Inclusive Central Production and Evidence for Conformality

Timothy Raben
timothy.raben@ku.edu
$15^{\text {th }}$ Workshop on Non-Perturbative QCD: L'institut d'Astrophysic de Paris, France 2018
${ }^{1}$ University of Kansas
${ }^{2}$ Brown University
${ }^{3}$ Stanford University

\author{
Timothy Raben ${ }^{1,2}$
 Chung-I Tan ${ }^{2}$, Richard Nally ${ }^{2,3}$
 ```
arxiv:1702.05502
 arXiv:1711.02727

``` \\ Paper \\ Proceedings
}



Stanford
University

\section*{Outline}

\section*{Outline}
- Background and Motivations
- Inclusive Cross Sections
- Pomeron and AdS/CFT
- Inclusive 1P Production
- Evidence of Conformality at LHC

Goals
- Motivate why understanding CFT is important for scattering
- Inclusive distributions are well described as Wightman discontinuities
- CFT "cross sections" can also be described as discontinuities
- Non-perturbative Pomeron can be used to show conformal behavior at the LHC

\section*{Physical Motivations: The Issues that Keep Me Up at Night}

QCD has been a resounding success for describing some areas of strong-force physics: Flavor flow, Color flow, Asymptotic Freedom ( \(\beta<0\) CFT), etc.. But there are still physical regimes that are not well understood: \(n\)-particle scattering (amplitudes), strong coupling, confinement, etc.
Object of interest (observables) are usually related to "scattering amplitudes" (correlation functions) which tell us what particles, interactions, symmetries, etc...
QCD, QCD-extensions, holographic models, gravity, ... it's all complicated!. So let's look for (model-independent) way's to simplify the physics.

High energy scattering exhibits comparatively distinct and simple physical and analytic behavior: scaling, unitarity, pole structure, etc.

What scattering processes probe this physics: Deep Inelastic Scattering using a simple probe to better understand hadrons, Dijets with a rapidity gap or tagged proton(s), particle scattering near black hole horizon (SYK), etc..

\section*{Wightman Functions}

Scattering amplitudes are traditionally written as the correlation of time-ordered fields, connected to physical observables via the LSZ reduction formalism.
\[
\langle | \mathcal{T}\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots\right\}\rangle
\]

Inclusive cross sections can be conveniently written as a forward discontinuity of time-ordered correlation functions, which in turn corresponds to an un-ordered correlation function
\[
\operatorname{Disc}_{\text {forward }}\left[\langle | \mathcal{T}\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots\right\}| \rangle\right] \simeq\langle | \phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots| \rangle
\]

Most familiar example: traditional optical theorem \(a+b \rightarrow X\)
\[
\sigma_{\text {total }}^{a b}(s) \simeq \frac{1}{s} \operatorname{Im} T(s, t=0)=\frac{1}{s} D i s c_{t=0} T
\]
"Simpler" example that can be extended to CFT: 2-point function \(a \rightarrow b\)
\[
\begin{aligned}
G_{F}^{F T}\left(p^{2}\right) & =i \int d^{4} x e^{i p \cdot x}\langle 0| T(\phi(x) \phi(0))|0\rangle=-\frac{1}{p^{2}-m^{2}+i \epsilon}, \\
G_{W}^{F T}\left(p^{2}\right) & =\int d^{4} x e^{i p \cdot x}\langle 0| \phi(x) \phi(0)|0\rangle=2 \pi \delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right) \\
G_{F}^{C F T}\left(p^{2}\right) & =i \int d^{4} x \frac{e^{i p x}}{\left.\left[\vec{x}^{2}-t^{2}+i \epsilon\right)^{2}\right]^{\Delta}}=-d(\Delta)\left(-p^{2}\right)^{\Delta-2}, \\
G_{W}^{C F T}\left(p^{2}\right) & =\int d^{4} x \frac{e^{i p x}}{\left[\vec{x}^{2}-(t-i \epsilon)^{2}\right]^{\Delta}}=c(\Delta) \theta\left(p^{2}\right) \theta\left(p^{0}\right)\left(p^{2}\right)^{\Delta-2},
\end{aligned}
\]

The Wightman function corresponds to the discontinuity of the time-ordered function across the appropriate cut.

