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The θ term

LθQCD = LQCD + θq(x); q(x) =
g2

64π2
εµνρσF

aµνF a ρσ

Main properties of the θ term:

θ is a dimensionless RG invariant parameter in [0, 2π)

the θ term is a four-divergence: no effect on the classical equations of
motion, purely quantistic and nonperturbative effects

on smooth configurations Q =
∫
q(x)d4x ∈ Z

behaviour under U(1)A: if ψj → e iαγ5ψj and ψ̄j → ψ̄je
iαγ5 then

θ → θ − 2αNf and mj → mje
2iα

the θ term becomes imaginary in the Euclidean formulation

it breaks explicitly P and CP simmetry

experimentally θ is compatible with zero (|θ| . 10−9 from neutron
electric dipole moment). Strong CP problem.
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Why studying θ dependence

θ-dependence = dependence on θ of the vacuum energy E (θ) (at T = 0)
or of the free energy F (θ,T )

Why studying θ dependence if θ ≈ 0 experimentally?

theory: to better understand some nonperturbative features of Yang-Mills
theory and QCD. To investigate the range of validity of different
approximation schemes.

SM phenomenology: to get informations on some hadronic properties
e.g. m2

η′ = 2Nf
f 2π
χNf =0
top Witten 1979, Veneziano 1979.

BSM phenomenology: the introduction of a new pseudoscalar particle
(axion) was proposed to solve the strong CP problem; such a particle is
also a natural DM candidate. The QCD θ dependence can be used to
obtain (under specific cosmological assumptions) lower bounds for the
axion coupling 1/fa.
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The general form of F (θ,T )

F (θ,T ) = − 1

V4
log

∫
[DA][Dψ̄][Dψ] exp

(
−
∫ 1/T

0
dt

∫
d3x LEθ

)

Assuming analiticity at θ = 0 the free energy density can be written as:

F (θ,T )− F (0,T ) =
1

2
χ(T )θ2

[
1 + b2(T )θ2 + b4(T )θ4 + · · ·

]
,

and it is easy to see that

χ =
1

V4
〈Q2〉0 b2 = −〈Q

4〉0 − 3〈Q2〉20
12〈Q2〉0

b4 =
〈Q6〉0 − 15〈Q2〉0〈Q4〉0 + 30〈Q2〉30

360〈Q2〉0

and so on, where 〈 〉0 denotes the average at θ = 0.
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Large Nc and χPT
Large Nc

The scaling variable to keep fixed is θ̄ ≡ θ/Nc and one gets (Witten 1980)

χ = χ̄+ · · ·
b2n = b̄2n/N

2n
c + · · ·

Chiral perturbation theory

LO at T = 0 (Di Vecchia, Veneziano 1980)

E0(θ) = −m2
πf

2
π

√
1− 4mumd

(mu + md)2
sin2 θ

2

NLO (Grilli di Cortona, Hardy, Pardo Vega, Villadoro 1511.02867)

z ≡ mu/md = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)
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Dilute Instanton Gas Approximation (1)

Hypothesis: the dynamic of the system is dominated by weakly interacting
objects of topological charge ±1.

This is surely true in the weak coupling approximation (T � ΛQCD).

In the DIGA approximation we thus have (Gross, Pisarski, Yaffe 1981)

Zθ = Tre−Hθ/T ≈
∑ 1

n+!n−!
(V4D)n++n−e−S0(n++n−)+iθ(n+−n−)

= exp
[
2V4De

−S0 cos θ
]

where 1/D is a typical 4−volume, that in perturbation theory is related to
the functional determinants of the fields in the instanton background.
Using DIGA without perturbation theory we thus have:

F (θ,T )− F (0,T ) ≈ χ(T )(1− cos θ)
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Dilute Instanton Gas Approximation (2)

Using only the DIGA hypothesis we have informations on the explicit
values of b2n(T ) but not on χ(T ):

b2 = − 1

12
b4 =

1

360
b2n = (−1)n

2

(2n + 2)!

