## A Strategy for LATTICE FIELD THEORY on curved RIEMANN MANIFOLDS



REGGE


FINITE ELEMENT (FEM)


QUANTUM CONTER TERM = QFE

Rich Brower, Boston University: Pairs June I2, 2018 with G. Fleming,A. Gasbarro, T. Raben, C-I Tan, E.Weinberg https://arxiv.org/abs/1803.08512 Phi 4th on Riemannian Manifold

## BREAKING OUT OF FLAT LAND LATTICE FIELD THEORY



Christopher Colombus map c. 1490.

## QUANTUM FINITE ELEMENT (QFE) CONSTRUCTION

1. "Regular" Simplicial Complex (aka triangulation)

- Curvature $R=0, R>0, R<0$

2. Finite Elements/Regge for Free Fields

- Spin: J = 0 (scalar) , I/2 (Dirac), I (Gauge)

3. UV problem and Quantum Corrections

- $c=1 / 2$ CFT (aka phi-4 Ising) on $\mathbb{S}^{2}$


## REGULARTRIANGULATIONS!

Triangle case

Preserves Discrete
Subgroup of Isometries

$\frac{1}{p}+\frac{1}{q}>1 / 2$
vertex $\quad q=3,4,5$
$\frac{1}{p}+\frac{1}{q}=1 / 2$
flat $\mathbb{T}^{2}$
vertex $\quad q=6$

Hyperbolic $\mathbb{A} d S^{2}$
vertex $\quad q=7,8,9, \cdots$

## Start with maximum regular Tesselation


$1 / p+1 / q>1 / 2$ for regular positive curvature tessellation

## Sphere Constant Positive Curvature vs Cylinders

$$
\mathbb{S}^{d} \quad \rightarrow \quad \mathbb{R} \times S^{d}
$$



```
Aristotle's 2% Error!
```



Fast Code Domains of
Regular 3D Grids on Refinement
$(2 \pi-5 \operatorname{ArcCos}[1 / 3]) /(2 \pi)=0.0204336$

The full symmetry group of the 600-cell is the Weyl group of $\mathrm{H}_{4}$. This is a group of order 14400. It consists of 7200 rotations and 7200 rotation-reflections. The rotations form an invariant subgroup of the full symmetry group.

## Hyperbolic (e.g. Poincare Disk) and Global AdS

$$
\mathbb{H}^{d} \quad \rightarrow \quad \mathbb{A} d S^{d}
$$


$1 / p+1 / q<1 / 2$
Triangle Group Tesselation:
Preserve Finite subgroup of the Modular Group

These Hyperbolic Tesselatoin are "Tensor Networks" : What can we do them as lattice Field Theories?

## PART I: FREE THEORIES

REGGE: Piecewise linear metric

$$
\left(\mathcal{M}, g_{\mu \nu}(x)\right) \leftrightarrow\left(\mathcal{M}_{\sigma}, g_{\sigma}=\left\{l_{i j}\right\}\right)
$$



Simplicial Complex/Delaunay Dual Complex + Regge flat metric on each Simplex

## FEM: Piecewise linear fields

$$
\phi(x) \leftrightarrow \phi=\sum_{i} \phi_{i} W_{i}(\xi)
$$



Actually fancier methods: Discrete Exterior Calculus (scalar), Spin connection (Fermion), Wilson links (gauge), etc.


$$
F E M: A_{d} \frac{\left(\phi_{2}-\phi_{3}\right)^{2}}{l_{1}^{2}} \quad * d * d \phi_{i}
$$

Delaunay Link Area: $\quad A_{d}=h_{1} l_{1}$

## SIMPLICIAL ALGEBRA

Building a Simplicial Complex


$$
\sigma_{0} \rightarrow \sigma_{1} \rightarrow \sigma_{2} \rightarrow \cdots \rightarrow \sigma_{D}
$$

Circumcenter Dual Lattice
$\mathcal{S}^{*}$

$$
\sigma_{0}^{*} \leftarrow \sigma_{1}^{*} \leftarrow \sigma_{2}^{*} \leftarrow \cdots \leftarrow \sigma_{D}^{*}
$$

boundary operator:

$$
\partial \sigma_{n}\left(i_{0} i_{1} \cdots i_{n}\right)=\sum_{k=0}^{n}(-1)^{k} \sigma_{n-1}\left(i_{0} i_{1} \cdots \widehat{i}_{k} \cdots i_{n}\right)
$$

