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Introduction
• Quantum Chromodynamics: Theory of strong interactions 

• Describes the forces that bind together quarks to form hadrons such as the proton 

• Non-linear and strongly coupled quantum field theory 

• Proton is a relativistic many body system (partons) 

• It’s structure is described in terms of parton densities 

• Proton structure can be in principle accessed with theoretical computations 

• It requires numerical methods: Lattice QCD 

• Proton structure is “universal” 

• Once determined it can be used to predict experimental results 

• It is currently determined experimentally and used as input to understand other 
experiments 

• Example: search for new physics at LHC
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Figure 2.4: The PDF4LHC15 NLO PDFs at a low scale µ2 = Q2 = 4 GeV2 (left plot) and at µ2 = Q2 =
102 GeV2 (right plot) as a function of x. We show the uv and dv valence combinations, the ū, d̄, s and c sea
quark PDFs, and the gluon (note that the latter is divided by a factor 10).

are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z
1

0

dx�T3(x, µ
2) = h1i�u+ � h1i�d+ = 1.2723± 0.0023 , (2.53)

a8 =

Z
1

0

dx�T8(x, µ
2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [205] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [206].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)
with charged lepton beams and nuclear targets. As photon scattering does not distinguish quarks and
antiquarks, inclusive DIS data constrain only the total quark combinations �q+, while SIDIS data
with identified pions or kaons in the final state constrain individual quark and antiquark flavors. In
principle, both DIS and SIDIS are also sensitive to the gluon distribution �g, as it directly enters the
factorized expressions of the corresponding structure functions beyond LO, and indirectly via DGLAP
evolution. In practice, the constraining power of DIS and SIDIS data on �g is rather weak because the
Q2 range covered by the data is limited, especially if one restricts to the kinematic region not a↵ected
by power-suppressed corrections and very precise data from JLab are therefore excluded.

Note that, in the case of SIDIS, a reliable knowledge of fragmentation functions (FFs) is required
in the factorized expressions of the corresponding observables. Since FFs are nonperturbative objects
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Figure 2.6: Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [16].
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [27].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [16]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [11], though much more uncertain [234]. Even within this uncertainty, polarized

30

Fits to experimental data

Determination of Parton distribution functions from Experiment



       x  
4−10 3−10 2−10 1−10

) [
re

f] 
2

) /
 u

 ( 
x,

 Q
2

u 
( x

, Q

0.9

0.95

1

1.05

1.1

1.15 NNPDF3.1
CT14
MMHT2014

NNLO, Q = 100 GeV

       x  
4−10 3−10 2−10 1−10

) [
re

f] 
2

 ( 
x,

 Q
d

) /
 

2
 ( 

x,
 Q

d

0.9

0.95

1

1.05

1.1

1.15 NNPDF3.1
CT14
MMHT2014

NNLO, Q = 100 GeV

       x  
4−10 3−10 2−10 1−10

) [
re

f] 
2

) /
 s

 ( 
x,

 Q
2

s 
( x

, Q

0.7

0.8

0.9

1

1.1

1.2
NNPDF3.1
CT14
MMHT2014

NNLO, Q = 100 GeV

       x  
4−10 3−10 2−10 1−10

) [
re

f] 
2

) /
 g

 ( 
x,

 Q
2

g 
( x

, Q

0.9

0.95

1

1.05

1.1

1.15 NNPDF3.1
CT14
MMHT2014

NNLO, Q = 100 GeV

Figure 2.3: Comparison between the CT14, MMHT2014 and NNPDF3.1 NNLO PDF sets at Q = 100 GeV,
normalized to the central value of the latter. From top to bottom and from left to right we show the u, d̄ and
s quark PDFs as well as the gluon. The error bands indicate the 1-� PDF uncertainties associated with each
set. These PDF comparison plots have been produced using the APFEL-Web online plotting interface [199].

2.3.3 Polarized PDFs

Theoretical features. The dependence on the momentum fraction x, fixed by nonperturbative QCD
dynamics, should satisfy some theoretical constraints. First, PDFs must lead to positive cross-sections.
At leading order (LO), this implies that polarized PDFs are bounded by their unpolarized counterparts6,
|�f(x, µ2)|  f(x, µ2) [202]. Second, PDFs must be integrable: this corresponds to the assumption
that the nucleon matrix element of the axial current for each flavor is finite. Third, SU(2) and SU(3)
flavor symmetry, if assumed to be exact, imply that the zeroth moments of the nonsinglet C-even PDF
combinations, �T3 = �u+

��d+ and �T8 = �u+ +�d+ � 2�s+ (where �q+ = �q+�q̄, q = u, d, s),
are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z
1

0

dx�T3(x, µ
2) = h1i�u+ � h1i�d+ = 1.2723± 0.0023 , (2.53)

a8 =

Z
1

0

dx�T8(x, µ
2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [203] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [204].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)

6Beyond LO, more complicated relations hold [202]; however they have little e↵ect on PDFs.
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GPDs: Definition
5

