.

4.3 Weakly nonlinear analysis for _c = 0

To conclude this section, we turn to a weakly nonlinear analysis
of the spontaneous steady unidirectional flow near the

Fig. 11 Flow states for contractile particles in a straight channel with c =
0.1. As in Fig. 4, the blue shaded region is linearly stable, and the modes of
the linearized equations are damped but oscillatory above the dashed line.
The finite element results are insensitive to the initial conditions of the
director field. Fig. 12 An example of the velocity and order parameter fields of positive

and negative spontaneous flow for contractile particles. In the velocity field
plots (a) and (c), color denotes the flow speed, and arrows denote flow
direction. In the order parameter field plots (b) and (d), color denotes the
scalar order parameter, and lines denote the directors.

Fig. 13 Active component of the velocity profile in dimensionless units
for contractile particles in the unidirectional flow state, for _gt = 2.0 and
various activities. The upper branches correspond to positive spontaneous
flow, and the lower branches correspond to negative spontaneous flow.
The dimensionless boundary layer thickness is denoted by cd.
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transition from the motionless isotropic state.52 We continue to
assume l = 1 and only consider the case of zero shear rate, _g = 0,
leaving the case of nonzero _g for another publication. Assuming
that the velocity field, order parameter tensor, and pressure
depend only on the coordinate y, the dimensionless governing
equations are

v
00
x � aQ

0
xy ¼ 0 (23)

�p0 þ aQ
0
xx ¼ 0 (24)

‘2Q
00
xx �Qxx þ v

0
xQxy ¼ 0 (25)

‘2Q
00
xy �Qxy � v

0
xQxx þ v

0
x ¼ 0 (26)

with no-slip boundary conditions vx(0) = vx(1) = 0 and no-torque

(Neumann) boundary conditions Q
0
ij 0ð Þ ¼ Q

0
ij 1ð Þ ¼ 0. The prime

denotes a derivative with respect to y. We already saw in Section 3
that the motionless, distorted state at zero imposed shear rate is
unstable when a 4 ac, where ac = (1 + p2c2) is the dimensionless
critical activity. Here we study the spontaneous flow and weak
ordering for a = ac + da, with da small and positive. We do not
assume that c, the dimensionless nematic correlation length, is

necessarily small. Assuming the balance Qxx � v
0
xQxy in eqn (25)

suggests that to leading order, vx ¼ O da1=2
� �

, Qxy ¼ O da1=2
� �

, and
Qxx ¼ OðdaÞ. Thus, we expand in powers of da1/2:

vx = da1/2v(1)
x + dav(2)

x + da3/2v(3)
x + . . . (27)

Qij = da1/2Q(1)
ij + daQ(2)

ij + da3/2Q(3)
ij +. . .. (28)

At O da1=2
� �

, we find the steady versions of the linearized
equations we used in Section 3 to solve for the growth rate,

vð1Þ
00

x � acQð1Þ
0

xy ¼ 0 (29)

‘2Qð1Þ
00

xx �Qð1Þxx ¼ 0 (30)

‘2Qð1Þ
00

xy �Qð1Þxy þ vð1Þ
0

x ¼ 0: (31)

The Neumann boundary conditions on Qij together with
eqn (30) imply that Q(1)

xx (y) = 0. Integrating eqn (29) yields

v
ð1Þ0
x � acQ

ð1Þ
xy ¼ sð1Þ; where s(1) is a constant. Eliminating v(1)

x from
eqn (31) leads to

‘2Qð1Þ
00

xy þ ac � 1ð ÞQð1Þxy ¼ �sð1Þ: (32)

To get a solution for Q(1)
xy that satisfies the Neumann boundary

conditions, we must have

Qð1Þxy ¼ c1 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ac � 1

p
y=‘

	 

� sð1Þ

ac � 1
(33)

¼ c1 cos py�
sð1Þ

ac � 1
; (34)

Using eqn (29) and the no-slip boundary conditions implies
s(1) = 0 and v(1)

x = (c1ac/p)sinpy. Note that to leading order, vx

and Qxy are O da1=2
� �

, but Qxx is at most O dað Þ. At the next order,
the equations are

vð2Þ
00

x � 1þ p2‘2
� �

Qð2Þ
0

xy ¼ 0 (35)

�‘2Qð2Þ
00

xy þQð2Þxy � vð2Þ
0

x ¼ 0 (36)

