About Us
Our lab combines experimental and theoretical techniques to study human brain dynamics. Our mission is to develop biophysically principled models of neural circuits that bridge electrophysiological measures of brain function to the underlying cellular and network level dynamics. We aim to translate an understanding of the network mechanism underlying measured brain signals into strategies to improve disrupt function.
We collect magneto- and electro-encephalography (MEG/EEG) non-invasively in human to study fine time scale signatures of information processing, and we have turned our modeling of E/MEG into a user-friendly software tool, Human Neocortical Neurosolver. We also collaborate closely with animal electrophysiologists and clinicians to develop data-constrained models that are translationally relevant. We apply this integrated approach to study healthy brain functions such as attention and perception. A current focus of our research is to understand the mechanisms and functions of commonly measured human brain rhythms and to develop rationally-designed electrical brain stimulation paradigms (TMS, tDCS, tACS) to improve brain functions.