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Outline

• Background and Motivations

• Inclusive Cross Sections

• Pomeron and AdS/CFT

• Inclusive 1P Production

• Evidence of Conformality at LHC

Goals

•Motivate why understanding
CFT is important for scattering
• Inclusive distributions are well described
as Wightman discontinuities
• CFT “cross sections” can also
be described as discontinuities
• Non-perturbative Pomeron can be
used to show conformal behavior at the LHC
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Physical Motivations: The Issues that Keep Me Up at Night

QCD has been a resounding success for describing some areas of strong-force
physics: Flavor flow, Color flow, Asymptotic Freedom (β < 0 CFT), etc.. But
there are still physical regimes that are not well understood: n-particle scattering
(amplitudes), strong coupling, confinement, etc.

Object of interest (observables) are usually related to “scattering amplitudes”
(correlation functions) which tell us what particles, interactions, symmetries, etc...

QCD, QCD-extensions, holographic models, gravity, ... it’s all complicated!. So
let’s look for (model-independent) way’s to simplify the physics.

High energy scattering exhibits comparatively distinct and simple physical and
analytic behavior: scaling, unitarity, pole structure, etc.

What scattering processes probe this physics: Deep Inelastic Scattering using a
simple probe to better understand hadrons, Dijets with a rapidity gap or tagged
proton(s), particle scattering near black hole horizon (SYK), etc..
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Wightman Functions

Scattering amplitudes are traditionally written as the correlation of time-ordered
fields, connected to physical observables via the LSZ reduction formalism.

〈| T {φ(x1)φ(x2)...} |〉

Inclusive cross sections can be conveniently written as a forward discontinuity of
time-ordered correlation functions, which in turn corresponds to an un-ordered
correlation function

Discforward [〈| T {φ(x1)φ(x2)...} |〉] ' 〈|φ(x1)φ(x2)... |〉
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Most familiar example: traditional optical theorem a + b → X

σab
total (s) ' 1

s Im T (s, t = 0) = 1
s Disct=0T

“Simpler” example that can be extended to CFT: 2-point function a→ b

GFT
F (p2) = i

∫
d4xe ip·x 〈0|T (φ(x)φ(0))|0〉 = − 1

p2 −m2 + iε ,

GFT
W (p2) =

∫
d4xe ip·x 〈0|φ(x)φ(0)|0〉 = 2πδ(p2 −m2)θ(p0)

GCFT
F (p2) = i

∫
d4x e ipx

[~x2 − t2 + iε)2]∆ = −d(∆)(−p2)∆−2 ,

GCFT
W (p2) =

∫
d4x e ipx

[~x2 − (t − iε)2]∆ = c(∆)θ(p2)θ(p0) (p2)∆−2,

The Wightman function corresponds to the discontinuity of the time-ordered
function across the appropriate cut.
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CFT σ

Using a CFT to describe scattering has been partially described before Strassler
[0801.0629], Maldacena et. al. [0803.1467], & Balitsky et.al. [1309.0769, 1309.1424,
1311.6800]and we extend the analysis. The general idea is to consider infrared safe
observables, general “event shapes”, or to add mass deformations.
First type of interesting amplitude involves a single local source (e.g. a decay
γ∗ → c1 + c2 + ...+ X )

〈Õw 〉 = σw (p)
σO(p) =

∫
d4xe ipx 〈0|O†(x)ÕwO(0)|0〉∫

d4xe ipx 〈0|O†(x)O(0)|0〉
= 〈O(p)|Õw |O(p)〉
〈O(p)|O(p)〉

The normalization is chosen to ensure infrared safety, but we can generalize this
approach to involve a set of local operators

σw (p) =
∫

d4xe−ipx 〈0|O†(x)D[w ]O(0)|0〉
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Generalizations: This approach can be used to describe more general observable
flows/event shapes

σE (n̂) =
∑

c

∫
d4pc

1
2i p0

c δ
2(p̂c − n̂) DiscM2 Tγ∗c′→ γ′∗c

as well as higher order correlation functions

σw (n̂1,n̂2, · · · ) =

=
∑

c1,c2,···

∫
d4pc1

∫
d4pc2 · · ·

1
2i w(pc1 , pc2 , · · · )DiscM2 Tγ∗c′1c′2···→ γ′∗c1c2···
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Now that we have some new formalism, what can we do with it?