�‘2Qð2Þ
00

xx þQð2Þxx ¼ c1
2 1þ p2‘2
� �

cos2 py; (37)

with solutions

Qð2Þxx ¼ c1
21þ p2‘2

2
1þ cos 2py

1þ 4p2‘2

� �
(38)

Q(2)
xy = c2 cospy (39)

vð2Þx ¼ c2
1þ p2‘2

p
sin py; (40)

where c2 is a constant.
To determine c1, we must expand to O da3=2

� �
:

vð3Þ
00

x � 1þ p2‘2
� �

Qð3Þ
0

xy ¼ �c1p sinðpyÞ (41)

‘2Qð3Þ
00

xy �Qð3Þxy þ vð3Þ
0

x ¼ c1
3C0

3

2
þ 4p2‘2

� �
cos py

�

þ 1

2
cos 3py

�
;

(42)

where C0 = (1 + p2c2)2/[2(1 + 4p2c2)]. Integrating eqn (41) yields

vð3Þ
0

x ¼ 1þ p2‘2
� �

Qð3Þxy þ c1 cos pyþ sð3Þ; (43)

where the constant s(3) appears in the expansion of the stress,

s ¼ v
0
x � aQxy ¼ da1=2sð1Þ þ dasð2Þ þ da3=2sð3Þ þ . . .. The solu-

tions we have already found at lower order imply that s(1) =
s(2) = 0. The no-slip boundary conditions on v(3)

x also imply that
s(3) = 0. Thus, the stress vanishes not only at the critical value of
the activity, but also as a is increased above ac. Our numerical
computations give the same result just above the critical

Fig. 14 log–log plot of dimensionless boundary layer thickness cd vs. a �
ac, for various shear rates (legend). These results indicate that cd p |a �
ac|z, where z gradually changes from �0.44 to �0.56 with increasing _gt.
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activity. Using eqn (43) to eliminate v(3)
x from eqn (42) yields

‘2Qð3Þ
00

xy þ p2‘2Qð3Þxy ¼ C1 cos pyþ C2 cos 3py; (44)

where

C1 ¼
c1

3 1þ p2‘2
� �2

3þ 8p2‘2
� �

4 1þ 4p2‘2ð Þ � c1 (45)

C2 ¼
c1

3 1þ p2‘2
� �2

4 1þ 4p2‘2ð Þ : (46)

To find c1, we use the Fredholm alternative,53 which implies
that the right-hand side of eqn (44) must be orthogonal to the
solution of the corresponding homogeneous equation. Thus,
C1 = 0, and

Qxx ¼
2da
ac

1þ 4p2‘2
� �
3þ 8p2‘2

1þ cos 2py
1þ 4p‘2

� �
þ O da3=2

	 

(47)

Qxy ¼ �
2da1=2

ac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2‘2
� �
3þ 8p2‘2

s
cospyþ OðdaÞ (48)

vx ¼ �
2da1=2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2‘2
� �
3þ 8p2‘2

s
sin pyþ OðdaÞ; (49)

where the two signs for vx and Qxy correspond to the two
different spontaneous directions of flow, and the corres-
ponding orientation of the directors. These analytical solutions
agree very well with our numerical solutions for the sponta-
neous unidirectional flow state with activity just above the
critical activity, with a ranging from 1.1 to 1.25 (see the ESI†).

5 Annular channel: nonlinear
spontaneous flows

In our work on the straight channel, we saw that simple shear
flow led to a spatially uniform order parameter field Q when the
activity is less than a critical value. Uniform Q leads to zero
active force on the fluid. In contrast, if the shear rate in the flow
is spatially nonuniform, the alignment and degree of ordering
of the directors will also be spatially nonuniform, leading to an
active force. This situation arises in the case of curved boundar-
ies—as in an annular channel—for any nonzero value of the
activity, no matter how small. Previous theoretical studies
involving curved boundaries have focused on the case of
motionless walls. For example, Woodhouse and Goldstein
found spontaneous circular flow in a circular chamber,10 and
Norton et al. showed that the nature of topological defects in the
director field is determined by the flow rather than the director
anchoring conditions at the wall of a circular chamber.20

In this section, we introduce curvature by considering the
flow states of a two-dimensional active gel in the Taylor–
Couette geometry of an annular channel between two con-
centric circular boundaries of radius R and R + W. We impose
external shear by rotating the inner boundary with steady
angular frequency o, leaving the outer boundary stationary.

