Transverse-momentum dependence of gluon distributions at small-x

#### **Cyrille Marquet**

Centre de Physique Théorique Ecole Polytechnique & CNRS

CM, E. Petreska and C. Roiesnel, JHEP 10 (2016) 065, arXiv:1608.02577

# Contents of the talk

• The need for TMDs at colliders

TMDs = transverse-momentum-dependent parton distributions

- The context for this talk: forward di-jets at the LHC their structure of may be modified in p+Pb vs p+p collisions
- Gluon TMDs in the small-x limit

their (non-linear) QCD evolution can be obtained from the socallled JIMWLK equation

• Numerical results

new insight regarding the low-momentum behavior (gluon saturation regime)

# The need for TMDs at hadron (and other) colliders

# **Collinear factorization**

in standard pQCD calculations, the incoming parton transverse momenta are set to zero in the matrix element and are integrated over in the parton densities

$$d\sigma_{AB\to X} = \sum_{ij} \int dx_1 dx_2 \underbrace{f_{i/A}(x_1, \mu^2) f_{j/B}(x_2, \mu'^2)}_{\mathsf{k_T} \text{ integrated quantities}} d\hat{\sigma}_{ij\to X} + \mathcal{O}\left(\Lambda_{QCD}^2/M^2\right)$$

$$\underbrace{\mathsf{k_T} \text{ integrated quantities}}_{\text{the incoming partons}} \operatorname{the incoming partons}_{\text{are taken collinear to}} \operatorname{the projectile hadrons}$$

# **Collinear factorization**

in standard pQCD calculations, the incoming parton transverse momenta are set to zero in the matrix element and are integrated over in the parton densities

$$d\sigma_{AB \to X} = \sum_{ij} \int dx_1 dx_2 \underbrace{f_{i/A}(x_1, \mu^2) f_{j/B}(x_2, \mu'^2)}_{\mathsf{k_T} \text{ integrated quantities}} d\hat{\sigma}_{ij \to X} + \mathcal{O}\left(\Lambda_{QCD}^2/M^2\right)$$

$$\underbrace{\mathsf{k_T} \text{ integrated quantities}}_{\text{the incoming partons}} \operatorname{the incoming partons}_{\text{are taken collinear to}} \operatorname{the projectile hadrons}$$

in general for a hard process, this approximation is accurate in some cases however, this is not good enough (examples follow)

TMD factorization is a more advanced QCD factorization framework which can be usesul and sometimes is even necessary

#### **Drell-Yan process**

the transverse momentum of the lepton pair  $q_T$  is the sum of the transverse momenta of the incoming partons

$$d\hat{\sigma} \propto \delta(k_{1t} + k_{2t} - q_T)$$

so in collinear factorization

$$d\sigma^{AB \to l^+ l^- X} \propto \delta(q_T) + \mathcal{O}(\alpha_s)$$

and TMDs could be useful here



# **Drell-Yan process**

the transverse momentum of the lepton pair  $q_T$  is the sum of the transverse momenta of the incoming partons

$$d\hat{\sigma} \propto \delta(k_{1t} + k_{2t} - q_T)$$

so in collinear factorization

$$d\sigma^{AB \to l^+ l^- X} \propto \delta(q_T) + \mathcal{O}(\alpha_s)$$

and TMDs could be useful here

naively, TMD factorization is

$$d\sigma^{AB \to l^+ l^- X} = \sum_{i,j} \int dx_1 dx_2 d^2 k_{1T} d^2 k_{2T} \ f_{i/A}(x_1, \mathbf{k}_{1T}) f_{j/B}(x_2, \mathbf{k}_{2T}) \ d\hat{\sigma}^{ij \to l^+ l^- X}$$

(but unfortunately, there are complications)



### Multiple parton interactions

keeping track of partonic transverse momenta is also crucial to describe multiple partonic interactions

consider for instance: 4-jet production coming from a double hard scattering of two partons in each incoming hadron



### Multiple parton interactions

keeping track of partonic transverse momenta is also crucial to describe multiple partonic interactions

consider for instance: 4-jet production coming from a double hard scattering of two partons in each incoming hadron

there is a kinematical domain in which this is as important as the leading-twist process of 4-jet production in one hard scattering



with two partons coming from each hadron, the transverse momentum  $\Delta$  can be non zero