Combine AdS/CFT (strong coupling CFT), the high
energy limit (Regge behavior simplifies amplitudes and
has some model independent features), and new
inclusive methods to model processes at the LHC.
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1PI Process

Process of interest is single particle
inclusive scattering: P + P → π + X
The differential cross section is related
to the discontinuity in ”missing mass”,
M2, [Mueller ,et al.]of a related 6 point
amplitude.

dσab→cX
d3PcdEc

≈ 1
2is DiscM2>0Aabc′→a′b′c

In the appropriate Regge limit, this
amplitude is described via the exchange
of two Pomeron kernels and a
Pomeron-Pomeron-particle-particle
central vertex.
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Holographic Description

P
P

P

P
P

P

a

a’

c’

c

b

b’

Vcc’

To describe this process
in the strong coupling limit we can use the
AdS/CFT correspondence: we will describe the
strongly coupled gauge amplitude with a dual
gravity amplitude using “Witten diagrams”

The
amplitude can be written in a factorized form

Tabc′→a′b′c = Φ13 ∗ K̃P ∗ Vcc̄ ∗ K̃P ∗ Φ24

The appropriate discontinuity takes the form

(1/2i)DiscM2Tabc′→a′b′c = Φ13 ∗ [Im K̃P ] ∗ [Im Vcc̄ ] ∗ [Im K̃P ] ∗ Φ24 .
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Ingredients

K̃P Pomeron kernel: the AdS/CFT Pomeron [BPST]has been identified as the
Regge trajectory associated with the AdS graviton.

K̃P(s, 0, z , z ′) = −( 1 + e−iπj0

sinπj0
)(α′s̃)j0

Φab Wave functions: The vertex couplings Φab(z) ∼ φa (z)φb (z) can be
described by confined (hard wall) glueball wave functions
φa (z) ∼ z2J(∆−2)(maz)

Vcc̄ Central vertex: The 6 point amplitude in the double Regge limit [DeTar,
et.al.]can be constructed by generalizing flat space amplitudes. Following the
prescription [Herzog, et.al.]we find

Vcc̄ (κ̃, 0, 0) ∼ e−2α′κz2/R2
∼ e−2(z2/

√
λ)κ,

Nally, TR, Tan (KU) 6/14/18 11 / 16



AdS Calculation Cont’d

The explicit bulk six-point amplitude can be expressed as

T abc′→a′b′c (κ, s1, s2, t1, t2)

= g2
0

R4

∫ zmax

0
dz1
√
|g(z1)|[z2

1φa (z1)φa′ (z1)]
∫ zmax

0
dz2
√
|g(z2)|[z2

2φb′ (z2)φb (z2)]

×
∫ zmax

0
dz3
√
|g(z3)| K̃P (−s̃1, t̃1, z1, z3) I(κ̃, t̃1, t̃2, z3) K̃P (−s̃2, t̃2, z2, z3)

where the dependence on the central vertex is collected as

I(κ̃, t̃1, t̃2, z3) = (z2
3φc (z3))Vcc̄ (κ̃, t̃1, t̃2) (z2

3φc′(z3)) .
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Putting this all together we find

ρ(~pT , y , s) ≡ 1
σtotal

d3σab→c+X
dp3

c/E
= 1

2is σtotal (s) DiscM2T6 (κ, s1, s2, 0, 0)

= β

∫ zmax

0

dz3
z3

κ̃j0 [φc(z3)]2 [ ImVcc̄ (κ̃, 0, 0)]

