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The bootstrap manifesto:

To constrain and determine
quantum field theories
from basic principles

Unitarity Locality Crossing
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Fig. 5: Isobaric heat capacity cp over the p, T plane for water

-

=

What is the mass of a
string propagating on

~

a Calabi-Yau?¢

4

4 N\

How does the
mass of a bound
state vary with
couplinge

© F g




The conformal bootstrap

We consider four point correlators in a CFT, e.g.:
(o(x1)o(z2)o(x3)o(xs))

Locality: Operator Product Expansion
oxXxo=1+014+001+...+05+...

Unitarity: Real fields implies real couplings, positive norms

(01(2)0a(0)) = 22 (0(00)0r(1)O(0)) = Ao

21,

Conformal symmetry fixes three-point function up fo constant



The conformal bootstrap

« Crossing Symmetry (combined with OPE):
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The conformal bootstrap

« Crossing Symmetry (combined with OPE):
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The conformal bootstrap

« Crossing Symmeitry (combined with OPE):
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Kinematically determined by conformal symmetry




The (1D) conformal bootstrap

\
0-4
O :
O Morally, s-t channel duality
\o
O
3
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2 o _ o : Y
E )\A FA (Z) — —FO (Z) <—— Identity operator contribution
A€S In D=1 (no spin!)

Ga(z) = 22 2F1 (A A, 24, 2)

Crossing vector
o o GA(Z) GA(l — Z) Conformal block
A(Z) - ZZAG T (1 . Z)QA" ( ] )

s — m?




Extracting information
from crossing
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Make assumptions on possible intermediate states and fry to
get a contfradiction.

Such contradictions are possible thanks to positivity of
coefficients.

They are made explicit by the construction of linear
functionals.









Hyperplane (linear functional):
w(0) >0
W (A) Z 0 VAE



Bounding CFT data

To bound dimension of leading operator in OPE,

ocoxo=1+0-+...

construct a functional satisfying:

B(A > Ap) >0

5(0) > 0,

This leads to contradiction when applied to hypothetic crossing

solution

0<B|Fg+ > XA

A>Ag

=0 = Ap < Ag

Optimal bound is obtained by lowering AO until no such

functional exisfts.
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Bounding CFT data

To place upper bound on OPE coefficient we construct a
different kind of functional:

a(Ap) >0, af(A=>Ag) >0

This leads fo:

_ 2 _a(O)
=0= ), < o (Ay)

F§ + XA FR, + Y AAFR
A>Ap

Optimal bound is obtained by minimizing the ratio over all
functionals.



Bounding CFT data

This approach was pioneered by Rattazzi, Rychkov,Tonni and
Vichi in their landmark ‘08 paper + follow ups.

Basic approach still in use foday: use Taylor series

w[F] =) w07 F(2)

1=0

b=

==

Functionals are constructed numerically via numerical
optimization algorithmes.

We propose a new class of functionals, where it is possible to
obtain exact, optimal results.



Functional ansatz I

G »/v;.—

z=0 z=1 2=0 z=1

[ wFsw) > [ow) § 22 [ "4z h(z)Disc [Fa (=)

<z — W

The functions F are antisymmetric

(h(z) = /d'wp(w)( 2w — 1 ) in their arqument

z—w)(l—z—w)




Functional ansatz 11

f()l
h(z) (2)
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Functional ansatz III

a B
%—I—z’oo 1
w(@)i= [ dz fFa) + [dzgl2)Fala
k 2—’600 3 /

For functionals to be well defined, need appropriate
boundary conditions for kernels at 1 and infinity.

As a remnant of the original definition, we demand the gluing
condition:

Ref(z) =—g(z) —g(1—2), 0<z<1



Why is this good?

After some contour manipulations (valid for large enough A):

:»E»J(A) = g(A) — Re [e_mm_ma)f(mﬂ

= 1 2g(z Galz) = +Ooz 24407t GA(Zgl)
0= [ gDt HA)= [ deferivh 2
We should find suitable f(z), g(2)
so that:
g(A) > |f(A)‘ = CU(A) > 0 Recall:

G = 22, F (A A, 2A,
Optimal functionals minimize this ale) =z )

inequality in as large as range as Fa(s) = Ga(z)  Ga(l—2)
possible. 228, (1— 2)%A,



Why is this good?

FA) = [f(A)|e ™A g(A) ~ [f(A)]

7

W(A) ~ g(A) [sin 1A 24, - 5(A)]] i

« The positivity constraints are saturated at a discrete set of
conformal dimensions, i.e. the functional has zeros at this
points.

« The optimal functional zeros provide a solution to crossing —
solution provides an obstruction to further optimization.

« Thus at least some CFT scaling dimensions are encoded in the
kernels.



