

15 TH WORKSHOP ON NON-PERTURBATIVE QUANTUM CHROMODYNAMICS L'Institut d'Astrophysique de Paris June 11-14, 2018
14eme arrondissement

Parton Distribution functions in Lattice QCD

Kostas Orginos

Collaborators: Joe Karpie, Anatoly Radyushkin, Savvas Zafeiropoulos

Introduction

- Quantum Chromodynamics: Theory of strong interactions
- Describes the forces that bind together quarks to form hadrons such as the proton
- Non-linear and strongly coupled quantum field theory
- Proton is a relativistic many body system (partons)
- It's structure is described in terms of parton densities
- Proton structure can be in principle accessed with theoretical computations
- It requires numerical methods: Lattice QCD
- Proton structure is "universal"
- Once determined it can be used to predict experimental results
- It is currently determined experimentally and used as input to understand other experiments
- Example: search for new physics at LHC
X. Ji, D. Muller, A. Radyushkin (1994-1997)

Determination of Parton distribution functions from Experiment

Fits to experimental data

Determination of Parton distribution functions from Experiment

Fits to experimental data

Determination of Parton distribution functions from Experiment

Parton distributions and lattice QCD calculations: a community white paper

Parton distributions and lattice QCD calculations: a community white paper

Huey-Wen Lin ${ }^{1,2}$, Emanuele R. Nocera ${ }^{3,4}$, Fred Olness ${ }^{5}$, Kostas Orginos ${ }^{6,7}$, Juan Rojo ${ }^{8,9}$ (editors), Alberto Accardi ${ }^{7,10}$, Constantia Alexandrou ${ }^{11,12}$, Alessandro Bacchetta ${ }^{13}$, Giuseppe Bozzi ${ }^{13}$, Jiunn-Wei Chen ${ }^{14}$, Sara Collins ${ }^{15}$, Amanda Cooper-Sarkar ${ }^{16}$, Martha Constantinou ${ }^{17}$, Luigi Del Debbio ${ }^{4}$, Michael Engelhardt ${ }^{18}$, Jeremy Green ${ }^{19}$, Rajan Gupta ${ }^{20}$, Lucian A. Harland-Lang ${ }^{3,21}$, Tomomi Ishikawa ${ }^{22}$, Aleksander Kusina ${ }^{24}$, Keh-Fei Liu ${ }^{25}$, Simonetta Liuti ${ }^{26,27}$, Christopher Monahan ${ }^{28}$, Pavel Nadolsky ${ }^{5}$, Jian-Wei Qiu ${ }^{7}$, Ingo Schienbein ${ }^{23}$, Gerrit Schierholz ${ }^{29}$, Robert S. Thorne ${ }^{21}$, Werner Vogelsang ${ }^{30}$, Hartmut Wittig ${ }^{31}$, C.-P. Yuan ${ }^{1}$, and James Zanotti ${ }^{32}$

GPDs: Definition

GPDs:

$$
\bar{u}\left(P^{\prime}\right)\left(\gamma^{+} H(x, \xi, t)+i \frac{\sigma^{+k} \Delta_{k}}{2 m} E(x, \xi, t)\right)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{-}}{4 \pi} e^{-i \xi P^{+} \omega^{-}}\left\langle P^{\prime}\right| T \bar{\psi}\left(0, \omega^{-}, \mathbf{0}_{\mathrm{T}}\right) W\left(\omega^{-}, 0\right) \gamma^{+} \frac{\lambda^{a}}{2} \psi(0)|P\rangle_{\mathrm{C}}
$$

$$
W\left(\omega^{-}, 0\right)=\mathcal{P} \exp \left[-i g_{0} \int_{0}^{\omega^{-}} \mathrm{d} y^{-} A_{\alpha}^{+}\left(0, y^{-}, \mathbf{0}_{\mathrm{T}}\right) T_{\alpha}\right]
$$

Moments:

$$
\begin{gathered}
\left\langle P^{\prime} \mid P\right\rangle=(2 \pi)^{3} 2 P^{+} \delta\left(P^{+}-P^{\prime+}\right) \delta^{(2)}\left(\mathbf{P}_{\mathrm{T}}-\mathbf{P}_{\mathrm{T}}^{\prime}\right) \\
\Delta=P^{\prime}-P \\
t=\Delta^{2}
\end{gathered}
$$

$$
\int_{-1}^{1} d x x^{n-1}\left[\begin{array}{c}
H(x, \xi, t) \\
E(x, \xi, t)
\end{array}\right]=\sum_{k=0}^{[(n-1) / 2]}(2 \xi)^{2 k}\left[\begin{array}{c}
A_{n, 2 k}(t) \\
B_{n, 2 k}(t)
\end{array}\right] \pm \delta_{n, \text { even }}(2 \xi)^{n} C_{n}(t)
$$