# Spin physics

TMDs are crucial to describe hard processes in polarized collisions (e.g. Drell-Yan and semi-inclusive DIS)

8 leading-twist TMDs

Sivers function

correlation between transverse spin of the nucleon and transverse momentum of the quark

**Boer-Mulders function** 

correlation between transverse spin and transverse momentum of the quark in unpolarized nucleon

Û U quark polarization number density Q 811 ·  $\mathbf{g}_1$ helicity An h, transversity Т **Boer Mulders** 

nucleon polarization

# Our context: forward di-jets

• large-x projectile (proton) on small-x target (proton or nucleus)





so-called "dilute-dense" kinematics

Incoming partons' energy fractions:

 $\begin{array}{rcl} x_1 &=& \frac{1}{\sqrt{s}} \left( |p_{1t}| e^{y_1} + |p_{2t}| e^{y_2} \right) & \xrightarrow{y_1, y_2 \gg 0} & x_1 \sim 1 \\ x_2 &=& \frac{1}{\sqrt{s}} \left( |p_{1t}| e^{-y_1} + |p_{2t}| e^{-y_2} \right) & x_2 \ll 1 \end{array}$ 

Gluon's transverse momentum ( $p_{1t}$ ,  $p_{2t}$  imbalance):

 $|k_t|^2 = |p_{1t} + p_{2t}|^2 = |p_{1t}|^2 + |p_{2t}|^2 + 2|p_{1t}||p_{2t}| \cos \Delta \phi$   $|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$ prediction: modification of the  $k_t$  distribution in p+Pb vs p+p collisions

# The gluon TMDs involved in the di-jet process

# TMD gluon distributions

• the naive operator definition is not gauge-invariant

$$\mathcal{F}_{g/A}(x_2,k_t) \stackrel{\text{naive}}{=} 2 \int \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{ix_2 p_A^- \xi^+ - ik_t \cdot \boldsymbol{\xi}_t} \left\langle A | \text{Tr} \left[ F^{i-} \left( \xi^+, \boldsymbol{\xi}_t \right) F^{i-} \left( 0 \right) \right] | A \right\rangle$$

# TMD gluon distributions

• the naive operator definition is not gauge-invariant

$$\mathcal{F}_{g/A}(x_2,k_t) \stackrel{\text{naive}}{=} 2 \int \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{ix_2 p_A^- \xi^+ - ik_t \cdot \boldsymbol{\xi}_t} \left\langle A | \text{Tr} \left[ F^{i-} \left( \xi^+, \boldsymbol{\xi}_t \right) F^{i-} \left( 0 \right) \right] | A \right\rangle$$

• a theoretically consistent definition requires to include more diagrams



similar diagrams with 2, 3, . . . gluon exchanges

They all contribute at leading power and need to be resummed.

this is done by including gauge links in the operator definition

### **Process-dependent TMDs**

• the proper operator definition(s)

**some gauge link**  $\mathcal{P} \exp \left[ -ig \int_{\alpha}^{\beta} d\eta^{\mu} A^{a}(\eta) T^{a} \right]$ 

$$\mathcal{F}_{g\!/\!A}(x_2,k_t) = 2 \int \! \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{i x_2 p_A^- \xi^+ - i k_t \cdot \boldsymbol{\xi}_t} \left\langle A | \text{Tr} \left[ F^{i-} \left( \xi^+, \boldsymbol{\xi}_t \right) \boldsymbol{U}_{[\xi,0]} F^{i-} \left( 0 \right) \right] | A \right\rangle$$

•  $U_{[\alpha,\beta]}$  renders gluon distribution gauge invariant

# **Process-dependent TMDs**

• the proper operator definition(s)

some gauge link 
$$\mathcal{P} \exp \left[ -ig \int_{\alpha}^{\beta} d\eta^{\mu} A^{a}(\eta) T^{a} \right]$$

$$\mathcal{F}_{g/A}(x_2, k_t) = 2 \int \frac{d\xi^+ d^2 \boldsymbol{\xi}_t}{(2\pi)^3 p_A^-} e^{i x_2 p_A^- \xi^+ - i k_t \cdot \boldsymbol{\xi}_t} \left\langle A | \operatorname{Tr} \left[ F^{i-} \left( \xi^+, \boldsymbol{\xi}_t \right) U_{[\xi,0]} F^{i-} \left( 0 \right) \right] | A \right\rangle$$