Using also perturbation theory S0 = 8π2

g2(T )
' (113 N −

2
3Nf ) log(T/Λ)

and close to the chiral limit D ∝ T 4(m/T )Nf , so that

χ(T ) ∝ mNf T 4− 11
3
N− 1

3
Nf

(Gross, Pisarski, Yaffe 1981)

C. Bonati (Pisa U. & INFN) θ-dep. from the lattice Paris 2018 8 / 22



SU(N) theories at T = 0 (1)

Del Debbio, Panagopoulos, Vicari 0204125

C = χ/σ2, T = 0

0.00 0.02 0.04 0.06 0.08 0.10 0.12

N
-2

0.00

0.01

0.02

0.03

0.04

C

 C(N)

 large-N extrapolation

C. Bonati (Pisa U. & INFN) θ-dep. from the lattice Paris 2018 9 / 22



SU(N) theories at T = 0 (2)

Bonati, D’Elia, Rossi, Vicari 1607.06360
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SU(N) theories across Tc (1)

Alles, D’Elia, Di Giacomo 9706016 Del Debbio, Panagopoulos, Vicari 0407068
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The topological susceptibility is constant for T . Tc and then abruptly
decreases (t = (T − Tc)/Tc).
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SU(N) theories across Tc (2)

Bonati, D’Elia, Panagopoulos, Vicari 1301.7640

(Bonati, D’Elia, Scapellato 1512.01544

Bonati, D’Elia, Rossi, Vicari 1607.06360)
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large-Nc scaling for T < Tc , b2 independent of Nc for T > Tc

DIGA values (b2 = −1/12, b4 = 1/360) reached for T & 1.1Tc
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SU(3) theory for T > Tc

Borsanyi et al. 1508.06917
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χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (DIGA prediction b = 7).
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Intermezzo: G2 theory across Tc

Bonati 1501.01172
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Everything looks the same as in SU(N) theories, but in G2 no large-Nc

limit exists! Alternative explanation? Relation to confinement?
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The QCD case

In the last couple of years several lattice studies investigated θ
dependence in QCD with physical or almost physical quark masses:

Trunin et al. 1510.02265 Bonati et al. 1512.06746

Petreczky et al. 1606.03145 Borsanyi et al. 1606.07494

Burger et al. 1805.06001

At T = 0 χPT provides reliable results and lattice studies give
results compatible with it.

Most of the effort was devoted to the high temperature phase: the value
of χ(T ) for 200MeV . T . 2GeV is relevant for axion phenomenology
and lattice QCD appears to be the only first principle methods to reliably
investigate this range of temperatures (Berkowitz et al. 1505.07455).

General consensus: χ(T ) is basically constant up to T ' Tc ' 155MeV
then suddenly decreases.
Still no general consensus: details of the behaviour of χ(T ) for T > Tc

(in particular: when DIGA sets in?)
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QCD at T = 0
Most lattice discretizations of the fermion action introduce an explicit
breaking of chiral symmetry, that is recovered only in the continuum limit.
On the other hand topology is extremely sensitive to chiral symmetry.

Consequence: large lattice artefacts
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Purple points have been
corrected by using the mass
of the non-Goldstone pions
on the lattice to rescale the
results for χ using ChPT.
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QCD at T & Tc

from Borsanyi et al. 1606.07494
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Numerical problems: “freezing” of the topological charge

As the continuum limit is approached it gets increasingly difficult to
correctly sample the various topological sectors.

exponential critical slowing-down
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from Bonati, D’Elia, Mariti, Martinelli, Mesiti, Negro, Sanfilippo, Villadoro 1512.06746
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Origin of the problem

Basically all the update schemes used in lattice simulations changes the
configuration in a way that becomes almost continuous when the lattice
spacing gets small.