We denote bare light-front PDFs by f (0)(⇠). Light-front PDFs are frequently represented by

f (0)
j/N (⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x± = (t ± z)/
p
2, and define ⇠ = k+/P+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q2 = �q2

and hadron momentum P by x = Q2/(2P · q). The bare PDF is defined as [3]

f (0)(⇠) =

Z
1

�1

d!�

4⇡
e�i⇠P+!�

⌧
P

����T  (0,!
�,0T)W (!�, 0)�+

�a

2
 (0)

����P
�

C

. (1)

Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�, 0) is the Wilson line,

W (!�, 0) = P exp

"
�ig0

Z !�

0
dy�A+

↵ (0, y
�,0T)T↵

#
, (2)

with P the path-ordering operator, g0 the QCD bare coupling, and Aµ = Aµ
↵T↵ the SU(3) gauge

potential with generator T↵ (summation over color index ↵ is implicit). The target state, |P i, is a

spin-averaged, exact momentum eigenstate with relativistic normalization

hP 0
|P i = (2⇡)32P+�

�
P+

� P 0+
�
�(2)

�
PT �P0

T

�
. (3)

We define the moments of bare PDFs as

a(n)0 =

Z 1

0
d⇠ ⇠n�1

h
f (0)(⇠) + (�1)nf

(0)
(⇠)

i
=

Z 1

�1
d⇠ ⇠n�1f(⇠), (4)

where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f (0)(�⇠) = �f
(0)

(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O

{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Here the bare twist-two operators are

O
{µ1···µn}

0 = in�1 (0)�{µ1Dµ2 · · ·Dµn}
�a

2
 (0)� traces . (7)

In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.

In general, renormalized light-front PDFs are written in terms of a kernel, Z(⇣/⇠, µ), as

f(⇠, µ) =

Z 1

x

d⇣

⇣
Z

✓
⇣

⇠
, µ

◆
f (0)(⇣), (8)

where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are

a(n)(µ) =

Z 1

0
d⇠ ⇠n�1

⇥
f(⇠, µ) + (�1)nf(⇠, µ)

⇤
=

Z 1

�1
d⇠ ⇠n�1f(⇠, µ), (9)

which can be related to matrix elements of renormalized twist-two operators, O
{⌫1...⌫n}(µ) =

ZO(µ)O
{⌫1...⌫n}
0 , via

D
P |O

{⌫1...⌫n}(µ)|P
E
= 2a(n)(µ) (P ⌫1 · · ·P ⌫n � traces) . (10)

This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].

ū(P 0)

✓
�
+
H(x, ⇠, t) + i

�
+k�k

2m
E(x, ⇠, t)

◆
=

Z 1

�1

d!�

4⇡
e
�i⇠P+!�

⌧
P

0
����T  (0,!

�
,0T)W (!�

, 0)�+
�
a

2
 (0)

����P
�

C

.

Moments of GPD and quark angular momentum of the nucleon Munehisa Ohtani

1. Introduction

The internal structure of nucleons has attracted much attention in the contexts of the nucleon
form factors, proton spin and spin/charge asymmetry in deeply virtual Compton scattering and
so on. For a systematic study of the nucleon internal structure, generalized parton distributions
(GPDs) are introduced through the off-forward matrix elements of quark-bilinear operators:

∫ dη
4π

eiηx⟨P′|q̄(−ηn
2 )γµU q(ηn2 )|P⟩ = N̄(P′)

(

γµH(x,ξ , t)+ iσ
µν∆ν
2M E(x,ξ , t)

)

N(P), (1.1)

with a light cone vector n and the momentum transfer ∆= P′ −P as functions of the quark momen-
tum fraction x, the skewedness ξ = −n ·∆/2 and the virtuality t = ∆2. The axial counterparts are
denoted by H̃ and Ẽ. Since the GPD is defined with the finite momentum transfer in contrast to the
conventional parton distribution functions, partons bring us the informations on hadron structure in
the transverse space.

In this contribution, we report on the first moments of GPD, so called generalized form factors,
for nucleon, as a function of the virtuality calculated on the lattice with unquenched configurations
of QCDSF/UKQCD collaboration.

In the forward limit these generalized form factors provide the total angular momentum of
quark in the nucleon through Ji’s sum rule [1],

Jq =
1
2

∫ 1

−1
dxx(H(x,ξ ,0)+E(x,ξ ,0)) ≡

1
2
(A20(t = 0)+B20(t = 0)). (1.2)

Combined with the quark spin contributions to the nucleon obtained as the forward value of the
axial form factor,

sq =
1
2

∫ 1

−1
dxH̃(x,ξ ,0) ≡

1
2
Ã10(t = 0), (1.3)

we compute the orbital angular momentum of quarks as Lq = Jq− sq. Using the results of chiral
perturbation theory (χPT) for chiral extrapolation to the physical point, we discuss the angular
momentum carried by quark in the nucleon.

