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Neutrinos	produced	in	the	
atmosphere	
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•  cosmic	ray	(CR)	flux	
and	composi\on	

•  CR	interac\ons	with	
air	nuclei	to	produce	
mesons/baryons	that	
decay	

•  focus	here	on	charm	
(and	b	quark)	
produc\on	

Inputs	include:	

Figure	from	hEps://astro.desy.de/	



Beam	dump	neutrino	fluxes	
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400	GeV	proton	beam	incident	on	molybdenum	target.	
Designed	to	look	for	“hidden	par\cles”	but	would	be	a	
copious	source	of	tau	neutrinos	as	well.	



Improve	earlier	work	on	the	prompt		
atmospheric	neutrino	flux	
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Neutrinos	from	charm	
(prompt)		
ERS:	Enberg,	Reno	&	
Sarcevic,	PRD	78	
(2008),		
shown	here	with	a	
cosmic	ray	flux	
correc\on.	

IceCube,	arXiv:1504.03753	



Background	to	astrophysical	neutrino	
flux	(the	cosmic	neutrino	flux)	
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IceCube	Collabora\on,	arXiv:
1507.04005,	PRL	115	(2015)	081102	



•  Why	interes\ng?	
–  Background	to	IceCube	measurement	of	the	diffuse	
flux,	eventually	detectable	component	of	their	
measurement.	

– Hadronic	physics	connected	to	LHC	(LHCb):	charm	
produc\on.	

–  Connec\on	to	fixed	target	experiments.	
•  Atmospheric	flux	from	charm:	“prompt”	

– Discussion	of	generic	energy	scaling	
–  Brief	review	of	calcula\onal	procedure	
–  Inputs	and	results	
– Discussion	of	uncertain\es	

•  Beam	dump	fluxes:	single	beam	energy	
–  Tau	neutrinos	and	an\neutrinos	at	SHiP	
–  Intrinsic	charm:	constraints	from	SHiP	
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From	Table	1,	Gaisser,	Astropart.	Phys.	35	(2012)	801	
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⇠ E�2.7

⇠ E�3

Input-	cosmic	accelerator:	CR	all	par\cle	
spectrum	

tradi\onal	rescaling	in	other	figures,	by	power	of	2.7	or	3	

Equivalent	to	

Equivalent	to	

All	par\cle	spectrum:	
important	elements	
include	composi\on	
&	energy	dependence	



CR	nucleon	spectrum	

From	Table	1,	Gaisser,	Astropart.	Phys.	35	(2012)	801	
8	

Broken	power	law?	
Not	really….	input	
spectrum	and	
composi\on.	

Tradi\on:	to	use	the	
broken	power	law	for	
comparisons	between	
calcula\ons.	



Why	charm?	Energy	dependence,	schema\cally,	
neglec\ng	break	in	power	law	of	cosmic	rays	
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Cosmic	rays	produce	
hadrons.	They	decay	to	
neutrinos	(low	energy-all,	
high	energy-	few)	

Scaling	by	
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CR	energy	
spectrum	

diffuse	astrophysical	
flux	
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Z-moments:	spectrum	weighted	moments	for	
approximate	flux	calcula\on,	favors	large	energy	

frac\ons	for	charm	produc\on	
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S(k ! j) = Zkj(E)
⇥k(E,X)

�k(E)

S(k ! j) =

Z 1

E
dE0⇥k(E0, X)

�k(E0)

dn(k ! j;E0, E)

dE

Approximate	rela\on	–	flux	factorizes	so	Z	only	depends	on	E.	
Calculate	the	differen\al	cross	sec\on	or	decay	distribu\on,	
convolute	with	the	flux,	integrate	to	get	Z.		

Zkj(E) =

Z 1

E
dE0�k(E0, X)

�k(E,X)

�k(E)

�k(E0)

dn(k ! j;E0, E)

dE



What	is	new	in	this	prompt	charm	
evalua\on?	

•  NLO	QCD	evalua\on	of	charm	pair	cross	sec\on	and	energy	
distribu\on	with	nuclear	correc\ons	(nCTEQ	pdfs).	Cacciari,	
Greco,	Nason,	JHEP	9805	(1998);	Cacciari,	Frixion,	Nason,	JHEP	0103(2001);	
Mangano,	Nason,	Ridolfi,	NP	B273	(1992);	Nason,	Dawson,	Ellis,	NP	B303	
(1988),	NP	B373	(1992);	Lai	et	al,	PRD	82	(2010)	

•  Dipole	Model:	Soyez,	Block	et	al.		approxima\on,	AAMQS	
(Soyez	in	ERS).	Mul\ple	ways	to	include	nuclear	correc\ons:	
Glauber-Gribov	or	A-dependent	satura\on	scale.	Soyez,	Phys.	
LeE.	655B	(2007)	32,	Block,	Durand,	Ha,	Phys.	Rev.	D	89	(2014)	094027,	
Albacete	et	al.	Phys.	Rev.	D	80	(2009)	034031.	Enberg,	MHR	&	Sarcevic,	PRD	
78	(2008).	