To change the topological sector we need “large” updates, that are very
difficult to achieve.
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(left) Q = 0
(center) Q = −1
(right) Q = 2
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Numerical problems: “small box” effect

As T gets large we have χ(T )→ 0 and the typical amount of topological
fluctuation in a system of volume V4, 〈Q2〉 = V4χ(T ), goes to zero.

The probability P(Q) of observing a configuration with charge Q gets
strongly peaked at Q = 0 and the sampling becomes very difficult.

This is not an algorithmic problem
although from the practical point of view it looks like freezing.

For the QM toy model it can be seen that

P(Q) =
exp(−TQ2/2)∑
Q∈Z exp(−TQ2/2)

and P(1)/P(0) = exp(−T/2): exponentially large (in T ) statistics are
needed to estimate χ(T ).
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Numerical problems: “small box” effect

Example from QCD
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Conclusions

In SU(N) Yang-Mills theory firm conclusions have been obtained in all the
studied regimes

at zero temperature χ and b2 scale according to large-Nc

at deconfinement there is a switch from the θ/Nc (large-Nc)
behaviour to the θ (instanton) behaviour

for T larger than Tc , χ(T ) scales approximately as χ(T ) ∝ T−7,
as in DIGA (although the prefactor is off by O(10))

In the “exotic example” of G2 Yang-Mills, at a qualitative level, everything
works as in SU(N), but no large-Nc expansion.

In the case of QCD with light fermions

the zero temperature case is well understood in χPT and lattice data
reproduce the expected behaviour

for T & 200MeV formidable numerical problems are encountered and
further study is needed (and on the way)
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Thank you for your attention!
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Backup with something more
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Possible solutions of the strong CP problem

1 At least a massless quark (mu = 0).

2 Assume a CP invariant lagrangian for the standard model and explain
CP violation by CP SSB.

3 “Dynamical” θ angle.

Realization of mechanism 3: add to SM a pseudoscalar field a with
coupling a

fa
F F̃ and only derivative interactions. Since the free energy has a

minimum at θ = 0, a will acquire a VEV such that θ + 〈a〉
fa

= 0.

Goldstone bosons have only derivatives coupling, so the simplest possibility
is to think of a as the GB of some U(1) axial symmetry (Peccei-Quinn
symmetry). The effective low-energy lagrangian is thus

L = LQCD +
1

2
∂µa∂

µa +

(
θ +

a(x)

fa

)
q(x) +

1

fa

(
model dependent

terms

)
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Axions as dark matter
Cosmological sources of axions: 1) thermal production 2) decay of
topological objects 3) misalignment mechanism

Idea of the misalignment mechanism: the EoM of the axion is

ä(t) + 3H(t)ȧ(t) + m2
a(T )a(t) = 0

at T � ΛQCD the second term dominates and we have a(t) ∼ const
(assuming ȧ� H initially); when ma ∼ H the field start oscillating arount
the minimum. When ma � H a WKB-like approx. can be used

a(t) ∼ A(t) cos

∫ t

ma(t̃)dt̃;
d

dt
(maA

2) = −3H(t)(maA
2)

and thus the number of axions in the comoving frame Na = maA
2/R3 is

conserved.

Overclosure bound: axion density ≤ dark matter density
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Large-Nc argument

F a
µνF

a
µν and εµνρσF

a
µνF

a
ρσ scale as N2

c

To have a nontrivial θ dependence in the large-Nc limit we have to keep
θ̄ ≡ θ/Nc fixed, in such a way that θg2 does not scale with Nc

The large-Nc scaling form of the free energy is thus (Witten 1980)

F (θ,T )− F (0,T ) = N2
c F̄ (θ̄,T )

where F̄ is generically nontrivial for Nc →∞:

F̄ (θ̄,T ) =
1

2
χ̄θ̄2
[
1 + b̄2θ̄

2 + b̄4θ̄
4 + · · ·

]
By matching the powers of θ we obtain

χ = χ̄+ · · ·
b2n = b̄2n/N

2n
c + · · ·
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