2. Generalized form factors on the lattice

The Mellin moments of the GPDs are known to be expressed by polynomials in terms of ξ
[2],

∫ 1

−1
dxxn−1

[

H(x,ξ , t)
E(x,ξ , t)

]

=
[(n−1)/2]

∑
k=0

(2ξ )2k
[

An,2k(t)
Bn,2k(t)

]

±δn,even(2ξ )nCn(t). (2.1)

The generalized form factors An,2k,Bn,2k andCn are defined from the coefficients of this expansion.
Since the integration by xmakes the quark operator local, the (n−1)-th moments can be calculated
[3] on the lattice through the matrix element of ⟨P′|q̄γ{µ1Dµ2 · · ·Dµn}q|P⟩ by taking a ratio of the
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1. Introduction

The internal structure of nucleons has attracted much attention in the contexts of the nucleon
form factors, proton spin and spin/charge asymmetry in deeply virtual Compton scattering and
so on. For a systematic study of the nucleon internal structure, generalized parton distributions
(GPDs) are introduced through the off-forward matrix elements of quark-bilinear operators:
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4π
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2 )γµU q(ηn2 )|P⟩ = N̄(P′)

(

γµH(x,ξ , t)+ iσ
µν∆ν
2M E(x,ξ , t)

)

N(P), (1.1)

with a light cone vector n and the momentum transfer ∆= P′ −P as functions of the quark momen-
tum fraction x, the skewedness ξ = −n ·∆/2 and the virtuality t = ∆2. The axial counterparts are
denoted by H̃ and Ẽ. Since the GPD is defined with the finite momentum transfer in contrast to the
conventional parton distribution functions, partons bring us the informations on hadron structure in
the transverse space.

In this contribution, we report on the first moments of GPD, so called generalized form factors,
for nucleon, as a function of the virtuality calculated on the lattice with unquenched configurations
of QCDSF/UKQCD collaboration.

In the forward limit these generalized form factors provide the total angular momentum of
quark in the nucleon through Ji’s sum rule [1],

Jq =
1
2

∫ 1

−1
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1
2
(A20(t = 0)+B20(t = 0)). (1.2)

Combined with the quark spin contributions to the nucleon obtained as the forward value of the
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2
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−1
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1
2
Ã10(t = 0), (1.3)

we compute the orbital angular momentum of quarks as Lq = Jq− sq. Using the results of chiral
perturbation theory (χPT) for chiral extrapolation to the physical point, we discuss the angular
momentum carried by quark in the nucleon.
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PDFs: Definition

5

We denote bare light-front PDFs by f (0)(⇠). Light-front PDFs are frequently represented by

f (0)
j/N (⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x± = (t ± z)/
p
2, and define ⇠ = k+/P+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q2 = �q2

and hadron momentum P by x = Q2/(2P · q). The bare PDF is defined as [3]

f (0)(⇠) =

Z
1

�1

d!�

4⇡
e�i⇠P+!�

⌧
P

����T  (0,!
�,0T)W (!�, 0)�+

�a

2
 (0)

����P
�

C

. (1)

Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�, 0) is the Wilson line,

W (!�, 0) = P exp

"
�ig0

Z !�

0
dy�A+

↵ (0, y
�,0T)T↵

#
, (2)

with P the path-ordering operator, g0 the QCD bare coupling, and Aµ = Aµ
↵T↵ the SU(3) gauge

potential with generator T↵ (summation over color index ↵ is implicit). The target state, |P i, is a

spin-averaged, exact momentum eigenstate with relativistic normalization

hP 0
|P i = (2⇡)32P+�

�
P+

� P 0+
�
�(2)

�
PT �P0

T

�
. (3)

We define the moments of bare PDFs as

a(n)0 =

Z 1

0
d⇠ ⇠n�1

h
f (0)(⇠) + (�1)nf

(0)
(⇠)

i
=

Z 1

�1
d⇠ ⇠n�1f(⇠), (4)

where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f (0)(�⇠) = �f
(0)

(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O

{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Local matrix elements:
6

Here the bare twist-two operators are

O
{µ1···µn}

0 = in�1 (0)�{µ1Dµ2 · · ·Dµn}
�a

2
 (0)� traces . (7)

In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.

In general, renormalized light-front PDFs are written in terms of a kernel, Z(⇣/⇠, µ), as

f(⇠, µ) =

Z 1

x

d⇣

⇣
Z

✓
⇣

⇠
, µ

◆
f (0)(⇣), (8)

where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are

a(n)(µ) =

Z 1

0
d⇠ ⇠n�1

⇥
f(⇠, µ) + (�1)nf(⇠, µ)

⇤
=

Z 1

�1
d⇠ ⇠n�1f(⇠, µ), (9)

which can be related to matrix elements of renormalized twist-two operators, O
{⌫1...⌫n}(µ) =

ZO(µ)O
{⌫1...⌫n}
0 , via

D
P |O

{⌫1...⌫n}(µ)|P
E
= 2a(n)(µ) (P ⌫1 · · ·P ⌫n � traces) . (10)

This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

Unpolarized PDFs proton:

z 0

p p
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Lorentz decomposition:

Collinear PDFs: Choose 
z = (0, z�, 0)

p = (p+, 0, 0)

�+
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tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
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dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
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Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows
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Z
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d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1
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dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
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), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2
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Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form
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M+(z, p) = 2p+Mp(�p+z�, 0)