•  $U_{[\alpha,\beta]}$  renders gluon distribution gauge invariant



however, the precise structure of the gauge link is process-dependent:

it is determined by the color structure of the hard process H

 in the large k<sub>t</sub> limit, the process dependence of the gauge links disappears (like for the integrated gluon distribution), and a single gluon distribution is sufficient

# TMDs for forward di-jets

 several gluon distributions are needed already for a single partonic sub-process

example for the  $qg^* \to qg$  channel



each diagram generates a different gluon distribution

# TMDs for forward di-jets

 several gluon distributions are needed already for a single partonic sub-process

example for the  $qg^* \to qg$  channel



each diagram generates a different gluon distribution

2 unintegrated gluon distributions per channel, 6 in total:  $\Phi_{ag \to cd}^{(i)}(x_2, k_t^2)$   $qg^* \to qg \qquad gg^* \to q\bar{q} \qquad gg^* \to gg \qquad i = 1, 2$ Kotko, Kutak, CM, Petreska, Sapeta and van Hameren (2015)

# The six TMD gluon distributions

• correspond to a different gauge-link structure

$$\mathcal{F}_{g/A}(x_{2},k_{t}) = 2 \int \frac{d\xi^{+} d^{2} \boldsymbol{\xi}_{t}}{(2\pi)^{3} p_{A}^{-}} e^{ix_{2} p_{A}^{-} \xi^{+} - ik_{t} \cdot \boldsymbol{\xi}_{t}} \langle A | \operatorname{Tr} \left[ F^{i-} \left( \xi^{+}, \boldsymbol{\xi}_{t} \right) U_{[\xi,0]} F^{i-} \left( 0 \right) \right] | A \rangle$$
  
several paths are possible for the gauge links

• when integrated, they all coincide

$$\int^{\mu^2} d^2 k_t \, \Phi^{(i)}_{ag \to cd}(x_2, k_t^2) = x_2 f(x_2, \mu^2)$$

# The six TMD gluon distributions

• correspond to a different gauge-link structure

$$\mathcal{F}_{g/A}(x_{2},k_{t}) = 2 \int \frac{d\xi^{+} d^{2}\xi_{t}}{(2\pi)^{3}p_{A}^{-}} e^{ix_{2}p_{A}^{-}\xi^{+} - ik_{t}\cdot\xi_{t}} \langle A|\operatorname{Tr}\left[F^{i-}\left(\xi^{+},\xi_{t}\right)U_{[\xi,0]}F^{i-}\left(0\right)\right]|A\rangle$$
several paths are possible for the gauge links
examples :
$$\underbrace{\xi_{T}}_{\mathcal{U}^{[+]}} \underbrace{\xi_{T}}_{\mathcal{U}^{[+]}} \underbrace{\xi_{T}}_{\mathcal{U}^{[-]}}$$

• when integrated, they all coincide

$$\int^{\mu^2} d^2 k_t \, \Phi^{(i)}_{ag \to cd}(x_2, k_t^2) = x_2 f(x_2, \mu^2)$$

 they are independent and in general they all should be extracted from data only one of them has the probabilistic interpretation of the number density of gluons at small x<sub>2</sub>

# Evaluating the gluon TMDs at small-x

# Gluon TMDs at small-x

• the gluon TMDs involved in the di-jet process are:

(showing here the  $qg^* \to qg\,$  channel TMDs only )

$$\mathcal{F}_{qg}^{(1)} = 2 \int \frac{d\xi^{+} d^{2} \boldsymbol{\xi}}{(2\pi)^{3} p_{A}^{-}} e^{i x_{2} p_{A}^{-} \boldsymbol{\xi}^{+} - i k_{t} \cdot \boldsymbol{\xi}} \left\langle \operatorname{Tr} \left[ F^{i-} \left( \boldsymbol{\xi} \right) \mathcal{U}^{[-]\dagger} F^{i-} \left( 0 \right) \mathcal{U}^{[+]} \right] \right\rangle$$
$$\mathcal{F}_{qg}^{(2)} = 2 \int \frac{d\xi^{+} d^{2} \boldsymbol{\xi}}{(2\pi)^{3} p_{A}^{-}} e^{i x_{2} p_{A}^{-} \boldsymbol{\xi}^{+} - i k_{t} \cdot \boldsymbol{\xi}} \left\langle \operatorname{Tr} \left[ F^{i-} \left( \boldsymbol{\xi} \right) \frac{\operatorname{Tr} \left[ \mathcal{U}^{[\Box]} \right]}{N_{c}} \mathcal{U}^{[+]\dagger} F^{i-} \left( 0 \right) \mathcal{U}^{[+]} \right] \right\rangle$$