Using a CFT to describe scattering has been partially described before Strassler [0801.0629], Maldacena et. al. [0803.1467], \& Balitsky et.al. [1309.0769, 1309.1424, 1311.6800]and we extend the analysis. The general idea is to consider infrared safe observables, general "event shapes", or to add mass deformations.
First type of interesting amplitude involves a single local source (e.g. a decay \(\left.\gamma^{*} \rightarrow c_{1}+c_{2}+\ldots+X\right)\)
\[
\left\langle\widetilde{O}_{w}\right\rangle=\frac{\sigma_{w}(p)}{\sigma_{\mathcal{O}}(p)}=\frac{\int d^{4} x e^{i p x}\langle 0| \mathcal{O}^{\dagger}(x) \widetilde{O}_{w} \mathcal{O}(0)|0\rangle}{\int d^{4} x e^{i p x}\langle 0| \mathcal{O}^{\dagger}(x) \mathcal{O}(0)|0\rangle}=\frac{\langle\mathcal{O}(p)| \widetilde{O}_{w}|\mathcal{O}(p)\rangle}{\langle\mathcal{O}(p) \mid \mathcal{O}(p)\rangle}
\]

The normalization is chosen to ensure infrared safety, but we can generalize this approach to involve a set of local operators
\[
\sigma_{w}(p)=\int d^{4} x e^{-i p x}\langle 0| \mathcal{O}^{\dagger}(x) \mathcal{D}[w] \mathcal{O}(0)|0\rangle
\]

Generalizations: This approach can be used to describe more general observable flows/event shapes
\[
\sigma_{E}(\hat{n})=\sum_{c} \int d^{4} p_{c} \frac{1}{2 i} p_{c}^{0} \delta^{2}\left(\hat{p}_{c}-\hat{n}\right) \operatorname{Disc}_{M^{2}} T_{\gamma^{*} c^{\prime} \rightarrow \gamma^{\prime *} c}
\]
as well as higher order correlation functions
\[
\begin{aligned}
& \sigma_{w}\left(\hat{n}_{1}, \hat{n}_{2}, \cdots\right)= \\
& \quad=\sum_{c_{1}, c_{2}, \ldots} \int d^{4} p_{c_{1}} \int d^{4} p_{c_{2}} \cdots \frac{1}{2 i} w\left(p_{c_{1}}, p_{c_{2}}, \cdots\right) \operatorname{Disc}_{M^{2}} T_{\gamma^{*} c_{1}^{\prime} c_{2}^{\prime} \cdots \rightarrow \gamma^{\prime *} c_{1} c_{2} \cdots}
\end{aligned}
\]

Now that we have some new formalism, what can we do with it?
Combine AdS/CFT (strong coupling CFT), the high energy limit (Regge behavior simplifies amplitudes and has some model independent features), and new inclusive methods to model processes at the LHC.

\section*{1PI Process}

Process of interest is single particle inclusive scattering：\(P+P \rightarrow \pi+X\) The differential cross section is related to the discontinuity in＂missing mass＂， \(M^{2}\) ，［Mueller ，et al．］of a related 6 point amplitude．
\[
\frac{d \sigma_{a b \rightarrow c X}}{d^{3} P_{c} d E_{c}} \approx \frac{1}{2 i s} \text { Disc }_{M^{2}>0} \mathcal{A}_{a b c^{\prime} \rightarrow a^{\prime} b^{\prime} c}
\]

In the appropriate Regge limit，this amplitude is described via the exchange of two Pomeron kernels and a Pomeron－Pomeron－particle－particle central vertex．


ミ引 \(\equiv\) Qの

\section*{Holographic Description}

To describe this process in the strong coupling limit we can use the AdS/CFT correspondence: we will describe the strongly coupled gauge amplitude with a dual gravity amplitude using "Witten diagrams"

The amplitude can be written in a factorized form

\[
T_{a b c^{\prime} \rightarrow a^{\prime} b^{\prime} c}=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V_{c \bar{c}} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
\]