Orthogonality and proper hybrid tiling : $\quad V_{n n^{*}}=\left\langle\sigma_{n} \mid \sigma_{n}^{*}\right\rangle=\int \sigma_{n} \wedge \sigma_{n}^{*}=\frac{n!(D-n)!}{D!}\left|\sigma_{n}\right|\left|\sigma_{n}^{*}\right|$

Add matter $\quad \mathrm{n}$ form $\omega_{n}$ on $\sigma_{n}$
Stokes Theorem for Exterior Derivative

$$
\int_{\sigma_{n}} d \omega(y)=\int_{\partial \sigma_{n}} \omega(y) \quad \text { or } \quad\left\langle\sigma_{n} \mid d \omega\right\rangle=\left\langle\partial \sigma_{n} \mid \omega\right\rangle
$$

$$
\delta=* d * \quad \Longrightarrow \quad \delta^{2}=d^{2}=0
$$

Beltrami-Laplace

$$
(\delta+d)^{2} \phi=* d * d \phi \quad \text { Kahler-Dirac }
$$

$$
(\delta+d) \psi=0
$$

## FEM FIXES SPECTRAL DEFECTS OF LAPLACIAN ON SPHERE

For $s=8$ first $(l+1)^{\star}(l+1)=64$ eigenvalues

## BEFORE FEM



I, m

AFTER FEM


I, m

## SPECTRUM OF FEM LAPLACIAN ON A SPHERE



## UV scale

## IR scale

Fit $l+1.00012 l^{2}$
$-13.428110^{-6} l^{3}-5.5724410^{-6} l^{4}$

## Dirac ON SIMPLICIAL MANIFOLD

$$
\begin{array}{ll}
S=\frac{1}{2} \int d^{D} x \sqrt{g} \bar{\psi}\left[\mathbf{e}^{\mu}\left(\partial_{\mu}-\frac{i}{4} \boldsymbol{\omega}_{\mu}(x)\right)+m\right] \psi(x) \\
\mathbf{e}^{\mu}(x) \equiv e_{a}^{\mu}(x) \gamma^{a} & \text { Verbein \& Spin connection*} \\
\boldsymbol{\omega}_{\mu}(x) \equiv \omega_{\mu}^{a b}(x) \sigma_{a b} & , \quad \sigma_{a b}=i\left[\gamma_{a}, \gamma_{a}\right] / 2
\end{array}
$$

(1) New spin structure "knows" about intrinsic geometry
(2) Need to avoid simplex curvature singularities at sites.
(3) Spinors rotations (Lorentz group) is double of O(D).

$$
e^{i(\theta / 2) \sigma_{3} / 2} \rightarrow-1 \quad \text { as } \quad \theta \rightarrow 2 \pi
$$

* Must satisfy the tetrad postulate!

$$
\omega_{\mu}^{a b}=\frac{1}{2} e^{\nu[a}\left(e_{\nu, \mu}^{b]}-e_{\mu, \nu}^{b]}+e^{b] \sigma} e_{\mu}^{c} e_{\nu, \sigma}\right) .
$$

$$
\begin{gathered}
S_{\text {naive }}=\frac{1}{2} \sum_{\langle i, j\rangle} \frac{V_{i j}}{l_{i j}}\left[\bar{\psi}_{i} \vec{e}^{(i) j} \cdot \vec{\gamma} \Omega_{i j} \psi_{j}-\bar{\psi}_{j} \Omega_{j i} \vec{e}^{(i) j} \cdot \vec{\gamma} \psi_{i}\right]+\frac{1}{2} m V_{i} \bar{\psi}_{i} \psi_{i} \\
\vec{e}(i) j \quad \vec{e}(j) i
\end{gathered}
$$

DO NOT USE PIECEWISE LINEAR REGGE CALCULUS MANIFOLD!