= β

∫ zs

0

dz
z z2τc (κz2/R2)j0e−(2κ/λ1/2)z2

' β′ κ−τc ,

Where we have absorbed coefficients into overall constants.
Some things to note: (1) We assumed a confinement model to get finite results,
but the answer is independent of the scale. (2) there is a simple scaling behavior
that scales as power of the twist (3) The scaling is independent of initial sources
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Approach

The dominant contribution comes from tensor glueballs leading to the expected
behavior

ρ(p⊥, y , s) ∼ p−8
⊥

fit ansatz−−−−−→ A
(p⊥ + C)B

Can compare to:
ATLAS p-p

√
s = 8 TeV and

√
s = 13 TeV

ALICE p-Pb
√

s = 5.02 TeV
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Plots!
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T behavior expected! Still,
χ2
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Conclusions and Future Work
Conclusions:
• Conformal symmetry shows it’s use in a wide range of collider physics, not

limited to just AdS/CFT Regge physics [Randall, Sundrum][Georgi][Strassler, et. al.]

• 1P inclusive production in the central region can both be well modeled using
the AdS/CFT. (Just like DIS in the past)

• Single particle inclusive production behaves like the exchange of a pair of
operators in region PT > ΛQCD

Future Directions:
• Compute with softwall to see *true* model independent features
• AdS EOM to higher order in λ (Hard string calculation!)[Costa, Goncalves,

Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]

• Extend to meson exchange.[Karch, Katz, Son, Stephanov] [Brodsky, de Teramond]

• Incorporate higher order anomolous dimension, ∆(j), results. [Brower, Costa,
Djuric, TR, Tan] [Gromov, et. al][Lipatov, et. al.][Gromov, et. al.]

• More robust Ads wavefunctions and PDFs
• New processes and data sets
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Can you do anything else?

Similar approach can be used to describe DIS at small-x
(γ∗p).

σtotal = 1
s Im [A(s, t = 0)] ∼ 1

s Im [χ(s, t = 0)]

We can use this to calculate total cross sections and to
determine the proton structure function

F2(x ,Q2) = Q2

4π2αem
(σtrans + σlong )

Finally we must be wary of saturation where we must
consider multipomeron exchange via eikonalization

χ→ 1− e iχ

[Cornalba, et. al.][Brower,
et.al.]
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Comparison With Previous Work

Can be used to identify the onset of strong-coupled/holographic saturation and
confinement

Model ρ g2
0 z0 Q’ χ2

dof
conformal 0.774∗ 110.13∗ – 0.5575∗GeV 11.7 (0.75∗)
hard wall 0.7792 103.14 4.96 GeV−1 0.4333 GeV 1.07 (0.69∗)
softwall 0.7774 108.3616 8.1798 GeV−1 0.4014 GeV 1.1035

softwall* 0.6741 154.6671 8.3271 GeV−1 0.4467 GeV 1.1245

Comparison of the best fit (including a χ sieve) values for the conformal, hard
wall, and soft wall AdS models. The final row includes the soft wall with improved
intercept. [Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]The
statistical errors (omitted) are all ∼ 1% of fit parameters.

As expected, best fit values imply

ρ→ λ > 1 1/z0 ∼ ΛQCD and Q′ ∼ mproton
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Parameter Stability

We expect deviations
from Regge behavior at
low p⊥. (Note our exact
conformal solution
diverges as p⊥ → 0).
Q: Why choose our
parameterization?
Two ideas: (1) Don’t fit
small p⊥ behavior and/or
(2) introduce a
momentum offset
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pmin/(1 GeV) A/10 (GeV−2) B χ2/NDF
0 0.0516 ± 0.00687 5.02 ± 0.164 51.2

0.5 0.0575 ± 0.00718 5.15 ± 0.148 29.8
1.0 0.0943 ± 0.0140 5.60 ± 0.139 3.21
1.5 0.153 ± 0.0585 5.88 ± 0.231 0.135
2.0 0.183 ± 0.131 5.97 ± 0.368 0.0412
2.5 0.199 ± 0.247 6.01 ± 0.578 0.0337
3.0 0.205 ± 0.291 6.027 ± 0.646 0.0316
3.5 0.218 ± 0.348 6.05 ± 0.712 0.0258
4.0 0.233 ± 0.416 6.07 ± 0.770 0.0189
4.5 0.253 ± 0.518 6.10 ± 0.846 0.0127
5.0 0.150 ± 0.736 5.93 ± 1.70 0.000621
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1PI Kinematics Cont’d

