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Phase diagram from a theorist’s viewpoint
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Less conservative viewpoints

µB

T

µB
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µB
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NJL with vector interactions Zhang, Kunihiro, Fukushima 2009, Ginzburg-Landau approach Baym et al 2006,

beyond mean field Ferroni, Koch, Pinto 2010
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The experimentalist’s viewpoint
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Calculable from first principles

(Courtesy of Owe Philipsen-)
Numerical simulations not feasible when µ/T > 1 or when µ > mπ/2.

No evidence for a critical endpoint in the controllable region.

Savvas Zafeiropoulos CL for Random Matrix Theory 5/41



Adding µ

adding to the continuum Euclidean Dirac operator D the quark

number operator µψ†ψ

D + µγ0

jeopardizes γ5-Hermiticity which ensures reality of det(D)

remember that the probability weight is given by det(D)Nfe−Sg

when µ = 0 → D† = γ5Dγ5

γ5(D +m+ µγ0)γ5 = D† +m− µγ0 = (D +m− µ∗γ0)†

det(D +m+ µγ0) = det(D +m− µ∗γ0)∗ which is real when

µ = 0

possible ways out: study QCD with imaginary µ or at finite

isospin chemical potential
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The sign problem
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Many approaches

Conventional/Monte Carlo based methods

Reweighting

Taylor expansion

Imaginary µ

Strong Coupling Expansion

Mean Field analyses

Alternative methods

Stochastic Quantization-Complex Langevin

Lefschetz Thimble

Canonical ensembles

Dual variables

Density of States
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Stochastic quantization as an alternative

consider the trivial ”QFT” given by the partition function

Z =
∫
e−S(x)dx

in the real Langevin formulation

x(t+ δt) = x(t)− ∂xS(x(t))δt+ δξ

stochastic variable δξ with zero mean and variance given by 2δt

generalization to complex actions Parisi (1983), Klauder (1983)

x→ z = x+ iy

z(t+ δt) = z(t)− ∂zS(z(t))δt+ δξ

one can study gauge theories with complex actions Aarts, James, Seiler,

Sexty, Stamatescu, ...
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Is this ”the” solution to the sign problem?

proof relating Langevin dynamics to the path integral

quantization-no longer holds

simulations are not guaranteed to converge to ”the correct

solution”

criteria of convergence not fulfilled in practical simulations (at

least for some range of the parameters)
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Validity criteria

action S and observables O should be holomorphic in the

complexified variables (up to singularities)

the probability distribution of the complexified variables z along

the CL trajectories should be suppressed close to the singularities

of the drift term and of the observable

sufficiently fast decay of the probability distribution in the

imaginary direction
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RMT

focus on a much simpler theory than QCD. Random Matrix

Theory

same flavor symmetries with QCD which uniquely determine (in

the ε-regime)

mass dependence of the chiral condensate 〈η̄η〉 = ∂m logZ

the baryon number density 〈η†η〉 = ∂µ logZ
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The Stephanov Model

Z =
∫
DWe−nΣ2TrWW †detNf

(
m iW + µ

iW † + µ m

)
Stephanov (1996) and Halasz, Jackson, Verbaarschot(1997)

solve via bosonization

ZNf=1(m,µ) = πe−nm
2 ∫∞

0 du(u− µ2)nI0(2mn
√
u)e−nu
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The phase transition

there is a phase transition separating a phase with zero and

non-zero baryon density

in the chiral limit µc = 0.527 for µ ∈ R

we can compute Σ(m,µ) and nB(m,µ) and compare it with the

Complex Langevin simulation

first attempts in the Osborn model

Z =
∫
D[W,W ′]e−nΣ2Tr(WW †+W ′W ′†)detNf

(
m iW + µW ′

iW † + µW ′ m

)
Mollgaard and Splittorff(2013-2014), Nagata, Nishimura, Shimasaki (2015-2016)

However, Z(m,µ) = (1− µ2)nNfZ( m√
1−µ2

, 0)
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Complex Langevin for RMT

Z =
∫
DWe−nΣ2TrWW †detNf

(
m iW + µ

iW † + µ m

)
W = A+ iB

compute the drift terms ∂S/∂Aij and ∂S/∂Bij

complexify the dof A,B ∈ R→ a, b ∈ C

Aij(t+ δt) = Aij(t)− ∂AijS(x(t))δt+ δξij

Bij(t+ δt) = Bij(t)− ∂BijS(x(t))δt+ δξij

〈ξij〉 = 0 and 〈ξij(t)ξkl(t′)〉 = 2δtδ(t− t′)δikδjl
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m-scan for µ = 1
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analytical pq results by Glesaaen, Verbaarschot and SZ (2016)
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µ-scan for m = 0
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µ-scan for m = 0.2
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Gauge Cooling

Originally suggested for QCD by Seiler, Sexty and Stamatescu(2012)

implemented for RMT by Nagata, Nishimura, Shimasaki (2015) in the Osborn model

complexified action invariant under an enhanced gauge trafo

steer the evolution in Langevin time towards more physical

solutions

successful application to the Osborn model

complexified action is invariant GL(N,C)