Simplicial Tetrad Hypothesis

$$
e_{a}^{(i) j} \gamma^{a} \Omega_{i j}+\Omega_{i j} e_{a}^{(j) i} \gamma^{a}=0
$$

Gauge Invariance under Spin(D) transformations

$$
\psi_{i} \rightarrow \Lambda_{i} \psi \quad, \quad \bar{\psi}_{j} \rightarrow \bar{\psi}_{j} \Lambda_{j}^{\dagger} \quad, \quad \mathbf{e}^{(i) j} \rightarrow \Lambda_{i} \mathbf{e}^{(i) j} \Lambda_{i}^{\dagger} \quad, \quad \Omega_{i j} \rightarrow \Lambda_{i} \Omega_{i j} \Lambda_{j}^{\dagger}
$$

## QFE SUMMARY OF SIMPLICIAL FIELD

$$
\begin{aligned}
& J=0 \quad S_{\text {scalar }}=\frac{1}{2} \sum_{\langle i, j\rangle} \frac{V_{i j}}{l_{i j}^{2}}\left(\phi_{i}-\phi_{j}\right)^{2}, \\
& J=1 / 2 \quad S_{\text {Wilson }}=\frac{1}{2} \sum_{\langle i, j\rangle} \frac{V_{i j}}{l_{i j}}\left(\bar{\psi}_{i} \hat{e}_{a}^{j(i)} \gamma^{a} \Omega_{i j} \psi_{j}-\bar{\psi}_{j} \Omega_{j i} \hat{e}_{a}^{i(j)} \gamma^{a} \psi_{i}\right)
\end{aligned}
$$

$$
J=1 \quad S_{\text {gauge }}=\frac{1}{2 g^{2} N_{c}} \sum_{\triangle_{i j k}} \frac{V_{i j k}}{A_{i j k}^{2}} \operatorname{Tr}\left[2-U_{\triangle_{i j k}}-U_{\triangle_{i j k}}^{\dagger}\right]
$$

$$
V_{i j}=\left|\sigma_{2}(i j) \wedge \sigma_{2}^{*}(i j)\right|
$$

$$
U_{\triangle_{i j k}}=U_{i j} U_{j k} U_{k i} \quad A_{i j k}=\left|\sigma_{3}(i j k)\right| \quad V_{i j k}=\left|\sigma_{3}(i j k) \wedge \sigma_{3}^{*}(i j k)\right|
$$

U(1) QED

$$
\begin{aligned}
2-U_{\triangle_{123}}-U_{\triangle_{123}}^{\dagger} & =2\left[1-\cos \left(\theta_{12}+\theta_{23}+\theta_{31}\right)\right] \\
& \simeq\left(\theta_{12}+\theta_{23}+\theta_{31}\right)^{2}
\end{aligned}
$$

## 2D DIRAC SPECTRA ON SPHERE



Exact is integer spacing for $\mathrm{j}=1 / 2,3 / 2,5 / 2 \ldots$ Exact degeneracy $2 \mathrm{j}+1$ : No zero mode in chiral limit!.

## https://arxiv.org/abs/1610.08587

## Lattice Dirac Fermions on a Simplicial Riemannian Manifold

Richard C. Brower, George T. Fleming, Andrew D. Gasbarro, Timothy G. Raben, Chung-I Tan, Evan S. Weinberg

## FREE MAJORANA FERMIONS ON S2

$$
\left\langle\psi\left(z_{1}\right) \bar{\psi}\left(z_{1}\right) \bar{\psi}\left(z_{1}\right) \psi\left(z_{2}\right)\right\rangle=\left[\frac{1}{\partial}\right]_{z_{1}, z_{2}}\left[\frac{1}{\bar{\partial}}\right]_{z_{1}, z_{2}}=\frac{1}{4 \pi^{2}} \frac{1}{\left|z_{1}-z_{2}\right|^{2}}
$$

$$
\begin{aligned}
& \frac{\left\langle\sigma(0) \epsilon\left(z_{2}\right) \epsilon\left(z_{3}\right) \sigma(\infty)\right\rangle}{\left\langle\epsilon\left(z_{2}\right) \epsilon\left(z_{3}\right)\right\rangle} \\
= & \frac{1}{4}\left|\sqrt{z_{1} / z_{2}}+\sqrt{z_{2} / z_{1}}\right|^{2}
\end{aligned}=\frac{1}{4}(r+1 / r+2 \cos \theta)
$$





## PARTII: INTERACTION THEORIES

TEST CFT: PHI 4TH AT WILSON-FISHER FIXED POINT IN 2D \& $3 D$.