# Gluon TMDs at small-x

• the gluon TMDs involved in the di-jet process are:

(showing here the  $qg^* \to qg$  channel TMDs only )

$$\mathcal{F}_{qg}^{(1)} = 2 \int \frac{d\xi^{+} d^{2} \boldsymbol{\xi}}{(2\pi)^{3} p_{A}^{-}} e^{i x_{2} p_{A}^{-} \boldsymbol{\xi}^{+} - i k_{t} \cdot \boldsymbol{\xi}} \left\langle \operatorname{Tr} \left[ F^{i-} \left( \boldsymbol{\xi} \right) \mathcal{U}^{[-]\dagger} F^{i-} \left( 0 \right) \mathcal{U}^{[+]} \right] \right\rangle$$
$$\mathcal{F}_{qg}^{(2)} = 2 \int \frac{d\xi^{+} d^{2} \boldsymbol{\xi}}{(2\pi)^{3} p_{A}^{-}} e^{i x_{2} p_{A}^{-} \boldsymbol{\xi}^{+} - i k_{t} \cdot \boldsymbol{\xi}} \left\langle \operatorname{Tr} \left[ F^{i-} \left( \boldsymbol{\xi} \right) \frac{\operatorname{Tr} \left[ \mathcal{U}^{[\Box]} \right]}{N_{c}} \mathcal{U}^{[+]\dagger} F^{i-} \left( 0 \right) \mathcal{U}^{[+]} \right] \right\rangle$$

• at small **x** they can be written as:  $U_{\mathbf{x}} = \mathcal{P} \exp\left[ig \int_{-\infty}^{\infty} dx^{+} A_{a}^{-}(x^{+}, \mathbf{x})t^{a}\right]$  $\mathcal{F}_{qg}^{(1)}(x_{2}, |k_{t}|) = \frac{4}{g^{2}} \int \frac{d^{2}x d^{2}y}{(2\pi)^{3}} e^{-ik_{t} \cdot (\mathbf{x} - \mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{y}})(\partial_{i}U_{\mathbf{x}}^{\dagger})\right]\right\rangle_{x_{2}}$  $\mathcal{F}_{qg}^{(2)}(x_{2}, |k_{t}|) = -\frac{4}{g^{2}} \int \frac{d^{2}x d^{2}y}{(2\pi)^{3}} e^{-ik_{t} \cdot (\mathbf{x} - \mathbf{y})} \frac{1}{N_{c}} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{y}}^{\dagger}(\partial_{i}U_{\mathbf{y}})U_{\mathbf{x}}^{\dagger}\right] \operatorname{Tr}\left[U_{\mathbf{y}}U_{\mathbf{x}}^{\dagger}\right]\right\rangle_{x_{2}}$ 

these Wilson line correlators also emerge directly in CGC calculations when  $|p_{1t}|, |p_{2t}| \gg |k_t|, Q_s$  (the regime of validity of TMD factorization)

Dominguez, CM, Xiao and Yuan (2011)

#### Outline of the derivation

• using  $\langle p|p'\rangle = (2\pi)^3 \ 2p^- \delta(p^- - p'^-)\delta^{(2)}(p_t - p'_t)$  and translational invariance

$$\int \frac{d\xi^+ d^2 \boldsymbol{\xi}}{(2\pi)^3 p_A^-} e^{ix_2 p_A^- \xi^+ - ik_t \cdot \boldsymbol{\xi}} \left\langle A | O(0,\xi) | A \right\rangle = \frac{2}{\langle A | A \rangle} \int \frac{d^3 \xi d^3 \xi'}{(2\pi)^3} e^{ix_2 p_A^- (\xi^+ - \xi'^+) - ik_t \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}')} \left\langle A | O(\xi',\xi) | A \right\rangle \ .$$