Stokes flow in this geometry, known as Couette flow, is given
by54

vy ¼
oR2

ð2RþWÞW
ðRþWÞ2

r
� r

� �
; (50)

where r is the radial polar coordinate. The second term of
eqn (50) corresponds to rigid body rotation and does not lead to
any strain rate, but the first term leads to a nonuniform strain
rate, and thus induces a nonuniform order parameter field and
an active force on the fluid for any nonzero value of the activity.
To study the nonlinear flow states of active flows in the annular
channel, we again employ the finite element software FEniCS to
solve the full nonlinear equations, eqn (2)–(4). We set c = 0.1,
l = 1 and R/W = 1.

5.1 Extensile fluids

We begin our discussion of the flow states in the annulus with
extensile active gels, a 4 0. As in the case of the straight
channel, we give the initial director field some splay to induce
counterclockwise or clockwise spontaneous flow, with the flow
direction depending on the sense of the splay. For example,
splay with the rods converging as we move counterclockwise
around the annulus (Fig. 15d) leads to counterclockwise active
flow (Fig. 15c). For the activities we used, we find the same
kinds of active flow states as in the straight channel: Couette-
like states which have no radial component of flow and are the
analogs of the unidirectional states in the straight channel
(Fig. 15a–d), oscillatory states (Fig. 15e and f), and dancing
states (Fig. 15g and h). We run the simulations until t = 600t,
and characterize the flow states as we did in the case of the
straight channel (Section 4). For the Couette-like flows, we
distinguish two flow states by checking whether the maximum
velocity is at the moving wall or in the interior of the annulus. If
the flow is fastest on the wall, we label it a ‘‘Couette-like 1’’ flow
state; otherwise the label is ‘‘Couette-like 2’’. If the transverse
component of the velocity vr is nonnegligible, we check whether
the torque exerted by the total flow on the inner boundary
oscillates during the time interval 550t–600t. If it oscillates,
then the state is dancing, otherwise it is oscillatory. There are a
few flow states near transitions that need a longer time to
equilibrate. We also find multiple solutions for particular
values of ot and a for the oscillatory and dancing flows.
Fig. 16 shows flow transitions in the annular channel in range
of 0 r at 2.5 and 0 r _gtt 1. The transition from Couette-like
to oscillatory flow states is relatively robust, with the transition
states showing little dependence on the initial conditions.
However, comparing with the case of the straight channel,
the states observed in the transition from oscillatory to dancing
flow are more sensitive to the choice of initial conditions.

In the case of a straight channel, our numerical calculations
always yielded the Newtonian simple shear state solution as
long as the magnitude of the activity was small enough. The
situation is different for the annular channel: our numerical
calculations only yield the Newtonian Couette flow state
solution (eqn (50)) when the activity vanishes. As emphasized
earlier, any nonzero value of activity leads to active force and an
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active component of the flow because the order parameter field
is nonuniform for nonzero wall rotation speed o. Green, Toner
and Vitelli examined a similar phenomena for active nematics
in which a surface of nonvanishing Gaussian curvature gener-
ates a spontaneous flow at arbitrarily low values of the activity
parameter.55 As long as ot is sufficiently small, the flow profile
varies continuously between the Couette, Couette-like 1, and
Couette-like 2 states as the activity increases (Fig. 17). Note that
the flow velocity increases with activity for a given imposed

rotation rate, as expected because extensile activity reduces the
effective shear viscosity.43 Also, the change from the Newtonian
Couette flow profile is small as long as the activity is modest,
a t 0.9 (Fig. 17), which we examine in the ESI.†

The oscillatory flow in an annular channel (Fig. 15e and f;
movies are in ESI†) is similar to the oscillatory flow in a straight
channel. The flow and order parameter patterns are steady in a
frame that rotates at constant speed, and the average volu-
metric flow rate

Ð
drvy=W

� �
is constant in time. Since we solve

the equations in the annular domain without applying periodic

Fig. 15 Examples of spontaneous flow states of an active gel in an annular channel. In these examples, the inner boundary rotates with dimensionless
speed ot = 0.2. The Couette-like 1 (panels (a) and (b)) and 2 (panels (c) and (d)) states are steady. In the oscillatory flow state (panels (e) and (f)), the flow
pattern and order parameter configuration rotate at a steady rate. The dancing flow state (panels (g) and (h)) is unsteady. Videos of the oscillatory and the
dancing flow states can be found in the ESI,† Sections S2.1 and S2.2 respectively. In the velocity field plots ((a), (c), (e), and (g)), colors denote flow speed
and arrows denote flow direction. In the order parameter field plots ((b), (d), (f) and (h))), colors denote the scalar order parameter and lines denote the
directors.