The appropriate discontinuity takes the form
\[
(1 / 2 i) \operatorname{Disc}_{M^{2}} T_{a b c^{\prime} \rightarrow a^{\prime} b^{\prime} c}=\Phi_{13} *\left[\operatorname{Im} \widetilde{\mathcal{K}}_{P}\right] *\left[\operatorname{Im} V_{c \bar{c}}\right] *\left[\operatorname{Im} \widetilde{\mathcal{K}}_{P}\right] * \Phi_{24} .
\]

\section*{Ingredients}
\(\widetilde{\mathcal{K}}_{P}\) Pomeron kernel: the AdS/CFT Pomeron [BPST]has been identified as the Regge trajectory associated with the AdS graviton.
\[
\widetilde{\mathcal{K}}_{P}\left(s, 0, z, z^{\prime}\right)=-\left(\frac{1+e^{-i \pi j_{0}}}{\sin \pi j_{0}}\right)\left(\alpha^{\prime} \widetilde{s}\right)^{j_{0}}
\]
\(\Phi_{a b}\) Wave functions: The vertex couplings \(\Phi_{a b}(z) \sim \phi_{a}(z) \phi_{b}(z)\) can be described by confined (hard wall) glueball wave functions \(\phi_{a}(z) \sim z^{2} J_{(\Delta-2)}\left(m_{a} z\right)\)
\(V_{c \bar{c}}\) Central vertex: The 6 point amplitude in the double Regge limit [DeTar, et.al.]can be constructed by generalizing flat space amplitudes. Following the prescription [Herzog, et.al.]we find
\[
\mathcal{V}_{c \bar{c}}(\widetilde{\kappa}, 0,0) \sim e^{-2 \alpha^{\prime} \kappa z^{2} / R^{2}} \sim e^{-2\left(z^{2} / \sqrt{\lambda}\right) \kappa}
\]

\section*{AdS Calculation Cont'd}

The explicit bulk six-point amplitude can be expressed as
\[
\begin{aligned}
& T_{a b c^{\prime} \rightarrow a^{\prime} b^{\prime} c}\left(\kappa, s_{1}, s_{2}, t_{1}, t_{2}\right) \\
& \quad=\frac{g_{0}^{2}}{R^{4}} \int_{0}^{z_{\max }} d z_{1} \sqrt{\left|g\left(z_{1}\right)\right|}\left[z_{1}^{2} \phi_{a}\left(z_{1}\right) \phi_{a^{\prime}}\left(z_{1}\right)\right] \int_{0}^{z_{\max }} d z_{2} \sqrt{\left|g\left(z_{2}\right)\right|}\left[z_{2}^{2} \phi_{b^{\prime}}\left(z_{2}\right) \phi_{b}\left(z_{2}\right)\right] \\
& \quad \times \int_{0}^{z_{\max }} d z_{3} \sqrt{\left|g\left(z_{3}\right)\right|} \widetilde{\mathcal{K}}_{P}\left(-\tilde{s}_{1}, \tilde{t}_{1}, z_{1}, z_{3}\right) l\left(\tilde{\kappa}, \tilde{t}_{1}, \tilde{t}_{2}, z_{3}\right) \widetilde{\mathcal{K}}_{P}\left(-\tilde{s}_{2}, \tilde{t}_{2}, z_{2}, z_{3}\right)
\end{aligned}
\]
where the dependence on the central vertex is collected as
\[
I\left(\tilde{\kappa}, \tilde{t}_{1}, \tilde{t}_{2}, z_{3}\right)=\left(z_{3}^{2} \phi_{c}\left(z_{3}\right)\right) V_{c \bar{c}}\left(\tilde{\kappa}, \tilde{t}_{1}, \tilde{t}_{2}\right)\left(z_{3}^{2} \phi_{c^{\prime}}\left(z_{3}\right)\right) .
\]