#### Outline of the derivation

• using  $\langle p|p'\rangle = (2\pi)^3 \ 2p^- \delta(p^- - p'^-)\delta^{(2)}(p_t - p'_t)$  and translational invariance

$$\int \frac{d\xi^+ d^2 \boldsymbol{\xi}}{(2\pi)^3 p_A^-} e^{ix_2 p_A^- \xi^+ - ik_t \cdot \boldsymbol{\xi}} \left\langle A | O(0,\xi) | A \right\rangle = \frac{2}{\langle A | A \rangle} \int \frac{d^3 \xi d^3 \xi'}{(2\pi)^3} e^{ix_2 p_A^- (\xi^+ - \xi'^+) - ik_t \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}')} \left\langle A | O(\xi',\xi) | A \right\rangle \ .$$

• setting  $\exp[ix_2p_A^-(\xi^+-\xi^{'+})]=1$  and denoting  $\frac{\langle A|O(\xi',\xi)|A\rangle}{\langle A|A\rangle}=\langle O(\xi',\xi)\rangle_{x_2}$ 

#### we obtain e.g.

$$\mathcal{F}_{qg}^{(1)}(x_2, k_t) = 4 \int \frac{d^3 x d^3 y}{(2\pi)^3} \, e^{-ik_t \cdot (\mathbf{x} - \mathbf{y})} \left\langle \operatorname{Tr} \left[ F^{i-}(x) \, \mathcal{U}^{[-]\dagger} F^{i-}(y) \, \mathcal{U}^{[+]} \right] \right\rangle_{x_2}$$

#### Outline of the derivation

• using  $\langle p|p'\rangle = (2\pi)^3 \ 2p^- \delta(p^- - p'^-)\delta^{(2)}(p_t - p'_t)$  and translational invariance

$$\int \frac{d\xi^+ d^2 \boldsymbol{\xi}}{(2\pi)^3 p_A^-} e^{ix_2 p_A^- \xi^+ - ik_t \cdot \boldsymbol{\xi}} \left\langle A | O(0,\xi) | A \right\rangle = \frac{2}{\langle A | A \rangle} \int \frac{d^3 \xi d^3 \xi'}{(2\pi)^3} e^{ix_2 p_A^- (\xi^+ - \xi'^+) - ik_t \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}')} \left\langle A | O(\xi',\xi) | A \right\rangle \ .$$

• setting  $\exp[ix_2p_A^-(\xi^+-\xi^{'+})]=1$  and denoting  $\frac{\langle A|O(\xi',\xi)|A\rangle}{\langle A|A\rangle} = \langle O(\xi',\xi)\rangle_{x_2}$ 

we obtain e.g.

$$\mathcal{F}_{qg}^{(1)}(x_2, k_t) = 4 \int \frac{d^3 x d^3 y}{(2\pi)^3} \, e^{-ik_t \cdot (\mathbf{x} - \mathbf{y})} \left\langle \operatorname{Tr} \left[ F^{i-}(x) \, \mathcal{U}^{[-]\dagger} F^{i-}(y) \, \mathcal{U}^{[+]} \right] \right\rangle_{x_2}$$

then performing the x<sup>+</sup> and y<sup>+</sup> integrations using

$$\partial_i U_{\mathbf{y}} = ig \int_{-\infty}^{\infty} dy^+ U[-\infty, y^+; \mathbf{y}] F^{i-}(y) U[y^+, +\infty; \mathbf{y}]$$

we finally get  $\mathcal{F}_{qg}^{(1)}(x_2, |k_t|) = \frac{4}{g^2} \int \frac{d^2 x d^2 y}{(2\pi)^3} e^{-ik_t \cdot (\mathbf{x} - \mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{y}}) (\partial_i U_{\mathbf{x}}^{\dagger}) \right] \right\rangle_{x_2}$ 