Fig. 16 Flow states for extensile fluids in an annular channel with c = 0.1
and R/W = 1. The Couette states at o = 0 are states of zero flow and zero
order.

Fig. 17 Velocity profiles in dimensionless units for the extensile case of
Couette (a = 0), Couette-like 1 (a = 0.3, 0.6 and 0.9) and Couette-like 2 (a =
1.2 and 1.5) flow states, for ot = 0.2.
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boundary conditions, and still see steady rotation of the flow
pattern and order parameter pattern, we can be confident that
the constant wave speed we saw in the case of the oscillatory
flows in the straight channel is not an artifact of the periodic
boundary condition.

In the dancing state, the flow and order parameter patterns
periodically change in time, similar to the case of the straight
channel. Unlike the straight channel, the volumetric flow rate
of the dancing flow state (Fig. 15g and h; movies are in ESI†) in
the annular case is not constant in time. This time dependence
arises because the difference in curvatures of the inner and
outer boundaries of the annulus breaks the reflection symmetry
of the boundaries of the straight channel that relates the
dancing flow at the top wall to the dancing flow at the bottom
wall. Also, as in the straight channel, we observe moving pairs
of +1/2 defect-like patterns with an exchange of partners in the
annular dancing flow. In the straight channel, the defect pairs
are mirror images of each other (see Fig. 10b), but in the
annulus, the different curvatures of the two boundaries spoils
this symmetry. Joshi et al. also found similar oscillatory and
dancing flow states for active nematics by changing the curva-
tures of the annular channel without external shear.56

Fig. 18 shows the active component of the average flow rate
(defined as before as the average flow rate of the total flow
minus the average flow rate of the a = 0 case) for the various
flow states we studied in the annular channel. For the case of
zero applied shear (ot = 0), there are positive and negative
spontaneous flows when the activity exceeds a critical value.
But for ota 0, the flow rate has no bifurcation: it continuously
increases from zero as the activity increases from zero. Another
striking difference with the straight channel is that for nonzero
rotation rates of the inner curved wall, we only observe positive
spontaneous flows (Fig. 18), even when we attempt to reverse

the direction of flow by altering the initial conditions of the
directors. This rectification arises because in the curved channel,
the non-uniform alignment of the directors arising from the applied
shear leads to spontaneous flow with the same rotation sense as the
rotating wall. Furthermore, since the wave translation direction
corresponds to the direction of the spontaneous component of
the flow, the oscillatory flow patterns all translate in the +y direction
when ot a 0. Another difference from the straight channel case is
that the active contribution to the average flow rate does not
disappear in the annular channel for larger shear rate.

Fig. 19 shows the torque exerted by the active fluid on the
inner boundary, normalized by the wall torque in the passive
case, for the Couette-like flows. The relation of the wall torque
to the activity is very similar to the relation of the wall stress to
the activity in the straight channel case, i.e. the normalized wall
torque decreases with increasing activity for the Couette-like 1
flow state.

The change in slope in the active-flow rate vs. a curve in Fig. 18
indicates the transition from the Couette-like flow state to the
oscillatory flow state. As noted earlier, sometimes our numerical
approach finds oscillatory patterns of different wavelengths for the
same values of the parameters, which would likely result in values
of the volumetric flow rate different from those shown in Fig. 18.

We compare the wall torque and wall stress of annular and
straight channels in Fig. 20 to show the effect of curvature on
the wall stress as a function of external shear in the range of
0 o ar 1. The normalized wall torque and wall stress are close
to each other for small external shear rate and both increase
with external shear rate, but the increase is larger in the
annular channel, i.e. normalized wall torque is closer in value
to the passive case. Thus, the curvature of the channel reduces
the effect of activity on the wall with increasing external shear.