## TEST 2D ISING/PHI 4TH ONTHE RIEMANN SPHERE

## Stereographic project of Complex Plane:



$$
\begin{aligned}
& \xi=\tan (\theta / 2) e^{-i \phi}=\frac{x+i y}{1+z} \\
& |\xi|=\sqrt{\xi_{1}^{2}+\xi_{2}^{2}} \quad \xi=\xi_{1}+i \xi_{2} \\
& \vec{r}=(x, y, z) \quad \vec{r} \cdot \vec{r}=1 \\
& \left|\vec{r}_{1}-\vec{r}_{2}\right|=2-2 \cos \left(\theta_{12}\right)
\end{aligned}
$$

Conformally Invariant Cross Ratios are "Preserved"

$$
\frac{\left|\xi_{1}-\xi_{2}\right|\left|\xi_{3}-\xi_{4}\right|}{\left|\xi_{1}-\xi_{3}\right|\left|\xi_{1}-\xi_{4}\right|}=\frac{\left|\vec{r}_{1}-\vec{r}_{2}\right|\left|\vec{r}_{1}-\vec{r}_{2}\right|}{\left|\vec{r}_{1}-\vec{r}_{3}\right| \mid \vec{r}_{1}-\vec{r}_{4}}
$$

## BINDER CUMULANT NEVER CONVERGES <br> $$
U_{4}=\frac{3}{2}\left[1-\frac{\left\langle M^{4}\right\rangle}{3\left\langle M^{2}\right\rangle^{2}}\right]
$$

0.85102


Very fast cluster algorithm:
Brower,Tamayo "Embedded Dynamics for phi 4th Theory" PRL 1989. Wolff single cluster + plus Improved Estimators etc

# Restoring Isometries for ON A SIMPLICIAL COMPLEX 

How much help do you need from FEM ?


Hypercubic Lattice
$\square$

Is Renormalized perturbation theory at the UV fixed point enough to uniquely/correctly define the IR Quantum Field Theory?

## UV DIVERGENCE BREAKS ROTATIONS

$$
\delta m^{2}=\lambda\langle\phi(x) \phi(x)\rangle \rightarrow \frac{1}{K_{x x}}
$$


one configuration

average of config.

## One LOOP Counter Term

$$
\Delta m_{i}^{2}=6 \lambda\left[K^{-1}\right]_{i i} \simeq \frac{\sqrt{3}}{8 \pi} \lambda \log \left(1 / m_{0}^{2} a_{i}^{2}\right)=\frac{\sqrt{3}}{8 \pi} \lambda \log \left(N_{s}\right)+\frac{\sqrt{3}}{8 \pi} \lambda \log \left(a^{2} / a_{i}^{2}\right)
$$

Exact Continuum Divergence

Local Cut-off
Scheme Dependence

$$
\delta \mu_{i}^{2}=-6 \lambda\left(\left[K^{-1}\right]_{i i}-\frac{1}{N_{s}} \sum_{j=1}^{N_{s}}\left[K^{-1}\right]_{j j}\right)
$$

## MODEL OF COUNTERTERM



## RG Proof Of UNIVERSAL UV Logs

$$
\begin{aligned}
& G_{x x}(m) \simeq c_{x} \log \left(1 / m^{2} a_{x}^{2}\right)+O\left(a^{2} m^{2}\right) \\
& \quad \Longrightarrow \gamma\left(m_{0}^{2}\right)=-m_{0} \frac{\partial}{\partial m_{0}} G_{x x}\left(m_{0}^{2}\right) \simeq 2 c_{x}+O\left(m_{0}^{2}\right) \\
& m_{0}=a m \rightarrow 0
\end{aligned}
$$

## FEM Spectral Fidelity

IR: Region. UV

$$
\begin{aligned}
G_{x y}\left(m^{2}\right) & =\sum_{n} \frac{\phi_{n}^{*}(x) \phi_{n}(x)}{E_{n}^{(0)}+m^{2}} \\
& \simeq \frac{\sqrt{3}}{8 \pi} \sum_{l=0}^{L_{0}} \frac{(2 l+1) P_{l}\left(r_{x} \cdot r_{y}\right)}{l(l+1)+\mu_{0}^{2}}+\sum_{n=\left(L_{0}+1\right)^{2}}^{N} \frac{\phi_{n}^{*}(x) \phi_{n}(y)}{E_{n}^{(0)}+m^{2}}
\end{aligned}
$$