#### The other TMDs at small-x

- involved in the  $gg^* 
ightarrow q \bar{q}$  and  $gg^* 
ightarrow gg$  channels

$$\begin{split} \mathcal{F}_{gg}^{(1)}(x_{2},k_{t}) &= \frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \frac{1}{N_{c}} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{y}})(\partial_{i}U_{\mathbf{x}}^{\dagger})\right] \operatorname{Tr}\left[U_{\mathbf{x}}U_{\mathbf{y}}^{\dagger}\right] \right\rangle_{x_{2}} ,\\ \mathcal{F}_{gg}^{(2)}(x_{2},k_{t}) &= -\frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \frac{1}{N_{c}} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{y}}^{\dagger}\right] \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{y}})U_{\mathbf{x}}^{\dagger}\right] \right\rangle_{x_{2}} ,\\ \mathcal{F}_{gg}^{(4)}(x_{2},k_{t}) &= -\frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{x}}^{\dagger}(\partial_{i}U_{\mathbf{y}})U_{\mathbf{y}}^{\dagger}\right] \right\rangle_{x_{2}} ,\\ \mathcal{F}_{gg}^{(5)}(x_{2},k_{t}) &= -\frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{y}}^{\dagger}(\partial_{i}U_{\mathbf{y}})U_{\mathbf{x}}^{\dagger}U_{\mathbf{y}}U_{\mathbf{x}}^{\dagger}\right] \right\rangle_{x_{2}} ,\\ \mathcal{F}_{gg}^{(6)}(x_{2},k_{t}) &= -\frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{y}}^{\dagger}(\partial_{i}U_{\mathbf{y}})U_{\mathbf{x}}^{\dagger}U_{\mathbf{y}}U_{\mathbf{x}}^{\dagger}\right] \right\rangle_{x_{2}} ,\\ \mathcal{F}_{gg}^{(6)}(x_{2},k_{t}) &= -\frac{4}{g^{2}} \int \frac{d^{2}\mathbf{x}d^{2}\mathbf{y}}{(2\pi)^{3}} \ e^{-ik_{t}\cdot(\mathbf{x}-\mathbf{y})} \frac{1}{N_{c}^{2}} \left\langle \operatorname{Tr}\left[(\partial_{i}U_{\mathbf{x}})U_{\mathbf{y}}^{\dagger}(\partial_{i}U_{\mathbf{y}})U_{\mathbf{x}}^{\dagger}\right] \operatorname{Tr}\left[U_{\mathbf{x}}U_{\mathbf{y}}^{\dagger}\right] \right\rangle_{x_{2}} ,\end{aligned}$$

with a special one singled out: the Weizsäcker-Williams TMD  $\mathcal{F}_{gg}^{(3)}(x_2,k_t) = -\frac{4}{g^2} \int \frac{d^2 \mathbf{x} d^2 \mathbf{y}}{(2\pi)^3} \ e^{-ik_t \cdot (\mathbf{x}-\mathbf{y})} \left\langle \operatorname{Tr}\left[ (\partial_i U_{\mathbf{x}}) U_{\mathbf{y}}^{\dagger} (\partial_i U_{\mathbf{y}}) U_{\mathbf{x}}^{\dagger} \right] \right\rangle_{x_2}$ 

# x evolution of the gluon TMDs

the evolution of Wilson line correlators with decreasing x can be computed from the so-called JIMWLK equation

$$\frac{a}{d\ln(1/x_2)} \left\langle O \right\rangle_{x_2} = \left\langle H_{JIMWLK} \ O \right\rangle_{x_2}$$

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

a functional RG equation that resums the leading logarithms in  $\,y=\ln(1/x_2)\,$ 

7

# x evolution of the gluon TMDs

the evolution of Wilson line correlators with decreasing x can be computed from the so-called JIMWLK equation

$$\frac{d}{d\ln(1/x_2)} \left\langle O \right\rangle_{x_2} = \left\langle H_{JIMWLK} \right. \left. O \right\rangle_{x_2}$$

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

a functional RG equation that resums the leading logarithms in  $y = \ln(1/x_2)$ 

7

• qualitative solutions for the gluon TMDs:





the distribution of partons as a function of x and  $k_T$ 

#### JIMWLK numerical results

using a code written by Claude Roiesnel

CM, Petreska, Roiesnel (2016)

initial condition at y=0 : MV model evolution: JIMWLK at leading log



saturation effects impact the various gluon TMDs in very different ways

# Conclusions

- different processes involve different gluon TMDs, with different operator definitions
- given an initial condition, they can all be obtained at smaller values of x, from the JIMWLK equation
- as expected, the various gluon TMDs coincide at large transverse momentum, in the linear regime
- however, they differ significantly from one another at low transverse momentum, in the non-linear saturation regime
- we have quantified these differences and they are not negligible