Mp(�p+z�, 0) =

Z 1

�1
dx f(x) e�ixp+z�

Definition of PDF: 

A. Radyushkin Phys.Lett. B767 (2017)



Mp(�pz,�z2)
is a Lorentz invariant therefore  
computable in any frame

⌫ = �zp

It can be shown that the  domain of x is [-1, 1] 
A. Radyushkin Phys.Lett. B767 (2017)

ν is called Ioffe time B. L. Ioffe, Phys. Lett. 30B, 123 (1969)

Mp(⌫,�z2) ⌘
Z 1

�1
dxP(x,�z2)eix⌫

One can obtain PDFs in the limit of  z2 ! 0

This limit is singular but using OPE, PDFs are defined 

P(x, 0) = f(x)



V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

Mp(x,�z2) =

Z 1

0
du C(u, z2µ2,↵s(µ))Q(u⌫, µ) +O(z2⇤2

qcd)

Q(⌫, µ) is called the Ioffe time PDF

Q(⌫, µ) =

Z 1

�1
dx e�ix⌫f(x, µ)

Rossi & Testa argue that in lattice computations 1/a divergences may hide in 
the polynomial terms.

Rossi & Testa: PhysRev D 96, 014507 (2017), arXiv:1806.00808 



Lattice QCD calculation:

Choose 
z = (0, 0, 0, z3)

�0

Chosing       was also suggested also by M. Constantinou at GHP2017 based  
on an operator mixing argument for the renormalized matrix element

Alexandrou et al arXiv:1706.00265

A. Radyushkin Phys.Lett. B767 (2017)

p = (p0, 0, 0, p3)

Mp(⌫, z
2
3) =

1

2p0
M0(z3, p3)

Obtaining only the relevant 

�0

On shell  equal time matrix element  
computable in Euclidean space 

Briceno et al arXiv:1703.06072
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p = (E, 0?, P ) frame, one can introduce the quasi-PDF
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Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2
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It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1
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dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2
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) that is related to
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Z 1

�1
dy Q(y, P ) eiyPz3 . (14)
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It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2
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) may be represented by

a product
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of the collinear parton distribution f(x) and a
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Ansatz corresponds to the factorization assumption
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soft(⌫, z2

3) = M
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Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form
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http://arxiv.org/abs/arXiv:1706.00265


Q(y, p3) =
1

2⇡

Z 1

�1
d⌫Mp(⌫, ⌫

2/p23)e
�iy⌫

P(x,�z2) =
1

2⇡

Z 1

�1
d⌫Mp(⌫,�z2)e�ix⌫

 v

z23

p3 ! 1

�z2{

Alternative approach to the light-cone:

�z2 ! 0 PDFs can be recovered

z3 = ⌫/p3Large values of are problematic

Ji’s quasi-PDF



Lattice QCD requirements

a ⇠ 0.05fm ! Pmax = 20⇤

a ⇠ 0.1fm ! Pmax = 10⇤ ⇤ ⇠ 300MeV

For practical calculations large momentum is needed 
*Higher twist effect suppression (qpdfs) 
*Wide coverage of Ioffe time ν 

P= 3 GeV is already demanding due to statistical noise 
                 achievable with easily accessible lattice spacings

P= 6 GeV exponentially harder 
                 requires current state of the art lattice spacing

aPmax =
2⇡

4
⇠ O(1)



Statistical noise

C2p(P, t) = hON (P, t)O†
N (P, 0)i ⇠ Ze

�E(P )t

var [C2p(P, t)] = hON (P, t)ON (P, t)†ON (P, 0)O†
N (P, 0)i ⇠ Z3⇡e

�3m⇡t

Nucleon with momentum P two-point function: 

Variance of nucleon two-point function: 

Variance is independent of the momentum

Statistical accuracy drops exponentially with the increasing 
momentum limiting the maximum achievable momentum.

var [C2p(P, t)]
1/2

Cap(P, t)
⇠ Z

Z 3⇡
e�[E(P )�3/2m⇡ ]t



Renormalization
M0

ren(z, p, µ) = lim
a!0

ZO(z, µ, a)M0(z, P, a)

Dotsenko Nucl.Phys. B169 (1980) 527                       Chen et al. Nucl.Phys. B915 (2017)  
Ishikawa et al. arXiv:1707.03107, arXiv:1609.02018  Radyushkin arXiv:1710.08813

One loop diagrams

Linear divergence Logarithmic divergence

http://arxiv.org/abs/arXiv:1609.02018
http://arxiv.org/abs/arXiv:1710.08813


One loop calculation of the UV divergences results in  

M0(z, P, a) ⇠ e�m|z|/a
✓
a2

z2

◆2�end

after re-summation of one loop result resulting exponentiation 

• J.G.M.Gatheral,Phys.Lett.133B,90(1983) 

•  J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984), 

• G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987). 