Putting this all together we find
\[
\begin{aligned}
\rho\left(\vec{p}_{T}, y, s\right) & \equiv \frac{1}{\sigma_{\text {total }}} \frac{d^{3} \sigma_{a b \rightarrow c+X}}{d \mathbf{p}_{c}^{3} / E}=\frac{1}{2 \text { is } \sigma_{\text {total }}(s)} \operatorname{Disc}_{M^{2}} T_{6}\left(\kappa, s_{1}, s_{2}, 0,0\right) \\
& =\beta \int_{0}^{z_{\max }} \frac{d z_{3}}{z_{3}} \tilde{\kappa}^{j_{0}}\left[\phi_{c}\left(z_{3}\right)\right]^{2}\left[\operatorname{lm} \mathcal{V}_{c \bar{c}}(\tilde{\kappa}, 0,0)\right] \\
& =\beta \int_{0}^{z_{s}} \frac{d z}{z} z^{2 \tau_{c}}\left(\kappa z^{2} / R^{2}\right)^{j_{0}} e^{-\left(2 \kappa / \lambda^{1 / 2}\right) z^{2}} \\
& \simeq \beta^{\prime} \kappa^{-\tau_{c}},
\end{aligned}
\]

Where we have absorbed coefficients into overall constants.
Some things to note: (1) We assumed a confinement model to get finite results, but the answer is independent of the scale. (2) there is a simple scaling behavior that scales as power of the twist (3) The scaling is independent of initial sources

\section*{Approach}

The dominant contribution comes from tensor glueballs leading to the expected behavior
\[
\rho\left(p_{\perp}, y, s\right) \sim p_{\perp}^{-8} \xrightarrow{\text { fit ansatz }} \frac{A}{\left(p_{\perp}+C\right)^{B}}
\]

Can compare to:
ATLAS p-p \(\sqrt{s}=8 \mathrm{TeV}\) and \(\sqrt{s}=13 \mathrm{TeV}\)
ALICE p-Pb \(\sqrt{s}=5.02 \mathrm{TeV}\)

\section*{Plots!}


ATLAS Data at \(\sqrt{s}=8\) and \(\sqrt{s}=13 \mathrm{TeV}\)


For \(d \sigma \sim A /\left(P_{T}+C\right)^{B}\)
\(B \sim 7, C \sim 1 \mathrm{GeV}\)
This is above \(\Lambda_{Q C D}\), small \(p_{T}\) behavior might be different. Not exactly the expected \(p_{T}^{-8}\) behavior expected! Still, \(\chi_{\text {dof }}^{2} \sim 1\)

\section*{Conclusions and Future Work}

Conclusions:
- Conformal symmetry shows it's use in a wide range of collider physics, not limited to just AdS/CFT Regge physics [Randall, Sundrum][Georgi][Strassler, et. al.]
- 1P inclusive production in the central region can both be well modeled using the AdS/CFT. (Just like DIS in the past)
- Single particle inclusive production behaves like the exchange of a pair of operators in region \(P_{T}>\Lambda_{Q C D}\)

\section*{Future Directions:}
- Compute with softwall to see *true* model independent features
- AdS EOM to higher order in \(\lambda\) (Hard string calculation!)[Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]
- Extend to meson exchange.[Karch, Katz, Son, Stephanov] [Brodsky, de Teramond]
- Incorporate higher order anomolous dimension, \(\Delta(j)\), results. [Brower, Costa, Djuric, TR, Tan] [Gromov, et. al][Lipatov, et. al.][Gromov, et. al.]
- More robust Ads wavefunctions and PDFs
- New processes and data sets


\section*{Can you do anything else?}

Similar approach can be used to describe DIS at small-x \(\left(\gamma^{*} p\right)\).
\[
\sigma_{\text {total }}=\frac{1}{s} \operatorname{Im}[\mathcal{A}(s, t=0)] \sim \frac{1}{s} \operatorname{Im}[\chi(s, t=0)]
\]

We can use this to calculate total cross sections and to determine the proton structure function

\[
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{\text {trans }}+\sigma_{\text {long }}\right)
\]

Finally we must be wary of saturation where we must consider multipomeron exchange via eikonalization
\[
\chi \rightarrow 1-e^{i \chi}
\]
[Cornalba, et. al.][Brower
et.al.]