•  kT	factoriza\on,	low	x	off-shell	gluon.	Nuclear	effects	through	
nonlinear	term	scaling	like	cube	root	of	A.	Catani,	Ciafaloni	and	
Hautmann,	Nucl.	Phys.	B	366	(1991)	135;	Collins	and	Ellis,	Nucl.	Phys.	B360	
(1991)	3,	Kutak	and	Sapeta,	Phys.	Rev.	D	86	(2012)	094043.	
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Charm cross section using perturbative 
QCD: gluon fusion dominated 

PDF = parton distribution function 

Disadvantage: need gluon PDF in low x, not very big Q range. 

One	approach,	perturba\ve	QCD	with	PDFs:	

�(pp ! cc̄X) '
Z

dx1 dx2 G(x1, µ)G(x2, µ)�̂GG!cc̄(x1x2s)

x1, x2 :

xF = x1 � x2

xF ' xE = E/E

0
x1,2 =

1

2

 r
x

2
F +

4Mcc̄

s

± xF

!

x1 ' xF ⇠ 0.1, x2 ⌧ 1

Refs:	e.g.,	Thunman,	Ingelman,	Gondolo,	Astropart.	Phys.	(1996)	at	LO,	
Pasquali,	MHR,	Sarcevic,	Phys.	Rev.	D	(1999)	at	NLO	modeled	with	x	dependent	k-factor	(PRS)	
Necessarily	involve	extrapola\ons	at	low	x	(some\mes	explicit,	some\mes	implicit).	
What	about	large	logarithms?		

E ⇠ 107 GeV ! x2 ⇠ 10�6

ln(1/x)

See	Goncalves,	Maciula,	Pasechnik,	Szczurek,	PRD	96	(2017)	for	more	quan\ta\ve	discussion.		

12	



Dipole	model	
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Dipole	cross	sec\on	we	
use:		
Soyez	(2007)	
AAMQS	(2010)	
“Block”	(solid	line)	from	
	

Fig.	from	Arguelles	et	al,	PRD	92	(2015)	

Electromagne\c	
scaEering	converted	to	
heavy	flavor	
produc\on.	



kT	factoriza\on	
•  Take	the	“large-x”	gluon	from	cosmic	ray	on-shell,	small-x	

target	gluon	off-shell	(hybrid	formalism)	
•  Unintegrated	PDF	–	resummed	version	of	BFKL	evolu\on,	see	

Kwiecinski,	Mar\n,	Stasto	(1997),	Kutak,	Stasto	(2005),	used	
unintegrated	distribu\on	of	Kutak	and	Sapeta	(2012),	with	
and	without	satura\on	(non-linear	term	in	the	evolu\on).	
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Cross	sec\on	for	charm,	b	quarks		
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Cross	sec\on	for	charm,	b	quarks		
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Nuclear	effects	not	very	
important	for	the	cross	sec\on	
(for	nitrogen	targets)	but	more	
important	for	the	differen\al	
distribu\ons.	



Compare	with	LHC	data	for	charm	
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NLO	perturba\ve	
for	example,	with	
a	range	of	scale	
factors	and	
dependence.	
	
For	the	prompt	
flux	from	charm,	
need	even	larger	
rapidi\es.	

LHCb,	Nucl.	Phys.	B	871	(2013)	1;	JHEP	03	(2016)	159	



Compare	with	LHC	data	
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Dipole	and	kT	
factoriza\on	
comparisons.	



NLO	QCD	result	for		prompt	neutrino	flux	
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BERSS:	BhaEacharya	et	al.,	JHEP	06	(2015)	110	uses	CT10	PDFs	with	
no	nuclear	correc\ons.		
Nuclear	correc\ons	via	nCTEQ15	parton	distribu\on	func\ons	are	
significant.	
Mul\-component	cosmic	ray	flux	–	two	models,	Gaisser	et	al.	