PDFs: Definition

Light-cone PDFs:

$$
\begin{gathered}
f^{(0)}(\xi)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{-}}{4 \pi} e^{-i \xi P^{+} \omega^{-}}\langle P| T \bar{\psi}\left(0, \omega^{-}, \mathbf{0}_{\mathrm{T}}\right) W\left(\omega^{-}, 0\right) \gamma^{+} \frac{\lambda^{a}}{2} \psi(0)|P\rangle_{\mathrm{C}} \\
W\left(\omega^{-}, 0\right)=\mathcal{P} \exp \left[-i g_{0} \int_{0}^{\omega^{-}} \mathrm{d} y^{-} A_{\alpha}^{+}\left(0, y^{-}, \mathbf{0}_{\mathrm{T}}\right) T_{\alpha}\right] \quad\left\langle P^{\prime} \mid P\right\rangle=(2 \pi)^{3} 2 P^{+} \delta\left(P^{+}-P^{\prime+}\right) \delta^{(2)}\left(\mathbf{P}_{\mathrm{T}}-\mathbf{P}_{\mathrm{T}}^{\prime}\right)
\end{gathered}
$$

Moments:

$$
a_{0}^{a_{0}^{(n)}}=\int_{0}^{1} d \xi \xi^{n-1}\left[f^{(0)}(\xi)+(-1)^{n} f^{(0)}(\xi)\right]=\int_{-1}^{1} d \xi \xi^{n-1} f(\xi)
$$

Local matrix elements:

$$
\langle P| \mathcal{O}_{0}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|P\rangle=2 a_{0}^{(n)}\left(P^{\mu_{1}} \cdots P^{\mu_{n}}-\text { traces }\right) \quad \mathcal{O}_{0}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=i^{n-1} \bar{\psi}(0) \gamma^{\left\{\mu_{1}\right.} D^{\mu_{2}} \cdots D^{\left.\mu_{n}\right\}} \frac{\lambda^{a}}{2} \psi(0)-\text { traces }
$$

Introduction (cont.)

- Goal: Compute hadron structure properties from QCD
- Parton distribution functions (PDFs)
- Operator product: Mellin moments are local matrix elements that can be computed in Lattice QCD
- Power divergent mixing limits us to few moments
- Few years ago X. Ji suggested an approach for obtaining PDFs from Lattice QCD
- First calculations already available
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)
C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)
- A new approach for obtaining PDFs from LQCD introduced by A. Radyushkin
- Hadronic tensor methods

K-F Liu et al Phys. Rev. Lett. 72 (1994) , Phys. Rev. D62 (2000) 074501
A. Radyushkin Phys.Lett. B767 (2017)

Detmold and Lin 2005
M. T. Hansen et al arXiv:1704.08993.

UKQCD-QCDSF-CSSM Phys. Lett. B714 (2012), arXiv:1703.01153

Pseudo-PDFs

Unpolarized PDFs proton:

$$
\begin{aligned}
\mathcal{M}^{\alpha}(z, p) & \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \\
\hat{E}(0, z ; A) & =\mathcal{P} \exp \left[-i g \int_{0}^{z} \mathrm{~d} z_{\mu}^{\prime} A_{\alpha}^{\mu}\left(z^{\prime}\right) T_{\alpha}\right]
\end{aligned}
$$

Lorentz decomposition:

$$
\begin{gathered}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \\
\mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right) \\
z=\left(0, z_{-}, 0\right)
\end{gathered}
$$

Collinear PDFs: Choose

$$
p=\left(p_{+}, 0,0\right)
$$

$$
\gamma^{+}
$$

$$
\mathcal{M}^{+}(z, p)=2 p^{+} \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)
$$

Definition of PDF:

$$
\mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x f(x) e^{-i x p_{+} z_{-}}
$$

$$
\begin{array}{ll}
\mathcal{M}_{p}\left(-p z,-z^{2}\right) & \text { is a Lorentz invariant therefore } \\
\text { computable in any frame }
\end{array}
$$