\section*{Comparison With Previous Work}

Can be used to identify the onset of strong-coupled/holographic saturation and confinement
\begin{tabular}{|c||c|c|c|c|c|}
\hline Model & \(\rho\) & \(g_{0}^{2}\) & \(z_{0}\) & \(Q^{\prime}\) & \(\chi_{\text {dof }}^{2}\) \\
\hline conformal & \(0.774^{*}\) & \(110.13^{*}\) & - & \(0.5575^{*} \mathrm{GeV}\) & \(11.7\left(0.75^{*}\right)\) \\
\hline hard wall & 0.7792 & 103.14 & \(4.96 \mathrm{GeV}^{-1}\) & 0.4333 GeV & \(1.07\left(0.69^{*}\right)\) \\
\hline softwall \(^{0.7} \mathbf{0 . 7 7 7 4}\) & 108.3616 & \(8.1798 \mathrm{GeV}^{-1}\) & 0.4014 GeV & 1.1035 \\
\hline softwall \(^{*}\) & 0.6741 & 154.6671 & \(8.3271 \mathrm{GeV}^{-1}\) & 0.4467 GeV & 1.1245 \\
\hline
\end{tabular}

Comparison of the best fit (including a \(\chi\) sieve) values for the conformal, hard wall, and soft wall AdS models. The final row includes the soft wall with improved intercept. [Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]The statistical errors (omitted) are all \(\sim 1 \%\) of fit parameters.

As expected, best fit values imply
\[
\rho \rightarrow \lambda>1 \quad 1 / z_{0} \sim \Lambda_{Q C D} \quad \text { and } \quad Q^{\prime} \sim m_{\text {proton }}
\]

\section*{Parameter Stability}

We expect deviations from Regge behavior at low \(p_{\perp}\). (Note our exact conformal solution
diverges as \(p_{\perp} \rightarrow 0\) ).
Q: Why choose our parameterization?
Two ideas: (1) Don't fit small \(p_{\perp}\) behavior and/or (2) introduce a momentum offset

\begin{tabular}{|c|c|c|c|}
\hline\(p_{\text {min }} /(1 \mathrm{GeV})\) & \(\mathrm{A} / 10\left(\mathrm{GeV}^{-2}\right)\) & B & \(\chi^{2} / \mathrm{NDF}\) \\
\hline 0 & \(0.0516 \pm 0.00687\) & \(5.02 \pm 0.164\) & 51.2 \\
\hline 0.5 & \(0.0575 \pm 0.00718\) & \(5.15 \pm 0.148\) & 29.8 \\
\hline 1.0 & \(0.0943 \pm 0.0140\) & \(5.60 \pm 0.139\) & 3.21 \\
\hline 1.5 & \(0.153 \pm 0.0585\) & \(5.88 \pm 0.231\) & 0.135 \\
\hline 2.0 & \(0.183 \pm 0.131\) & \(5.97 \pm 0.368\) & 0.0412 \\
\hline 2.5 & \(0.199 \pm 0.247\) & \(6.01 \pm 0.578\) & 0.0337 \\
\hline 3.0 & \(0.205 \pm 0.291\) & \(6.027 \pm 0.646\) & 0.0316 \\
\hline 3.5 & \(0.218 \pm 0.348\) & \(6.05 \pm 0.712\) & 0.0258 \\
\hline 4.0 & \(0.233 \pm 0.416\) & \(6.07 \pm 0.770\) & 0.0189 \\
\hline 4.5 & \(0.253 \pm 0.518\) & \(6.10 \pm 0.846\) & 0.0127 \\
\hline 5.0 & \(0.150 \pm 0.736\) & \(5.93 \pm 1.70\) & 0.000621 \\
\hline
\end{tabular}

\section*{1PI Kinematics Cont'd}

For \(a+b \rightarrow c+X\), treat \(X\) effectively as a particle with mass
\[
M^{2}=\left(p_{a}+p_{b}-p_{x}\right)^{2}=s+t+u-m_{a}^{2}-m_{b}^{2}-m_{c}^{2}
\]