Multiplicatively renormalizable



Consider the ratio

UV divergences will cancel in this ratio resulting a 
renormalization group invariant (RGI) function

Mp(0, 0) = 1 Isovector matrix element

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

The lattice regulator can now be removed

Mcont(⌫, z23) Universal independent of the lattice



Polynomial corrections to the Ioffe time PDF may be suppressed 

A. Radyushkin Phys.Lett. B767 (2017)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005 

M(⌫, z2) =

Z 1

0
d↵C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +

1X

k=1

Bk(⌫)(z
2)k

Rossi & Testa: PhysRev D 96, 014507 (2017), arXiv:1806.00808 

Rossi & Testa argument may not apply here  if we use

Mcont(⌫, z23)

Bk(⌫)(z
2)k ⇠ O(⇤2k

qcd)

http://dx.doi.org/10.1007/JHEP04(2014)005


M. Anselmino et al. 10.1007/JHEP04(2014)005 Approximate TMD factorization

F(x, k2?) the primordial TMD

Mp(⌫,�z2) ⌘
Z 1

�1
dxP(x,�z2)eix⌫

Taking z = (0, z�, z?) we can identify 

A. Radyushkin Phys.Lett. B767 (2017)

Assuming F(x, k2?) = f(x)g(k2?)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)

we obtain P(x, z2?) = f(x)g̃(z2?)

Implying that Mp(⌫,�z2) = Q(⌫,�z2)Mp(0,�z2)

Mp(0,�z2) = g̃(�z2)where 

P(x, z2?) =

Z
d2k? F(x, k2?)e

ik?z?

Possible mechanism for polynomial correction suppression

http://dx.doi.org/10.1007/JHEP04(2014)005
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FIG. 1. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/⇤ = 1, 10, 50.

one gets the following model for the quasi-PDF

QG(y, P ) =
P

⇤
p

⇡

Z 1

�1
dx f(x) e�(x�y)2P 2/⇤2

. (18)

Choosing for f(x) a simple PDF resembling the nucleon
valence densities f(x) = 4(1 � x)3✓(0  x  1), one gets
the curves shown in Fig. 1. For large P , it clearly tends
to the f(y) PDF form. In particular, using a momentum
P ⇠ 10⇤ one gets a quasi-PDF that is rather close to
the P ! 1 limiting shape. Still, since ⇤ ⇠ hk?i, assum-
ing the folklore value hk?i ⇠ 300 MeV one translates the
P ⇠ 10⇤ estimate into P ⇠ 3 GeV, which is uncomfort-
ably large. Thus, a natural question is how to improve
the convergence.

D. Pseudo-PDFs

The involved structure of a quasi-PDF Q(y, P ) can
be attributed to the fact that it is given by the Fourier
transform of the function M(⌫, ⌫2/P 2) with respect to ⌫,
where ⌫ appears both in the first and second argument of
the Ioffe-time distribution. Due to this complication, to
get close to the PDF limit, one should take P -values that
are sufficiently large to neglect the ⌫-dependence coming
from the second argument.

Another way [11] is to try to eliminate the
z2
3-dependence induced by M(⌫, z2

3). The main idea is
based on the observation that if one takes the ⌫-Fourier
transform of the modified function M(⌫, z2

3)/D(z2
3), the

z3 ! 0 limit will give the same PDF as the original Ioffe-
time distribution, provided that D(z2

3) is a function of
z2
3 only (but not of ⌫) equal to 1 for z2

3 = 0. Thus, one
should find a function D(z2

3) whose z2
3-dependence would

compensate, as much as possible, the z2
3-dependence of

M(⌫, z2
3). Then one may build a modified quasi-PDF by

taking the Fourier transform of M(⌫, ⌫2/P 2)/D(⌫2/P 2).
The resulting function will approach the same PDF limit,
but at much smaller P than the quasi-PDF built from
M(⌫, ⌫2/P 2).

The most lucky situation is when M(⌫, z2
3) factorizes,

i.e., M(⌫, z2
3) = M(⌫, 0)M(0, z2

3). Then taking D(z2
3) =

M(0, z2
3), i.e. considering the reduced function

M(⌫, z2
3) ⌘

M(⌫, z2
3)

M(0, z2
3)

(19)

one concludes that it is equal to M(⌫, 0), and the goal of
obtaining the z3 ! 0 limit becomes trivial.

As we mentioned already, the soft part of M(⌫, z2
3) fac-

torizes if the TMD F(x, k2
?

) factorizes. That this hap-
pens for the soft part of the TMD, is a standard (and
apparently well-verified) assumption of the TMD prac-
titioners. So, there are good chances that this part of
the z2

3-dependence of M(⌫, z2
3) will be canceled by the

rest-frame function M(0, z2
3) (at least, to a large extent).

On the lattice, there is another (and troublesome, see,
e.g., Ref. [15]) source of z3-dependence: the Z(z2

3) fac-
tor generated by the renormalization of the gauge link
Ê(0, z3; A). Fortunately, this problematic factor Z(z2

3)
does not depend on ⌫ and is the same for the numerator
and denominator of the ratio M(⌫, z2

3).
Thus, if one observes that the ratio M(⌫, z2

3) does not
have z3-dependence, one may conclude that M(⌫, z2

3) fac-
torizes. In fact, such a factorization has been already
observed several years ago in the pioneering study [16] of
the transverse momentum distributions in lattice QCD.