A′ = 1
2

(
hAh−1 + (hATh−1)T + i

(
hBh−1 − (hBTh−1)T

))
B′ = 1

2

(
hBh−1 + (hBTh−1)T − i

(
hAh−1 − (hATh−1)T

))
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The Cooling norms

NH = 1
N tr

[(
X − Y †

)†(
X − Y †

)]
(N.B. X(0) = W and Y (0) = W†

X = A + iB and Y = AT − BT when A,B are complexified)

NAH = 1
N tr

[((
φ+ ψ†

)†(
φ+ ψ†

))2]
ψ and φ are the off-diagonal elements of D: ψ = iX + µ,

φ = iY + µ

Nev =
∑nev

i=1 e
−ξγi

Nagg = (1− s)NAH/ev + sNH , where s ∈ [0, 1]
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Cooling and the Dirac Spectrum
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no cooling
NAH cooling

Scatter plots of the eigenvalues of the fermion matrix for a standard CL run together with the ones from a run

cooled with the NAH cooling norm. The plots show the eigenvalues from the last 60 trajectories, separated by

100 updates. The left hand plot shows the Stephanov model, while the Osborn model is shown to the right.
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Scatter plots of the eigenvalues of the fermion matrix for a standard CL run together with the ones from a gauge

cooled run. We chose the parameters {ξ = 100, nev = 2} for Nev . The plots show the eigenvalues from the

last 60 trajectories, separated by 100 updates. The left hand plot shows the Stephanov model, while the Osborn

model is shown to the right

Savvas Zafeiropoulos CL for Random Matrix Theory 23/41



The anti-hermiticity norm
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The eigenvalue norm
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The shifted representation

shift µ away from the fermionic term by a COV

initially D =

(
m iA−B + µ

iAT +BT + µ m

)
Absorb µ into A with a COV A′ = A− iµ. The action in terms

of A′ and B is

S = Ntr
(
A′TA′ − 2iµA′ + µ2 +BTB

)
−Nf tr log

(
m2 +X ′Y ′

)
X ′ = A′ + iB and Y ′ = A′T − iBT . Now, the µ dependence has

shifted from the fermionic to the bosonic term.

Computing again the CL force term ...

Advantage of the shifted representation is that it starts in an

anti-Hermitian state, and since CL in non-deterministic, the

configurations could evolve to a different minimum.
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Shifted representation and cooling
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NAH as a function of Langevin time. Stephanov model (RHS), Osborn model (LHS). The Stephanov plot also

includes the values from the shifted representation. These start at 0 for t = 0, but quickly shoot up to meet the

unshifted curves. Although A and A′ start out very different, they coincide after thermalization. This means that〈
A′〉

CL,shifted
=

〈
A
〉
CL,standard

− iµ, and thus they converge to the same solution. The advantage of the

shifted representation is that it starts in an anti-Hermitian state, and due to the fact that CL in non-deterministic,

the configurations could evolve to a different minimum.
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Shifted representation and cooling
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NAH for the shifted representation of the Stephanov model as a function of Langevin time for 8× 8 block

matrices. The zoomed in plots show the evolution of NAH with the application of the cooling step. There are 50

gauge cooling transformations between each Langevin step.
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The deformation technique

another idea Ito and Nishimura (2017) is to deform the Dirac operator, to

”move” its smallest eigenvalues and then extrapolate to zero

deformation parameter at the end of the calculation.

deformation is achieved by a finite temperature term given by the

two lowest Matsubara frequencies ±πT

Z(m,µ;α) =

∫
D[X,Y ] det

(
m X + µ+ iΘ(α)

Y + µ+ iΘ(α) m

)

where D[X,Y ] = d[X,Y ]P (X,Y ) and Θ(α) is itself a

block-matrix

Θ(α) =

(
α 0

0 −α

)
where α can be thought as the lowest Matsubara frequency.
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The deformation technique

Beyond a critical value of α the eigenvalue spectrum opens up

and at this point chiral symmetry is restored. We can thus

extrapolate from higher values in α for which there are no

eigenvalues at the origin. In our studies we will see a gap

opening at α ≈ 1.0

But let’s see this in practice...
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The deformation technique
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Scatter plots of eigenvalues from simulating with N = 48,
dt = 5× 10−5, tend = 5.0, measured every 400 steps after
thermalization. Both plots show m = 0.2 and µ = 0.5 for varying
values of the ”temperature” α.
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The deformation technique
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The density of the CL forces for µ = 0.5 (LHS) and µ = 0.35 (RHS).

Data gathered with a tfinal = 100 run using dt = 5× 10−5. If the decay

fall is exponential (or faster) the CL will give the correct result but not if

it decays as power law (or slower). Define αc as the first α value that

gives power law decay.
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The deformation technique
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Physical observables as a function of the parameter α. Analytic solutions
(lines) for various values of the mass in addition to values from a
simulation at N = 24 and (m,µ) = (0.2, 0.5). The parameters of the
simulation correspond to the solid analytic line. Chiral condensate (LHS),
baryon number density (RHS).