$\nu=-z p \quad v$ is called loffe time

$$
\mathcal{M}_{p}\left(\nu,-z^{2}\right) \equiv \int_{-1}^{1} d x \mathcal{P}\left(x,-z^{2}\right) e^{i x \nu}
$$

$$
\mathcal{P}(x, 0)=f(x)
$$

It can be shown that the domain of x is $[-1,1]$
A. Radyushkin Phys.Lett. B767 (2017)

One can obtain PDFs in the limit of $z^{2} \rightarrow 0$
This limit is singular but using OPE, PDFs are defined

$$
\mathcal{M}_{p}\left(x,-z^{2}\right)=\int_{0}^{1} d u \mathcal{C}\left(u, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(u \nu, \mu)+\mathcal{O}\left(z^{2} \Lambda_{q c d}^{2}\right)
$$

$\mathcal{Q}(\nu, \mu)$ is called the loffe time PDF
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

$$
\mathcal{Q}(\nu, \mu)=\int_{-1}^{1} d x e^{-i x \nu} f(x, \mu)
$$

Rossi \& Testa argue that in lattice computations 1/a divergences may hide in the polynomial terms.

Lattice QCD calculation:

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle
$$

Choose $\quad \begin{aligned} & p=\left(p_{0}, 0,0, p_{3}\right) \\ & z=\left(0,0,0, z_{3}\right)\end{aligned} \quad \gamma^{0}$

On shell equal time matrix element computable in Euclidean space

Obtaining only the relevant

$$
\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)=\frac{1}{2 p_{0}} \mathcal{M}^{0}\left(z_{3}, p_{3}\right)
$$

Chosing γ^{0} was also suggested also by M. Constantinou at GHP2017 based on an operator mixing argument for the renormalized matrix element

$$
Q\left(y, p_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu, \nu^{2} / p_{3}^{2}\right) e^{-i y \nu} \quad \text { Ji's quasi-PDF }
$$

Large values of $z_{3}=\nu / p_{3}$ are problematic
Alternative approach to the light-cone:

$-z^{2} \rightarrow 0 \quad$ PDFs can be recovered

Lattice QCD requirements

$$
a P_{\max }=\frac{2 \pi}{4} \sim \mathcal{O}(1)
$$

$$
a \sim 0.1 \mathrm{fm} \rightarrow P_{\max }=10 \Lambda
$$

$\Lambda \sim 300 \mathrm{MeV}$
$a \sim 0.05 \mathrm{fm} \rightarrow P_{\max }=20 \Lambda$
For practical calculations large momentum is needed *Higher twist effect suppression (qpdfs) *Wide coverage of loffe time v
$\mathrm{P}=3 \mathrm{GeV}$ is already demanding due to statistical noise achievable with easily accessible lattice spacings
$P=6 \mathrm{GeV}$ exponentially harder requires current state of the art lattice spacing

Statistical noise

Nucleon with momentum P two-point function:

$$
C_{2 p}(P, t)=\left\langle O_{N}(P, t) O_{N}^{\dagger}(P, 0)\right\rangle \sim \mathcal{Z} e^{-E(P) t}
$$

Variance of nucleon two-point function:

$$
\operatorname{var}\left[C_{2 p}(P, t)\right]=\left\langle O_{N}(P, t) O_{N}(P, t)^{\dagger} O_{N}(P, 0) O_{N}^{\dagger}(P, 0)\right\rangle \sim \mathcal{Z}_{3 \pi} e^{-3 m_{\pi} t}
$$

Variance is independent of the momentum

$$
\frac{\operatorname{var}\left[C_{2 p}(P, t)\right]^{1 / 2}}{C_{a p}(P, t)} \sim \frac{\mathcal{Z}}{\mathcal{Z}_{3 \pi}} e^{-\left[E(P)-3 / 2 m_{\pi}\right] t}
$$

Statistical accuracy drops exponentially with the increasing momentum limiting the maximum achievable momentum.

Renormalization

$$
\mathcal{M}_{r e n}^{0}(z, p, \mu)=\lim _{a \rightarrow 0} Z_{\mathcal{O}}(z, \mu, a) \mathcal{M}^{0}(z, P, a)
$$

One loop diagrams

Linear divergence

Logarithmic divergence

One loop calculation of the UV divergences results in

$$
\mathcal{M}^{0}(z, P, a) \sim e^{-m|z| / a}\left(\frac{a^{2}}{z^{2}}\right)^{2 \gamma_{e n d}}
$$

after re-summation of one loop result resulting exponentiation

- J.G.M.Gatheral,Phys.Lett.133B,90(1983)
- J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984),
- G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987).