Still, there is an unavoidable source of factorization
breaking. When z3 is small, M(⌫, z2

3) has logarithmic
ln z2

3 singularities generating the perturbative evolution
of PDFs. As we discussed, z3 is analogous then to
the renormalization parameter µ of the scale-dependent
PDFs f(x, µ2) within the standard OPE approach. More
specifically, for small values of z3, the pseudo-PDF
P(x, z2

3) satisfies a leading-order evolution equation with
respect to 1/z3 that is identical with the evolution equa-
tion for f(x, µ2) with respect to µ. An evolution equation
[13] for the Ioffe-time distribution M(⌫, z2

3) can also be
written namely,

d

d ln z2
3

M(⌫, z2
3) = �

↵s

2⇡
CF

Z 1

0
du B(u)M(u⌫, z2

3),

(20)

where CF = 4/3, and the leading-order evolution kernel
B(u) for the non-singlet quark case is given [13] by

B(u) =


1 + u2

1 � u

�

+

, (21)

where [. . .]+ denotes the conventional “plus” prescription,
i.e.

Z 1

0
du


1 + u2

1 � u

�

+

M(u⌫)

=

Z 1

0
du

1 + u2

1 � u
[M(u⌫) � M(⌫)]. (22)

DGLAP kernel in position space
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop  

µ2 d

dµ2
Q(⌫, µ2)=� 2

3

↵s

2⇡

Z 1

0
duB(u)Q(u⌫, µ2)

Q(⌫, µ02)=Q(⌫, µ2) � 2

3

↵s

2⇡
ln(µ02/µ2)

Z 1

0
duB(u)Q(u⌫, µ2)



M(⌫, z2) =

Z 1

0
d↵C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +

1X

k=1

Bk(⌫)(z
2)k

Matching to MS computed at 1-loop

Radyushkin 1801.02427 
Zhang et al. arXiv 1801.03032
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Numerical Tests
• Quenched approximation β=6.0 

• Need series of small z3 

• Need a range of momenta to scan ν

• Goals: 

•  Check polynomial corrections 

• Understand the systematics of the approach

323 ⇥ 64 m⇡ ⇠ 600MeV

Μελτέμι



M(⌫, z23) = lim
t!1

Me↵(z3P, z23 ; t)

Me↵(z3P, z23 ; t)|z3=0

⇥
Me↵(z3P, z23 ; t)

��
z3=0

Me↵(z3P, z23 ; t)|P=0

6

tion given by

CP (t) = hNP (t)NP (0)i (27)

where NP (t) is a helicity averaged, non-relativistic nu-
cleon interpolating field with momentum p. The quark
fields in Np(t) are gauge invariant gaussian smeared.
This choice of an interpolation field is known to couple
well to the nucleon ground state (see discussion in [19]).
The quark smearing width was optimized to give good
coupling to a range of momenta. The second correlator
is given by

CO
0(z)

P (t) = hNP (t)O0(z)NP (0)i (28)

where

O
0(z) =  (0)�0⌧3Ê(0, z; A) (z) , (29)

with ⌧3 being the flavor Pauli matrix. The proton mo-
mentum and the displacement of the quark fields were
both taken along the ẑ axis (~z = z3ẑ and ~p = P ẑ). We
then define the effective matrix element as

Me↵(z3P, z2
3 ; t) =

CO
0(z)

P (t + 1)

CP (t + 1)
�

CO
0(z)

P (t)

CP (t)
. (30)

Our matrix element can then be extracted at the large
Euclidean time separation as

Mp(z3P, z2
3) = lim

t!1
Me↵(z3P, z2

3 ; t) . (31)

Here we should note that Mp(z3P, z2
3)

��
z3=0

is the local
vector (iso-vector) current, and therefore has to be one.

FIG. 4. Nucleon dispersion relation. Energies and momenta
are in lattice units. The solid line is the continuum dispersion
relation (not a fit) while the errorband is an indication of the
statistical error of the lattice nucleon energies.

t/a

t/a

FIG. 5. Typical fits used to extract the reduced matrix el-
ement. The upper panel corresponds to p = 2⇡/L · 2 and
z = 4 and the lower panel to p = 2⇡/L · 3 and z = 8, where
momentum and position are in lattice units.

However, on the lattice this is not the case due to lattice
artifacts and therefore we introduce a renormalization
constant

ZP =
1

Mp(z3P, z2
3)|z3=0

. (32)

ZP has to be independent from P however again due to
lattice artifacts or potential fitting systematics this is not
the case. For this reason we renormalize each momentum
matrix element with its own ZP factor taking this way
advantage of maximal statistical correlations as well as
the cancellation of lattice artifacts in the ratio. Therefore
our matrix element is extracted using the ratio

Mp(z3P, z2
3) = lim

t!1

Me↵(z3P, z2
3 ; t)

Me↵(z3P, z2
3 ; t)|z3=0

. (33)

In order to determine the reduced matrix element
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However, on the lattice this is not the case due to lattice
artifacts and therefore we introduce a renormalization
constant

ZP =
1

Mp(z3P, z2
3)|z3=0

. (32)