Insensitive to UV defects

$$
\begin{aligned}
\gamma\left(m_{0}^{2}\right) & =-m_{0} \frac{\partial}{\partial m_{0}} G_{x x}\left(m_{0}^{2}\right) \\
& \simeq \frac{\sqrt{3}}{8 \pi} \int_{0}^{\Lambda_{0}^{2}} d E^{(0)} \frac{m_{0}^{2}}{\left(E^{(0)}+m_{0}^{2}\right)^{2}}=\frac{\sqrt{3}}{8 \pi} \frac{1}{1+m_{0}^{2} / \Lambda_{0}^{2}}
\end{aligned}
$$

One Loop Counter Term vs Two Loop Convergence


## Counter term in 3D



$$
\delta \mu_{C T}^{2}(x, y) \sim \lambda_{0} c_{x} \delta_{x y}+\lambda_{0}^{2} e^{-6|x-y| / a}
$$

Counter Term


## EXACT C = I/2 CFT ON 2D SPHERE

Exact Two point function

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\frac{1}{\left|x_{1}-x_{2}\right|^{2 \Delta}} \rightarrow \frac{1}{\left|1-\cos \theta_{12}\right|^{\Delta}}
$$

$\Delta=\eta / 2=1 / 8$

$$
x^{2}+y^{2}+z^{2}=1
$$

4 pt function

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0, z, 1, \infty)
$$

$g(0, z, 1, \infty)=\frac{1}{2|z|^{1 / 4}|1-z|^{1 / 4}}[|1+\sqrt{1-z}|+|1-\sqrt{1-z}|]$
Critical Binder Cumulant

$$
U_{B}^{*}=1-\frac{\left\langle M^{4}\right\rangle}{3\left\langle M^{2}\right\rangle\left\langle M^{2}\right\rangle}=0.567336
$$

Dual to Free Fermion

## Now Binder Cumulant Converges

$$
U_{2 n}\left(\mu^{2}, \lambda, s\right)=U_{2 n, c r}+a_{2 n}(\lambda)\left[\mu^{2}-\mu_{c r}^{2}\right] s^{1 / \nu}+b_{2 n}(\lambda) s^{-\omega}
$$

$$
\text { FIT } \quad U_{4, \mathrm{cr}}=0.85020(58)(90)
$$

THEORY $U_{4}^{*}=0.8510207(63)$
FIT

$$
U_{6, \text { cr }}=0.77193(37)(90)
$$

THEORY $\quad U_{6}^{*}=0.773144(21)$

$$
\begin{aligned}
& U_{4}=\frac{3}{2}\left[1-\frac{\left\langle M^{4}\right\rangle}{3\left\langle M^{2}\right\rangle\left\langle M^{2}\right\rangle}\right] \\
& \mu_{c r}^{2}=1.82240070(34) \\
& d o f=1701 \quad, \quad \chi^{2} / d o f=1.026
\end{aligned}
$$



Simultaneous fit for s up 800: E.G. 6,400,002 Sites on Sphere



$$
\begin{aligned}
& \int_{-1}^{1} d z\left(\frac{2}{1-z}\right)^{1 / 8} P_{l}(z) \quad \Delta_{\sigma}=\eta / 2=1 / 8 \simeq 0.128 \\
& \quad \Longrightarrow \frac{16}{7}, \frac{16}{35}, \frac{48}{161}, \frac{816}{3565}, \frac{12240}{64883}, \frac{493680}{3049501}, \frac{33456}{234577}, \frac{55760}{435643}, \frac{3602096}{30930653}, \frac{20129360}{187963199}, \frac{541373840}{5450932771} \cdots
\end{aligned}
$$

## EXACT FOUR POINT FUNCTION

$$
\begin{array}{rlr}
g(u, v) & =\frac{\left\langle\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right\rangle}{\left\langle\phi_{1} \phi_{3}\right\rangle\left\langle\phi_{2} \phi_{4}\right\rangle} & u=z \bar{z}, \quad v=(1-z)(1-\bar{z}) \\
& =\frac{1}{\sqrt{2}|z|^{1 / 4}|1-z|^{1 / 4}}[|1+\sqrt{1-z}|+|1-\sqrt{1-z}|]
\end{array}
$$

Crossing Sym: $\quad|1+\sqrt{1-z}|+|1-\sqrt{1-z}|=\sqrt{2+2 \sqrt{(1-z)(1-\bar{z})}+2 \sqrt{z \bar{z}}}$