Free case

A simple way to obtain a good functionalis to set:

1

Flr=
g(z) = - _(z)22Aa f(z) <0, z>1

This implies exactly  g(A) = —f(A) >0

cMA%:mA)hngmfﬂAa—ﬂr

The functional zeros match with spectrum of generalized free

fermion:
A,=14+2A,+2n, neN
A 1 1 B 2GA, Just Wick contractions,
((a ) ~ L2, T (1—2)28 ZQA T Z ¥ ZQA free massive field in

AdS>



Free case

A simple way to obtain a good functionalis to set:

g(z) = — f(liz) f(z) <0, z>1

(1 _ Z)Z—QA(,

This implies exactly  g(A) = —f(A) >0

70

W(A) = g(A) [sm 1A 24, - 1]} ’

The gluing condition becomes an equation for the kernel:

Ref(z) = (1 — 2?2 2 f(s1s) + 2282 (1)



Free case

« This can be solved completely with appropriate b.c.’s.:

2:—1[ ~( 13 3 1
f3(2) = —w(8g) = [F (—— S 204 53 A + 1,A¢+z;——) '

22 4w
9 15 1
w=z(z—1) +_16 3P (2 B% 2A¢»+ Ag +2,84 +3; _E)] :

« Functional action annihilates identity and is nonnegative for:
A>Ag=1+2A,

« This bounds the gap to the leading scalar. The bound is
optimal since it is saturated by the known generalized free
fermion CFT.

« Solution with different b.c.’s provides OPE bounds.



Gapmax: exact vs
numerics

2 2 2
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A,=1+2A, +2n, ncN



OPEmax: exact vs
numerics
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Who ordered that?

« Functional equation has infinitely many more

solutions!

Bo(A)

N R

Ag
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A,=1+2A, +2n, ncN



Who ordered that?

« Functional equation has infinitely many more

solutions!
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Who ordered that?

« Functional equation has infinitely many more

solutions!
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Who ordered that?

« Functional equation has infinitely many more

solutions!

B3(A)
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A, = =
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Who ordered that?

« Functional equation has infinitely many more

solutions!

Ba(A)

T ee——

0 2 4 6 8 10 12 14 A
A,=1+2A, +2n, ncN



A basis for crossing

OPEmax type functionals

Gapmax type functionals

Oég(A)
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A basis for crossing

OPEmax type functionals

 They tell us how to free free 1/ _
deform free solution Z [5% Fan +0A,c, FAH} =05
n=0
Bn (Am) = 0, B;(Am) — 5n,m, Namely:
| 0c ™ = @, (6.9)

Gapmax type functionals

5A, = B (8S) /e



A basis for crossing

« Deforming the free solution by a new operator, we find the

identity:
4 N
+o0
Fa(2) = ) [an(A)Fa, (2) + Ba(A)F4, ()]
- n=0 /
* For any solution to crossing we must have:
= ™
Z Crn O (D)) = i€
T m=0
O:F0+ZcmFAm = .
m=0 Z ConBn(Am) =0
e /




Extremal Flows

« We can now perturb around the free solution! and compute
anomalous dimensions and OPE coefficients.

« Results match with perturbation theory in AdS2 to the order we
checked. No integrals to perform, just (nested) series.

A() =2 —|— g
1 317 5 w299 1225 6995
Ay =4+ g+ == — 2C¢3) ) ¢+ [10¢(B) + — — LB+ o m? — —— | g°
! +6g+(144 36 ))g +[ O+ g~ B 5500™ 353 Y
. Two-loop result from AdS perspective!

"We perturb the free boson whose functionals are very similar to the ones shown.



Conclusions

We have proposed a class of functionals to analyse crossing
symmetry sum rules.

The class seems to be general enough to capture optimal
functionals in a variety of cases.

We have proposed a “basis” of the crossing equation which
reformulates the problem in tferms of an infinite set of
functionails.

We have recovered AdS2 perturbation theory using our
approach.



Outlook

Physical meaning of functionalse
Functionals/Basis in higher dimensionse
Connection to the Polyakov-like booftstrap®?

Non-perturbative solutionse



Thank you!

OPERATION BOOTSTRAP
® 1
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OPEmax at large A

In the limit of large dimensions, tfransforms localize, e.g.:
2
AA; — A
O e N e e

Hence we can solve the problem by equating kernels as in
free case. Zeros of functional determined by phase of f kernel
directly.

wa,(A) ~ 2u(Ag, s) sin? [g (A — 2A, + 5(;‘1))] ’f (i)

22z — 1
&) = oG — ) - T+ )50

m3/2 V2 —m 92(m+2) —Ay
Cg S 64ﬂ-A¢‘ [ 2—m 2—|—m]
m? — 2|24+ m [ (2 —m) (2+m)



QFT in a box (also a CFT!)

Our box is anti- de Sitter space.

Poincare symmetry of QFT in d+1
deformed to SO(d,2)

These are the symmetries of a
conformal field theory in d
dimensions.

Pushing bulk operators to the
AdS boundary at spatial infinity
defines CFT operators.



Scattering experiments

* We set up a bulk scattering experiment by sourcing with boundary

insertions.

PN

Boundary CFT
operator insertions

O,

“

Boundary CFT
operator insertions

e




CFT to S-matrix

* Large AdS radius recovers flat space

scattering.
O3 Oy
\ / * Rest of the dictionary:
Ao = mRaqs (O(24)O(23)O(x2)O(x1))
« CFT operators | (K3, ka|1 + 4T |k, k2)
with large
scaling

dimension! 01 O,



Single particle exchange
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 Universal bounds in 1+1d QFTs