ZP has to be independent from P however again due to
lattice artifacts or potential fitting systematics this is not
the case. For this reason we renormalize each momentum
matrix element with its own ZP factor taking this way
advantage of maximal statistical correlations as well as
the cancellation of lattice artifacts in the ratio. Therefore
our matrix element is extracted using the ratio

Mp(z3P, z2
3) = lim

t!1

Me↵(z3P, z2
3 ; t)

Me↵(z3P, z2
3 ; t)|z3=0

. (33)

In order to determine the reduced matrix element

Matrix element calculation
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tion given by

CP (t) = hNP (t)NP (0)i (27)

where NP (t) is a helicity averaged, non-relativistic nu-
cleon interpolating field with momentum p. The quark
fields in Np(t) are gauge invariant gaussian smeared.
This choice of an interpolation field is known to couple
well to the nucleon ground state (see discussion in [19]).
The quark smearing width was optimized to give good
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However, on the lattice this is not the case due to lattice
artifacts and therefore we introduce a renormalization
constant

ZP =
1

Mp(z3P, z2
3)|z3=0

. (32)

ZP has to be independent from P however again due to
lattice artifacts or potential fitting systematics this is not
the case. For this reason we renormalize each momentum
matrix element with its own ZP factor taking this way
advantage of maximal statistical correlations as well as
the cancellation of lattice artifacts in the ratio. Therefore
our matrix element is extracted using the ratio

Mp(z3P, z2
3) = lim

t!1

Me↵(z3P, z2
3 ; t)

Me↵(z3P, z2
3 ; t)|z3=0

. (33)

In order to determine the reduced matrix element

C. Bouchard, et al  arXiv:1612.06963 [hep-lat]

Constructed to  remove lattice spacing errors
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Cusp indicates “linear” divergence of Wilson line
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I. INTRODUCTION

One of the issues we have to face in computations of PDFs in lattice QCD is the fact that
on the lattice we obtain position space matrix elements that require Fourier transformation
to obtain a quasi-PDF or the PDFs. Here as an example I present the case of Ioffe-time
PDFs from our recent paper [1, 2]. In this case we have the relation:

MR(⌫, z
2 = 1/µ2) ⌘

Z 1

0

dx cos(⌫x) qv(x, µ
2) . (1)

However, lattice QCD calculations provide a limited number of data points for MR(⌫, z2 =
1/µ2) and therefore the cosine transform cannot be inverted. We therefore attempt to do the
job using either fitting or more sophisticated inversion formulas such as the Backus-Gilbert
approach. In the subsequent discussion I will assume that all data are at the same scale and
thus I drop the z2 or µ2 dependence.

II. SIMPLEST INVERSION METHOD: DISCRETIZE THE INTEGRATION

In this approach we chose to sample the unknown function in a set of equally spaced points
in the interval of [0,1]. Let’s assume that we use N+1 points in a trapezoid integration rule.
In this case

�x =
1

N
, xk = k�x =

k

N
(2)

and

MR(⌫) =
1

2
cos(⌫x0) qv(x0) +

N�1X

k=1

�x cos(⌫xk) qv(xk) +
1

2
cos(⌫xN) qv(xN) . (3)

If I happen to have N+1 data points for MR(⌫), then I can solve exactly for the unknown
values of the function qv(xk). This is achieved with a simple linear system solution. Let’s
define the vector m with components

mk = MR(⌫k) (4)

where ⌫k are the values of the Ioffe time for which we have data. Also let q be the vector
with components the unknown values of qv(xk).

qk = qv(xk) (5)

Then the Eq. 3 can be written in matrix form as

m = C · q (6)

with C being the coefficient matrix with matrix elements

Ckl = �x cos(⌫kxl) =
1

N
cos(⌫kxl) for l 2 [1, N � 1]

Ckl =
1

2
�x cos(⌫kxl) =

1

2

1

N
cos(⌫kxl) for l = 0, N (7)

However, we have to be mindful that the coefficient matrix may be singular. How singular
it is depends on the data we have (values of ⌫). Therefore, we may have to resort to non-
standard inversion formulas. Here I use the Moore-Penrose pseudo inverse as implemented
in MATLAB.

2

qv(x) = q(x)� q̄(x) q(x) = u(x)� d(x)

Real Part
Isovector distribution

µ2 = (2e��E/z3)
2

Radyushkin arXiv:1710.08813

MS

http://arxiv.org/abs/arXiv:1710.08813
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q(x) = u(x)� d(x)

Imaginary Part
Isovector distribution

µ2 = (2e��E/z3)
2

Radyushkin arXiv:1710.08813

MS

q+(x) = q(x) + q̄(x)

qv(x) = q(x)� q̄(x)

MI(⌫, z
2 = 1/µ2) ⌘

Z 1

0
dx sin(⌫x) q+(x, µ

2) .

q+(x) = qv(x) + 2q̄(x)

http://arxiv.org/abs/arXiv:1710.08813


anti-quarks contribute to the imaginary part
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Points in previous plots obtained in with different z/a 
i.e. correspond to the Ioffe time PDF at different scales!