5.2 Contractile fluids

We studied contractile active fluids in a two-dimensional
annulus with the parameters in the range �16 r a o 0 and
0 o ot r 2.4. When a o 0, we only found Couette-like states

Fig. 18 Active component of the volumetric flow rate for extensile fluids
in dimensionless units of vyt/W as a function of activity in the annular
channel. The symbols denote the flow states and the colors denote the
externally imposed dimensionless shear rate. For the dancing flows, the
square symbols show the average value of the oscillation of the volumetric
flow rate.

Fig. 19 The torque imposed by the active flow of an extensile fluid on the
rotating disk normalized by the passive torque for the Couette-like flows.
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with no radial component of the flow. Since contractile activity
increases the effective viscosity,43 the effect of the activity is
always to reduce the flow relative to Newtonian Couette flow
(Fig. 21). As in the extensile case, the direction that the active
component of the flow travels around the annulus is indepen-
dent of the initial conditions, but unlike the extensile case, the
active component of flow is negative (against the direction
imposed by the externally applied shear). The magnitude of
the negative flow is always less than the magnitude of the
externally imposed Couette flow; therefore, the total flow never
reverses. In this sense, the contractile annular flows are
Couette-like 1 states rather than Couette-like 2 states. In accord
with the larger effective viscosity of contractile active fluids
relative to passive fluids, the total torque on the inner boundary
is always greater than the hydrodynamic torque in Couette flow
(ESI,† Fig. S5).

6 Summary

We investigated the stability and flow states of the active
Couette flows confined in a channel subject to a external shear.
An externally imposed shear flow can stabilize an extensile fluid
that would be unstable to spontaneous flow when there is no
external shear flow, and destabilize a contractile fluid that would
be stable against spontaneous flow when there is no external
shear flow. In accordance with previous simulations13,29 carried
out in the absence of external shear, we find three kinds of
nonlinear flow states in the range of parameters we study:
unidirectional flows, oscillatory flows, and dancing flows for
extensile fluids. The unidirectional flow observed in the straight
channel can have a spontaneous active component which is
either positive—in the same direction as the moving wall—or
negative—in the opposite direction of the moving wall. The
oscillatory flow states also have two possible directions for the
spontaneous active component when the externally imposed

shear rate is small. For greater imposed shear rates, the sponta-
neous flow direction will be the same as the moving wall. For
contractile gels, we only observe unidirectional flow states in the
range of parameters that we studied. These unidirectional flows
can have positive or negative spontaneous active components. In
the analysis of the wall stress caused by the active flow on the
moving boundary, the extensile flow helps the motion of the
moving boundary, while the contractile flow resists the motion.
Moreover, the external shear flow can weaken this effect of
activity on the motion.

Our analysis of the curvature shows there are three main
differences between the flows states for the straight channel
and the annular channel. First, in the annular channel, there is
no critical activity for the system to be stable against the
spontaneous flow given a nonzero external shear. Second, we
only observe one direction of spontaneous flow: positive for
extensile gels, but negative for contractile gels. Last, the average
volumetric flow rate of the annular case oscillates with time for
the dancing flow state, while it is steady in the straight channel.
Also, we find increasing the curvature of the streamlines
weakens the dependence of the wall stress on activity.

Our work suggests several directions for future study. An
obvious extension is to work in three dimensions, allowing both
the directors and velocity vectors to point out of the plane and
vary in both directions across a channel. Also, it would be
natural to study the effect of aligning flows induced by a
pressure gradient rather than a moving wall, since Poiseuille-
like flow may be easier to study experimentally. Several groups
have studied Poiseuille-like flow in the nematic phase of active
fluids.57–59
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Fig. 20 Comparison of the normalized torque on the inner boundary of
the annulus as a function of the dimensionless frequency of rotation of the
inner disk and the normalized wall stress on the bottom wall of the straight
channel as a function of the dimensionless shear rate.

Fig. 21 Velocity profiles in dimensionless units for Couette flow (a = 0)
and the contractile Couette-like 1 (a o 0) flows states, for ot = 2.4.
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R. E. Goldstein, H. Löwen and J. M. Yeomans, Proc. Natl.
Acad. Sci. U. S. A., 2012, 109, 14308–14313.

15 C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein
and J. O. Kessler, Phys. Rev. Lett., 2004, 93, 098103.

16 J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär
and R. E. Goldstein, Phys. Rev. Lett., 2013, 110, 228102.

17 R. A. Simha and S. Ramaswamy, Phys. Rev. Lett., 2002, 89,
058101.
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