Natural questions to ask: Which points do you include in your

extrapolation and which fitting ansatz do you use and what about the

phase transition for small masses?
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Reweighted Complex Langevin

generate a CL trajectory for parameter values where complex

Langevin is correct

perform a reweighting of the trajectory to compute observables

in an extended range of the parameters where CL used to fail
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Reweighting

target ensemble with parameters ξ = (m,µ, β) (for the general

QCD case-drop β for RMT)

auxiliary ensemble with parameters ξ0 = (m0, µ0, β0)

Reweighting from auxiliary to target

〈O〉ξ =

∫
dxw(x; ξ)O(x; ξ)∫

dxw(x; ξ)
=

∫
dxw(x; ξ0)

[
w(x;ξ)
w(x;ξ0)O(x; ξ)

]
∫
dxw(x; ξ0)

[
w(x;ξ)
w(x;ξ0)

]
=
〈 w(x;ξ)
w(x;ξ0)O(x; ξ)〉ξ0
〈 w(x;ξ)
w(x;ξ0)〉ξ0

but now we have a complex weight w(x; ξ0) = e−S(x;ξ0) so we

need CL for this too!
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m-scan for µ = 1

reweighted from an auxiliary ensemble with m0 = 4 and µ0 = 1

using O(15000) confs
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m-scan for µ = 1

Auxiliary ensemble m0 = 1.3, µ0 = µ = 1.0 using O(560000) confs
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The number of confs needed, builds up very rapidly. So one has to

”just” to generate an auxiliary trajectory long enough to overcome the

sign problem.
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m-scan for µ = 1

Auxiliary ensemble m0 = 1.3, µ0 = µ = 1.0 using O(122000000)

confs
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if you (or the computer) work(s) hard enough you can also deal with the

matrices of the original size that we were dealing with n = 48
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Conclusions and outlook

studied the CL algorithm for an RMT model for QCD/

comparing numerical with exact analytical results for all the

range of parameters (m, µ)

compared to previous similar studies this model possesses a phase

transition to a phase with non-zero baryon density

fails to converge to QCD and it converges to |QCD|
partial attempt to fix the issues via RCL procedure → correct

results, even when CL does not work for the target ensemble

gauge cooling or the deformation technique seem unable to

overcome the pathologies of this model
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Thanks a lot for your attention!!!
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Phase Quenched QCD

ignore the complex phase of the fermion determinant

Zpq = Ziso =
∫
dA|det(D(µ))|2e−Sg

| det(D(µ))|2 = detD(µ)(det(D(µ)))∗ = detD(µ) detD(−µ)

since γ5(γµD
µ +m− µγ0)γ5 = (γµD

µ +m+ µγ0)†

〈O〉pq = 1
Zpq
∫
dAO| detD(µ)|2e−Sg

this theory has a different phase diagram and different properties

than QCD

for T << and µ >> → Bose condensation of charged pions
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The analytical solution

Halasz, Jackson, Verbaarschot(1997)∫
D[. . .] exp

[
−i∑Nf

k=1 ψ
k ∗

(
m iW + µ

iW † + µ m

)
ψk

]
e−nΣ2TrWW †

perform the W integration

∫
D[. . .]e

[
− 1
nΣ2 ψ

f ∗
Lkψ

f
R iψ

g ∗
R iψ

g
L k+m

(
ψf ∗R iψ

f
R i+ψ

f ∗
Lkψ

g
L k

)
+µ
(
ψf ∗R iψ

f
L i+ψ

f ∗
Lkψ

f
R k

)]
write the four-fermion term as a difference of two squares and

linearize via a Hubbard-Stratonovich trafo

exp(−AQ2) ∼
∫
dσ exp(− σ2

4A − iQσ)
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The analytical solution

then one carries out the Grassmann integrals

Z(m,µ) =
∫
Dσ exp[−nΣ2Trσσ†]detn

(
σ +m µ

µ σ† +m

)
which for one-flavor and Σ = 1 becomes

ZNf=1(m,µ) =
∫
dσdσ∗e−nσ

2
(σσ∗ +m(σ + σ∗) +m2 − µ2)n
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The analytical solution

in polar coordinates after the angular integration

ZNf=1(m,µ) = πe−nm
2 ∫∞

0 du(u− µ2)nI0(2mn
√
u)e−nu in the

thermodynamic limit one can perform a saddle point analysis

I0(z) ∼ ez/
√

2πz

and the saddle point equation takes the form
1

u−µ2 = 1− m√
u
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The analytical solution

A 1st order phase transition takes place at the points where

|Zu=ub | = |Zu=ur |, with ub and ur two different solutions of the

saddle-point equation give the same free-energy. This condition

can be rewritten as |(ub − µ2)e2m
√
ub−ub | = |(µ2 − ur)e2m

√
ur−ur |.

A general solution is quite cumbersome, but for m→ 0 we find

that ur = 0 and ub = 1 + µ2. This leads to the critical curve

Re
[
1 + µ2 + log µ2

]
= 0

which for real µ, µc = 0.527 . . .
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