DGLAP evolution:

Apply evolution only at short distance points [~1GeV]

M(⌫, z0
2
3)=M(⌫, z23) � 2

3

↵s

⇡
ln(z03

2
/z23)B ⌦M (⌫, z23)
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μ = 1 GeV
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FIG. 15. Imaginary part of M(⌫, z23) for z3/a = 1, 2, 3, and 4.
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FIG. 16. Evolved data points for the imaginary part.

data points. Using ↵s/⇡ = 0.1, we calculate the “evolved”
data points corresponding to the function fM(⌫, z2

0). The
results are shown in Fig. 14. The evolved data points
are now very close to a universal curve.

In Fig. 15, we show the initial data points for the
imaginary part. The evolved data points constructed us-
ing the same ↵s/⇡ = 0.1 value are shown in Fig. 16.
Again, they are close to a universal curve. This analy-
sis indicates that the residual z2

3-dependence of M (⌫, z2
3)

at fixed ⌫ is compatible with the expected logarithmic
evolution at small z2

3 . Clearly this is an important fea-
ture of our calculation which needs to be further studied
as it will play an essential role in reliable extraction of
renormalized PDFs from this type of lattice calculations.

With a smaller lattice spacing, the use of perturbative
evolution may be justified in a wider region of ⌫. While
our data extend to rather large separations ⇠ 1 fm, we
find it instructive to use them as an example to illustrate
the trends generated by the perturbative evolution.
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FIG. 17. Data points for Re M (⌫, z23) with z3  10a evolved
to z0 = 2a as described in the text.

To this end, we applied the leading logarithm for-
mula (43) with z0 = 2a and ↵s/⇡ = 0.1 to our data
points with z3  6a. Assuming that evolution stops for
z3 & 6a (as indicated by our data), the data points with
7a  z3  10a were evolved to z0 using Eq. (43) with
z3 = 6a, The data points evolved in this way are shown
in Fig. 17.

Fitting the evolved points by cosine Fourier transforms
M(⌫; a, b) of the normalized N(a, b)xa(1�x)b-type func-
tions, we found that they may be described if one takes
a = 0.36(6) and b = 3.95(22). Treating z0 = 2a as the
MS scale µ = 1 GeV, one can further evolve the curve to
the standard reference scale µ2 = 4 GeV2 of the global
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FIG. 18. Curve for uv(x) � dv(x) built from the evolved
data shown in Fig. 17, and treated as corresponding to the
µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4
GeV2 of the global fits.
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data points. Using ↵s/⇡ = 0.1, we calculate the “evolved”
data points corresponding to the function fM(⌫, z2

0). The
results are shown in Fig. 14. The evolved data points
are now very close to a universal curve.

In Fig. 15, we show the initial data points for the
imaginary part. The evolved data points constructed us-
ing the same ↵s/⇡ = 0.1 value are shown in Fig. 16.
Again, they are close to a universal curve. This analy-
sis indicates that the residual z2

3-dependence of M (⌫, z2
3)

at fixed ⌫ is compatible with the expected logarithmic
evolution at small z2

3 . Clearly this is an important fea-
ture of our calculation which needs to be further studied
as it will play an essential role in reliable extraction of
renormalized PDFs from this type of lattice calculations.

With a smaller lattice spacing, the use of perturbative
evolution may be justified in a wider region of ⌫. While
our data extend to rather large separations ⇠ 1 fm, we
find it instructive to use them as an example to illustrate
the trends generated by the perturbative evolution.
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to z0 = 2a as described in the text.

To this end, we applied the leading logarithm for-
mula (43) with z0 = 2a and ↵s/⇡ = 0.1 to our data
points with z3  6a. Assuming that evolution stops for
z3 & 6a (as indicated by our data), the data points with
7a  z3  10a were evolved to z0 using Eq. (43) with
z3 = 6a, The data points evolved in this way are shown
in Fig. 17.

Fitting the evolved points by cosine Fourier transforms
M(⌫; a, b) of the normalized N(a, b)xa(1�x)b-type func-
tions, we found that they may be described if one takes
a = 0.36(6) and b = 3.95(22). Treating z0 = 2a as the
MS scale µ = 1 GeV, one can further evolve the curve to
the standard reference scale µ2 = 4 GeV2 of the global
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Summary
• Methods for obtaining parton distribution from Lattice QCD have now emerged 

• An approach based on pseudo-PDFs has been proposed 

• Renormalization is handled in a simple way 

• Light cone limit is obtained by computing real space matrix elements at short Euclidean 
distances 

• All hadron momenta are useful in obtaining PDFs 

• WM/JLab: first numerical tests are available in quenched approximation indicating the feasibility of 
the method 

• Results consistent with DGLAP evolution 

• Dynamical fermion simulations are on the way 

• Lattice spacing effect under study (quenched) 

• Probing the small x region (or large Ioffe time) remains a challenge 

• Large Ioffe time may be probed with high momentum which requires a small lattice spacing (JLab 
anisotropic gauge ensembles?) 

• Correctly applying evolution, matching and controling polynomial corrections  is essential for 
obtaining reliable results