For a + b → c + X , treat X effectively as a particle with mass

M2 = (pa + pb − px )2 = s + t + u −m2
a −m2

b −m2
c

The final line is a constraint relating to the usual three Mandelstam invariants.
More convenient to pick a LC frame where
pa = (p+

a , p−a , ~p⊥,a) = (maeY/2,mae−Y/2, 0) , pb = (mbe−Y/2,mbeY/2, 0), where
Y is the rapidity. The Mandelstam s becomes approx s ∼ m2eY , and the
produced particle has LC momentum given by

pc = (m⊥ey ,m⊥e−y , ~p⊥) , m2
⊥ ≡ m2

c + ~p2
⊥ '

(−t)(−u)
M2 ≡ κ

In the appropriate Regge limit

s ' M2 ' m2eY → +∞ t ' −mm⊥eY/2−y → −∞ u ' −mm⊥eY/2+y → −∞.
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More on AdS Reggeons

1 2 3 4
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Reggeon propagators can be written in a form
reminiscent of the weak coupling partonic description
χR ∼

∫
dj(α′ ŝ)j (1 + Cos(−iπj))Gj (t, z, z ′)

and the Gj
are AdS wavefunctions behaving like Bessel functions.
For a physical process like DIS we have hadronic
structure functions that are singular as x → 0.
These can be expressed in terms of a standard moment
expansion: Mα(Q2) =

∫
dxx1−αFα(x ,Q2). For large Q2 this scales as a power of the

anomalous dimension γ.
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For AdS-Reggeons the operator dimensions admit
a convergent expansion in terms of the objects twist,
coupling, and anomalous dimension. These ∆− J
curves admit non-trivial convergent expansions and can
be calculated to high order using a mix of conformal,
string, and integrability techniques. Minimizing
these curves allows one to calculate Reggeon intercepts
at strong coupling. [Gromov, et. al.][Lipatov,
et. al.][Basso][Balitsky, et. al.] [Brower, et. al.]
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More on Confinement

• Where are the single quarks? Naively, this could be explained by
a quark-quark energy that grows with seperation. At large
distance it becomes energetically favorable to create new quarks.

• Wilson originally used Wilson loops W = 1
N trPexp

(
ig
∮

C A
)

to
try and describe confinement. In the limit of large times, a
square path for a quark corresponds to the energy of two static
quarks. In a confining theory, the expectation of the wilson loop
to have an area dependence: < W >∼ exp(−σArea)

• In AdS Wilson loops in N = 4 SYM are dual to minimal
surfaces that extend into the bulk AdS.[Maldacena],[Polyakov]Note,
in pure AdS, distances diverge at the boundary (small z) and
become small in the interior of the bulk (large z).

T

X

q q

Nally, TR, Tan (KU) 6/14/18 23 / 16



• The original AdS/CFT conjecture predicts < W >∼ exp(−σT/x).[Maldacena]
But it was quickly shown that deformations of the AdS space lead to
confining behavior exp(−σTx) [Polchinski, Strassler],[Andreev,et.al.]

• For us, it is sufficient to consider a purely geometric confinement deformation. However, to
describe mesons it will be required to consider other dynamical fields in the bulk. [Karch,
et.al.], [de Teramond, Brodsky], [Batell, Gherghetta]1

• Thus the conformal description can be deformed to describe a confining
theory

ds2 = R2

z2
[
dz2 + dx · dx

]
+ R2dΩ5 → e2A(z) [dz2 + dx · dx

]
+ R2dΩ5

1For a definitive discussion on confinement via AdS dilaton see a series of papers by [Gürsoy,
Kiritsis, et al.]
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