The final line is a constraint relating to the usual three Mandelstam invariants.
More convenient to pick a LC frame where \(p_{a}=\left(p_{a}^{+}, p_{a}^{-}, \vec{p}_{\perp, a}\right)=\left(m_{a} e^{Y / 2}, m_{a} e^{-Y / 2}, 0\right), p_{b}=\left(m_{b} e^{-Y / 2}, m_{b} e^{Y / 2}, 0\right)\), where \(Y\) is the rapidity. The Mandelstam \(s\) becomes approx \(s \sim m^{2} e^{Y}\), and the produced particle has LC momentum given by
\[
p_{c}=\left(m_{\perp} e^{y}, m_{\perp} e^{-y}, \vec{p}_{\perp}\right), \quad m_{\perp}^{2} \equiv m_{c}^{2}+\vec{p}_{\perp}^{2} \simeq \frac{(-t)(-u)}{M^{2}} \equiv \kappa
\]

In the appropriate Regge limit
\(s \simeq M^{2} \simeq m^{2} e^{Y} \rightarrow+\infty \quad t \simeq-m m_{\perp} e^{Y / 2-y} \rightarrow-\infty \quad u \simeq-m m_{\perp} e^{Y / 2+y}\)

\section*{More on AdS Reggeons}

Reggeon propagators can be written in a form reminiscent of the weak coupling partonic description \(\chi_{R} \sim \int d j\left(\alpha^{\prime} \hat{s}\right)^{j}(1+\operatorname{Cos}(-i \pi j)) G_{j}\left(t, z, z^{\prime}\right)\) and the \(G_{j}\) are AdS wavefunctions behaving like Bessel functions. For a physical process like DIS we have hadronic structure functions that are singular as \(x \rightarrow 0\). These can be expressed in terms of a standard moment
 expansion: \(M^{\alpha}\left(Q^{2}\right)=\int d x x^{1-\alpha} F_{\alpha}\left(x, Q^{2}\right)\). For large \(Q^{2}\) this scales as a power of the anomalous dimension \(\gamma\).


For AdS-Reggeons the operator dimensions admit a convergent expansion in terms of the objects twist, coupling, and anomalous dimension. These \(\Delta-J\) curves admit non-trivial convergent expansions and can be calculated to high order using a mix of conformal, string, and integrability techniques. Minimizing these curves allows one to calculate Reggeon intercepts at strong coupling. [Gromov, et. al.][Lipatov, et. al.][Basso][Balitsky, et. al.] [Brower, et. al.]

\section*{More on Confinement}
- Where are the single quarks? Naively, this could be explained by \({ }_{T}\) a quark-quark energy that grows with seperation. At large distance it becomes energetically favorable to create new quarks.
- Wilson originally used Wilson loops \(W=\frac{1}{N} \operatorname{tr} \exp \left(\operatorname{ig} \oint_{C} A\right)\) to try and describe confinement. In the limit of large times, a square path for a quark corresponds to the energy of two static
 quarks. In a confining theory, the expectation of the wilson loop to have an area dependence: \(\langle W\rangle \sim \exp (-\sigma\) Area)
- In AdS Wilson loops in \(\mathcal{N}=4\) SYM are dual to minimal surfaces that extend into the bulk AdS.[Maldacena],[Polyakov]Note, in pure AdS, distances diverge at the boundary (small z) and become small in the interior of the bulk (large \(z\) ).

- The original AdS/CFT conjecture predicts \(\langle W>\sim \exp (-\sigma T / x)\).[Maldacena] But it was quickly shown that deformations of the AdS space lead to confining behavior \(\exp (-\sigma T x)\) [Polchinski, Strassler],[Andreev,et.al.]
- For us, it is sufficient to consider a purely geometric confinement deformation. However, to describe mesons it will be required to consider other dynamical fields in the bulk. [Karch, et.al.], [de Teramond, Brodsky], [Batell, Gherghetta] \({ }^{1}\)
- Thus the conformal description can be deformed to describe a confining theory
\[
d s^{2}=\frac{R^{2}}{z^{2}}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5} \rightarrow e^{2 A(z)}\left[d z^{2}+d x \cdot d x\right]+R^{2} d \Omega_{5}
\]

\footnotetext{
\({ }^{1}\) For a definitive discussion on confinement via AdS dilaton see a series of papers by Kiritsis, et al.]
}```