## OPE Expansion: $\quad \phi \times \phi=\mathbf{1}+\phi^{2}$ or $\sigma \times \sigma=\mathbf{1}$




$$
G_{s}(r, \theta) \propto 1+\lambda_{\epsilon}^{2} g_{\epsilon, 0}(r, \theta)+\lambda_{T}^{2} g_{T, 2}(r, \theta)
$$

$\lambda_{T}^{2}=\frac{\Delta_{\sigma}^{2} d^{2}|z|^{d-2}}{C_{T}(d-1)^{2}} \rightarrow \frac{1}{16 C_{T}} \quad$ for $d=2$,

$$
g_{T_{2}(z)}=-3\left(1+\frac{1}{z}\left(1-\frac{z}{2}\right) \log (1-z)\right)+\text { c.c. }
$$

## Fit TO OPE EXPANSION

| $\mu^{2}$ | $s$ | $r_{\min } \leq r \leq r_{\max }$ | norm | $\Delta_{\epsilon}$ | $\lambda_{\epsilon}^{2}$ | $c$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.82241 | 9 | $0.25 \leq r \leq 0.75$ | 0.2900 | 1.075 | 0.2536 | 0.4668 |
| 1.82241 | 9 | $0.30 \leq r \leq 0.70$ | 0.2901 | 1.075 | 0.2533 | 0.4704 |
| 1.82241 | 9 | $0.35 \leq r \leq 0.65$ | 0.2902 | 1.077 | 0.2533 | 0.4738 |
| 1.82241 | 9 | $0.40 \leq r \leq 0.60$ | 0.2902 | 1.016 | 0.2427 | 0.4747 |
| 1.82241 | 18 | $0.25 \leq r \leq 0.75$ | 0.2051 | 1.068 | 0.2563 | 0.4866 |
| 1.82241 | 18 | $0.30 \leq r \leq 0.70$ | 0.2051 | 1.056 | 0.2544 | 0.4878 |
| 1.82241 | 18 | $0.35 \leq r \leq 0.65$ | 0.2051 | 1.050 | 0.2535 | 0.4904 |
| 1.82241 | 18 | $0.40 \leq r \leq 0.60$ | 0.2051 | 1.046 | 0.2526 | 0.4884 |
| 1.82241 | 36 | $0.25 \leq r \leq 0.75$ | 0.1457 | 1.031 | 0.2528 | 0.4926 |
| 1.82241 | 36 | $0.30 \leq r \leq 0.70$ | 0.1458 | 1.026 | 0.2519 | 0.4932 |
| 1.82241 | 36 | $0.35 \leq r \leq 0.65$ | 0.1458 | 1.018 | 0.2508 | 0.4931 |
| 1.82241 | 36 | $0.40 \leq r \leq 0.60$ | 0.1458 | 1.007 | 0.2486 | 0.4933 |

## CONCLUSION

I. Simplicial Method for Scalars, Fermion and Gauge fields YES!
2. Quantum Corrections (QFE): Super renormalizable YES ?
3. 4D UV asymptotical free: Local RG approach/Wilson Flow ??
4. BSM Multi-flavor Gauge Theories with IR fixed point.WHY NOT
5. Simplicial Lattice in Anti de Sitter space YES! WHY?
6. General Mathematical "Proofs" DIFFICULT!

## BACK UP SLIDES

## NEED COLLABORATORS \& SUPPORT



## SPHERES AND CYLINDERS ARE NICE*

- Spheres and Cylinders are Weyl trans* \& CFT are "preserved".
- Sphere: For CFT, no finite volume approx \& define: "c-theorems"
- Cylinders: Radial Quantized: Bndry of global AdS (H = Dilatations)


$$
\begin{aligned}
& \mathbb{R}^{d} \rightarrow \mathbb{S}^{d} \\
& d s_{f l a t}^{2}=\sum_{\mu=1}^{d} d x^{\mu} d x^{\mu}=e^{\sigma(x)} d \Omega_{d}^{2} \xrightarrow{\text { Weyl }} d \Omega_{d}^{2} . \\
& \mathbb{R}^{d+1} \rightarrow \mathbb{R} \times \mathbb{S}^{d} \\
& d s_{f l a t}^{2}=\sum_{\mu=1}^{d+1} d x^{\mu} d x^{\mu}=e^{2 t}\left(d t^{2}+d \Omega_{d}^{2}\right) \xrightarrow{W \text { eyl }}\left(d t^{2}+d \Omega_{d}^{2}\right) \text {. } \\
& \mathbb{R}^{d} \quad \mathbb{S}^{d} \quad \mathbb{H}^{d} \\
& \text { *MAX SYM SPACE ARE NICE: Flat, de Sitter AdS }
\end{aligned}
$$