Multiplicatively renormalizable

Consider the ratio $\quad \mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)}$
UV divergences will cancel in this ratio resulting a renormalization group invariant (RGI) function

The lattice regulator can now be removed
$\mathfrak{M}^{\text {cont }}\left(\nu, z_{3}^{2}\right) \quad$ Universal independent of the lattice
$\mathcal{M}_{p}(0,0)=1 \quad$ Isovector matrix element

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d \alpha \mathfrak{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(\alpha \nu, \mu)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k}
$$

$$
\mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} \sim \mathcal{O}\left(\Lambda_{q c d}^{2 k}\right)
$$

Polynomial corrections to the loffe time PDF may be suppressed

```
B. U. Musch, et al Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005
A. Radyushkin Phys.Lett. B767 (2017)
```

Rossi \& Testa argument may not apply here if we use

$$
\mathfrak{M}^{\text {cont }}\left(\nu, z_{3}^{2}\right)
$$

Possible mechanism for polynomial correction suppression
A. Radyushkin Phys.Lett. B767 (2017)

Approximate TMD factorization
M. Anselmino et al. 10.1007/JHEP04(2014)005 B. U. Musch, et al Phys. Rev. D 83, 094507 (2011)
$\mathcal{M}_{p}\left(\nu,-z^{2}\right) \equiv \int_{-1}^{1} d x \mathcal{P}\left(x,-z^{2}\right) e^{i x \nu}$
Taking $\quad z=\left(0, z_{-}, z_{\perp}\right)$ we can identify $\quad \mathcal{P}\left(x, z_{\perp}^{2}\right)=\int d^{2} k_{\perp} \mathcal{F}\left(x, k_{\perp}^{2}\right) e^{i k_{\perp} z_{\perp}}$
$\mathcal{F}\left(x, k_{\perp}^{2}\right)$ the primordial TMD
Assuming $\quad \mathcal{F}\left(x, k_{\perp}^{2}\right)=f(x) g\left(k_{\perp}^{2}\right) \quad$ we obtain $\quad \mathcal{P}\left(x, z_{\perp}^{2}\right)=f(x) \tilde{g}\left(z_{\perp}^{2}\right)$

Implying that $\mathcal{M}_{p}\left(\nu,-z^{2}\right)=\mathcal{Q}\left(\nu,-z^{2}\right) \mathcal{M}_{p}\left(0,-z^{2}\right)$
where $\quad \mathcal{M}_{p}\left(0,-z^{2}\right)=\tilde{g}\left(-z^{2}\right)$

$$
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{Q}\left(\nu, \mu^{2}\right)=-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+}
$$

DGLAP kernel in position space
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop

$$
\mathcal{Q}\left(\nu, \mu^{\prime 2}\right)=\mathcal{Q}\left(\nu, \mu^{2}\right)-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \ln \left(\mu^{\prime 2} / \mu^{2}\right) \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

Matching to $\overline{M S}$ computed at 1-loop

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d \alpha \mathfrak{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(\alpha \nu, \mu)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k}
$$

Numerical Tests

with

J. Karpie, A. Radyushkin, S. Zafeiropoulos

Phys.Rev. D96 (2017) no.9, 094503

Numerical Tests

- Quenched approximation $\beta=6.0$
- Need series of small z_{3}

$$
32^{3} \times 64 \quad m_{\pi} \sim 600 \mathrm{MeV}
$$

- Need a range of momenta to scan v
- Goals:
- Check polynomial corrections
- Understand the systematics of the approach

