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Introduction

The original example of holography in string theory is the
famous AdS/CFT conjecture of Maldacena:

- String theory on a background with (d + 1)-dimensional
Anti-de Sitter asymptotics is dual to a d-dimensional
conformal field theory.

Many examples of gauge/gravity dualities involving various
spacetime asymptotics.
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Introduction

Original argument for
holography: maximum
entropy associated with a
given spacetime volume
scales as the surface area
in Planck units.
Follows from black holes
being the most entropic
objects for a given mass.
No dependence on
asymptotics!
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Introduction

Consider a timelike
hypersurface Σc , in a spacetime
with generic asymptotics.
Can we define a QFT on Σc ,
holographically dual to the
interior of the spacetime?
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Holographic reconstruction

Top-down models postulate a complete relationship
between string theory in a given background and a specific
QFT e.g. AdS5 × S5 and N = 4 SYM.
In bottom-up models, we instead engineer the gravity
theory to capture defining features of the QFT.
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Holographic reconstruction

Consider an RG flow to a UV fixed point, driven by a
single operator O.
The minimal ingredients required to describe this
holographically are:

S =

∫
dd+1x

√
−g
(

R − 1
2

(∂φ)2 + V (φ)

)
where φ is the bulk scalar dual to O and the potential is
such that the action admits AdSd+1 extrema.
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Holographic dictionary

More precisely, one can extract from asymptotic
expansions near the conformal boundary ρ = 0:

ds2 =
dρ2

ρ2 +
1
ρ2

(
g(0)ij + ρ2g(2)ij · · ·+ ρdg(d)ij · · ·

)
dx idx j

and
φ = ρd−∆(φ(d−∆) + · · · ) + ρ∆(φ(∆) + · · · )

the dilatation Ward identity for 〈Tij〉 ∼ g(d)ij and
〈O〉 ∼ φ(∆)

〈T i
i 〉+ φ(d−∆)〈O〉 ∼ 0
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Holographic renormalization

Use radial foliation near the conformal boundary

ds2 = dr2 + γij(r , x)dx idx j

where for AAdS γij(r , x) ∼ e2r g(0)ij + · · · as r →∞.
The conjugate momentum to γ is the Brown-York
quasi-local stress tensor

Tij =
(
Kij − Kγij

)
where the extrinsic curvature Kij = 1

2∂rγij .
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Holographic renormalization

Tij is not finite as r →∞.
Boundary counterterms added to the Einstein-Hilbert
action

Sct = −
∫

ddx
√
−h ((d − 1) + · · · )

render the onshell action finite and give additional
contributions to the quasi-local stress tensor:

Tij =
(
Kij − Kγij + (d − 1)γij + · · ·

)
(Balasubramanian and Kraus; de Haro, Skenderis and
Solodukhin)
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Holographic renormalization

Tij does have a finite limit as r →∞:

Lr→∞
(
Tij
)

= 〈Tij〉 ∼ g(d)ij .

The renormalized stress tensor satisfies the expected CFT
identities e.g. for d = 2

〈T i
i 〉 =

c
6
R(g(0))
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Finite radius hypersurface

Natural to ask about duality for
finite radius hypersurface.
From QFT perspective: radial
evolution is RG flow.
In presence of horizons, one
obtains a fluid/gravity relation.

(Minwalla et al; Polchinski et al; Strominger et al; Compère,
McFadden, Skenderis and Taylor; .... )

Marika Taylor Holographic relations at finite radius



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Gauss-Codazzi relations

In the radial Hamiltonian decomposition, one can write the
Einstein equations in Gauss-Codazzi form.
In particular, for AdS gravity

K 2 − K ijKij = R(γ) + d(d − 1)

which implies that, for flat hypersurfaces at finite radius,

T i
i = −4πG

(
TijT ij − 1

(d − 1)
(T i

i )2
)
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QFT interpretation

We view this relation as a dilatation Ward identity:

T i
i = −λT

where

T =

(
TijT ij − 1

(d − 1)
(T i

i )2
)

In d = 2, T is the T T̄ operator explored by Zamoldchikov.
Holographic relation in d = 2 proposed by (McGough et al).
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T T̄ operator in 2d

Zamoldchikov showed that this operator has a remarkable
OPE structure as x → y :

T T̄ (x , y) = T (y) +
∑
α

Aα(x − y)∇yOα(x)

i.e. we can identify the operator as local, modulo
derivatives of other local operators.
Smirnov and Zamoldchikov also explored the behaviour of
a CFT under deformations by T i.e.

SCFT → SCFT + λ

∫
d2x T .
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Energy spectrum

Consider the (Euclidean) theory on a cylinder of radius R.
In a stationary state such that

〈Tττ 〉 = −E
R

the defining relation for the family of QFTs implies that

∂E
∂λ

+ 2E
∂E
∂R

= 0
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Energy spectrum

This can be re-expressed in terms of dimensionless
quantities (ε, α) using

α =
λ

R2 E =
1
R
ε

with
∂αε = 2ε (ε+ 2α∂αε)

This is the defining ODE for the energy spectrum ε(α).
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Generalization to d > 2

In general dimensions:

T =

(
TijT ij − 1

(d − 1)
(T i

i )2
)

Definite of composite operator more subtle;
renormalization required as operators approach each
other.
Details of operator definition not required for energy
spectrum, but would be needed for correlation functions,
entanglement entropy etc.
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Energy spectrum

Consider the (Euclidean) theory

SCFT → SCFT + λ

∫
dD+1x T .

on a cylinder of spatial volume RD. With

α =
λ

Rd E =
1
R
ε

dimensionless energy ε(α) satisfies

∂αε =

(
1 +

1
D

)
(ε+ 2αε∂αε)

with ε(0) the CFT energy.
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Back to gravity

The conjectured holographic
theory dual for finite radius is

SCFT → SCFT + λ

∫
dD+1x T .

Identifying the quasi-local stress
tensor as the dual stress tensor,
Ward identity matches by
construction.
Can we also reproduce energy
spectrum in gravity?
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Black brane solutions

Consider a static black brane in (D + 2) dimensions

ds2 = (ρ2 − µ

ρD−1 )dτ2 +
dρ2

(ρ2 − µ
ρD−1 )

+ ρ2dxadxa

We can then read off from the quasi local stress tensor the
dimensionless energy:

ε =
Dρd

2λ

(
1−

(
1− λM

ρd

) 1
2
)

where µ = 4πGM.
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Black brane solutions

In terms of dimensionless coupling α = λ/ρd ,

ε =
D
2α

(
1− (1− αM)

1
2

)
Note that the CFT energy is

ε(0) =
D
4

M

and ε(α) indeed satisfies:

∂αε =

(
1 +

1
D

)
(ε+ 2αε∂αε)

Marika Taylor Holographic relations at finite radius



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Comments

1 Trivial to generalize to boosted (spinning) branes.
2 Addition of extra bulk fields (gauge fields, scalars etc)

modifies CFT deformation e.g.

T i
i = −λ

(
T ijTij −

1
D

(T i
i )2 + 2J iJi

)
Also noticed in d = 2 by (Bzowski and Guica; Kraus et al).
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Conclusions and outlook

The conjectured holographic
theory dual for finite radius AdS is

SCFT → SCFT + λ

∫
dD+1x T .

with

T =

(
T ijTij −

1
D

(T i
i )2
)

Natural generalization of d = 2
proposal.
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Conclusions and outlook

Passes preliminary checks: Ward identity, energy
relations.
More detailed checks require renormalized definition of
composite operator T .
Proposal can easily be extended beyond AdS
asymptotics (but UV behaviour is required to fix
integration constants).
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