## ORIGNINAL MOTIVATON: Radial Quantization

Conformal (near conformal) for

- BSM composite Higgs
- AdS/CFT weak-strong duality
- Model building \& Critical Phenomena in general

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{T}^{3} \quad \text { vs } \quad \mathbb{R} \times \mathbb{S}^{3} \\
& H=P_{0} \text { in } t \Longrightarrow D \text { in } \tau=\log (r)
\end{aligned}
$$

Potential advantage: Scales increases exponentially in lattice size L!
$1<t<a L \Longrightarrow 1<\tau=\log (r)<L$

## EXAMPLE SCALAR THEORY

$$
\begin{aligned}
& S=\frac{1}{2} \int_{\mathcal{M}} d^{D} x \sqrt{g}\left[g^{\mu \nu} \partial_{\mu} \phi(x) \partial_{\nu} \phi(x)+m^{2} \phi^{2}(x)+\lambda \phi^{4}(x)\right] \\
& \vec{y}=\xi_{1} \vec{r}_{1}+\cdots+\xi_{D+1} \vec{r}_{D+1} \\
& \text { with } \xi_{1}+\cdots+\xi_{D+1}=1 \\
& I_{\sigma}=\frac{1}{2} \int_{\sigma} d^{D} y\left[\vec{\nabla} \phi(y) \cdot \vec{\nabla} \phi(y)+m^{2} \phi^{2}(y)+\lambda \phi^{4}(y)\right] \\
& =\frac{1}{2} \int_{\sigma} d^{D} \xi \sqrt{g}\left[g^{i j} \partial_{i} \phi(\xi) \partial_{j} \phi^{2}(\xi)+m^{2} \phi^{2}(\xi)+\lambda \phi^{4}(\xi)\right] \\
& I_{\sigma} \simeq \sqrt{g_{0}}\left[g_{0}^{i j} \frac{\left(\phi_{i}-\phi_{0}\right)\left(\phi_{j}-\phi_{0}\right)}{l_{i 0} l_{j 0}}+m^{2} \phi_{0}^{2}+\lambda \phi_{0}^{4}\right]
\end{aligned}
$$

# Using Binder Cumulants 

In infinite volume

$$
\begin{array}{ll}
U_{s}=\frac{3}{2}\left(1-\frac{m_{4}}{3 m_{2}^{2}}\right) & m_{n}=\left\langle\phi^{n}\right\rangle \\
U_{6}=\frac{15}{8}\left(1+\frac{m_{6}}{30 m_{2}} \frac{-\frac{m_{s}}{2 m}}{2 m_{2}^{2}}\right) &
\end{array}
$$

$\mathrm{U}_{2 \mathrm{n}}=0$ in disordered phase $U_{2 n}=1$ in ordered phase $0<\mathrm{U}_{2 n}<1$ on critical surface

$U_{12}=\frac{155925}{44224}\left(1-\frac{m_{12}}{1247400 m_{2}^{6}}+\frac{m_{10}}{18900 m_{2}^{5}}+\frac{m_{8} m_{4}}{2520 m_{2}^{6}}-\frac{m_{8}}{420 m_{2}^{4}}\right.$

$$
\left.+\frac{m_{6}^{2}}{2700 m_{2}^{6}}-\frac{m_{6} m_{4}}{45 m_{2}^{5}}+\frac{m_{6}}{15 m_{2}^{3}}-\frac{m_{4}^{3}}{108 m_{2}^{6}}+\frac{m_{4}^{2}}{4 m_{2}^{4}}-\frac{m_{4}}{m_{2}^{2}}\right)
$$

- $U_{2 n, \text { cr }}$ are universal quantities.
- Deng and Blöte (2003): $U_{4, c r}=0.851001$
- Higher critical cumulants computable using conformal $2 n$-point functions: Luther and Peschel (1975)
Dotsenko and Fateev (1984)