Matrix element calculation

$$
\begin{gathered}
C_{P}(t)=\left\langle\mathcal{N}_{P}(t) \overline{\mathcal{N}}_{P}(0)\right\rangle \quad C_{P}^{\mathcal{O}^{0}(z)}(t)=\left\langle\mathcal{N}_{P}(t) \mathcal{O}^{0}(z) \overline{\mathcal{N}}_{P}(0)\right\rangle \\
\mathcal{M}_{\text {eff }}\left(z_{3} P, z_{3}^{2} ; t\right)=\frac{C_{P}^{\mathcal{O}^{\circ}(z)}(t+1)}{C_{P}(t+1)}-\frac{C_{P}^{\mathcal{O}^{\circ}(z)}(t)}{C_{P}(t)} \quad \text { C. Bouchard, et al arXiv:1612.06963 [hep-lat] } \\
\mathfrak{M}\left(\nu, z_{3}^{2}\right)=\lim _{t \rightarrow \infty} \frac{\mathcal{M}_{\mathrm{eff}}\left(z_{3} P, z_{3}^{2} ; t\right)}{\left.\mathcal{M}_{\mathrm{eff}}\left(z_{3} P, z_{3}^{2} ; t\right)\right|_{z_{3}=0}} \times \frac{\left.\mathcal{M}_{\mathrm{eff}}\left(z_{3} P, z_{3}^{2} ; t\right)\right|_{z_{3}=0}}{\left.\mathcal{M}_{\mathrm{eff}}\left(z_{3} P, z_{3}^{2} ; t\right)\right|_{P=0}}
\end{gathered}
$$

Constructed to remove lattice spacing errors

Gaussian smeared sources

Cusp indicates "linear" divergence of Wilson line

Ratio removes the linear" divergence of Wilson line

Real Part

Isovector distribution

$$
\begin{gathered}
\mathfrak{M}_{R}\left(\nu, z^{2}=1 / \mu^{2}\right) \equiv \int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right) \\
q_{v}(x)=q(x)-\bar{q}(x) \quad q(x)=u(x)-d(x)
\end{gathered}
$$

$$
\overline{M S} \quad \mu^{2}=\left(2 e^{-\gamma_{E}} / z_{3}\right)^{2}
$$

Points almost collapse on a universal curve

$$
q_{v}(x)=\frac{315}{32} \sqrt{x}(1-x)^{3}
$$

Imaginary Part

Isovector distribution

$$
\begin{aligned}
& q_{+}(x)=q(x)+\bar{q}(x) \\
& q_{+}(x)=q_{v}(x)+2 \bar{q}(x)
\end{aligned}
$$

$$
q(x)=u(x)-d(x)
$$

$$
q_{v}(x)=q(x)-\bar{q}(x)
$$

$\overline{M S} \quad \mu^{2}=\left(2 e^{-\gamma_{E}} / z_{3}\right)^{2}$
anti-quarks contribute to the imaginary part

anti-quarks contribute to the imaginary part

Points in previous plots obtained in with different z/a i.e. correspond to the loffe time PDF at different scales!

DGLAP evolution:

$$
\mathfrak{M}\left(\nu, z^{\prime 2}\right)=\mathfrak{M}\left(\nu, z_{3}^{2}\right)-\frac{2}{3} \frac{\alpha_{s}}{\pi} \ln \left(z_{3}^{\prime 2} / z_{3}^{2}\right) B \otimes \mathfrak{M}\left(\nu, z_{3}^{2}\right)
$$

Apply evolution only at short distance points [$\sim 1 \mathrm{GeV}$]

Data corresponding to $z / a=1,2,3,4$

Evolved to 1 GeV

Data corresponding to $z / a=1,2,3,4$

Evolved to 1 GeV

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d \alpha \mathfrak{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(\alpha \nu, \mu)
$$

$$
\mu=1 \mathrm{GeV}
$$

Fit to:

$$
\begin{gathered}
N(a, b) x^{a}(1-x)^{b} \\
\quad a=0.36(6) \\
b=3.95(22)
\end{gathered}
$$

Ignoring polynomial corrections

$$
\mathcal{Q}\left(\nu, \mu^{2}\right)=\int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right)
$$

Thanks to N. Sato for making this figure

Summary

- Methods for obtaining parton distribution from Lattice QCD have now emerged
- An approach based on pseudo-PDFs has been proposed
- Renormalization is handled in a simple way
- Light cone limit is obtained by computing real space matrix elements at short Euclidean distances
- All hadron momenta are useful in obtaining PDFs
- WM/JLab: first numerical tests are available in quenched approximation indicating the feasibility of the method
- Results consistent with DGLAP evolution
- Dynamical fermion simulations are on the way
- Lattice spacing effect under study (quenched)
- Probing the small x region (or large loffe time) remains a challenge
- Large loffe time may be probed with high momentum which requires a small lattice spacing (JLab anisotropic gauge ensembles?)
- Correctly applying evolution, matching and controling polynomial corrections is essential for obtaining reliable results