Dipole	model	
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Muon	neutrino,	approximately	same	as	electron	neutrino	and	
muons,	isotropic	at	“low	energies.	



kT	factoriza\on	
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Comparison	with	other	recent	results	
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Use	the	broken	power	law	for	comparison	with	recent	results	from	
other	groups	
GMS:	Garzelli,	Moch	and	Sigl,	JHEP	10	(2015)	115	using	POWHEG	BOX	and	Pythia;	GRRST:	
Gauld	et	al,	JHEP	02	(2016)	130	with	different	assessment	of	PDF	uncertain\es.	



Powheg-Box	FFNS	(GMS)	and	GM-
VFNS	approaches	
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Charm	mass,	Pythia	vs	FF,	scale	dependence,	figure	from	1705.10386,	
Benzke,	Garzelli,	Kniehl,	Kramer,	Moch,	Sigl.	



Prompt	neutrino	fluxes	with	different	
scaling	
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Suggested	upper	limit	on	prompt	flux:	0.54	ERS	from	Radel	and	
Schoenen	for	IceCube,	ICRC	2015	(2015)	1079.		



Tau	neutrinos	plus	an\neutrinos	
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hE⌧ i ' 0.9ED

Also	B	meson/b	quark	contribu\ons	



Prompt	atmospheric	tau	neutrinos	plus	
an\neutrinos	
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Ds ! ⌧⌫⌧ ⌧ ! ⌫⌧X



Prompt	flux	-	perspec\ves	

27	

•  If	we	had	a	completely	reliable	calcula\onal	method,	we	
wouldn’t	need	three	different	approaches.		

•  Our	new	NLO	pQCD	results	are	lower	than	BERSS,	because	of	
nCTEQ15	PDFs	for	nitrogen,	which	have	small-x	suppression.	

•  A	limit	of	0.54*ERS	cuts	into	dipole	model	range	of	flux	
predic\ons,	and	kT	factoriza\on	without	nuclear	correc\ons.	

•  Have	not	talked	about	intrinsic	charm,	or	other	modifica\ons,	
see,	e.g.,	Halzen	and	Wille,	PRD	94	(2016);	Laha	and	Brodsky,	
PRD	96	(2017),*	unfavored	fragmenta\on	of	light	quarks	in	D	
mesons,	Maciula,	Szczurek,	PRD	97	(2018).	

•  We	have	not	included	the	outlier	PDFs.	If	these	are	included,	a	
much	larger	band	of	uncertainty	in	the	prompt	neutrino	flux	
will	appear,	as	shown	by	other	authors.	



Beam	dump	proposal	-	SHiP	
•  Search	for	hidden	par\cles	with	400	GeV	proton	beam	
incident	on	Molybdenum	target.	Neutrinos	a	happy	by-
product!	

•  Beam	dump	neutrino	beam,	here	a	large	flux	of	
neutrinos	from	charmed	mesons.	

•  Ini\al	es\mates:	on	the	order	of	900	tau	neutrino	plus	
an\neutrino	events.	(DONUT	has	9	events,	OPERA	has	
4	events.)	

•  Show	here:	intrinsic	transverse	momentum	reduces	
the	number	of	tau	neutrino	plus	an\neutrino	events,	
by	a	factor	of	about	3.	

•  Intrinsic	charm	could	significantly	increase	the	rates.	

28	
arXiv:1504.04855		



Charm/tau	neutrino	energy	
distribu\ons	from	NLO	pQCD	
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E = 400 GeV

Detector	51.5	m	downstream,	2m	x	0.75m							arXiv:1504.04855		

no	intrinsic	kT,	1D	
kinema\cs	for	decays	

all	 all	

to	detector	 to	detector	



30	Bai	and	Reno,	in	progress	

Impact	of	intrinsic	kT	and	3D	treatment	of	the	decays:	
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Intrinsic	charm,	a	la	Brodsky	&	Vogt	&	Gu\errez	

independent	uncorrelated	fragmenta\on	(F)	
coalescence	distribu\on	(C)	

|uudcc̄i

|uudcc̄qq̄i

Brodsky	et	al,	PL	93B	
(1980);	Vogt	&	Brodsky,	
NP	B438	(1995);	
Gu\errez	&	Vogt,	NP	
B539	(1999)		
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Intrinsic	charm,	a	la	Brodsky	&	Vogt	&	Gu\errez,	rapidity	
distribu\on	for	protons	with	E=400	GeV	on	nucleon	target	

Asymmetries	in	intrinsic	charm	distribu\ons,	cross	sec\ons.	
Bai	and	Reno,	in	progress	
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DsTau	Experiment	at	CERN:	400	GeV	protons	on	a	thin	tungsten	
target.	Look	for	kinks	in	tracks	in	emulsion	for	Ds	to	tau	+	nutau	
(1000	events	according	to	perturba\ve	es\mate).	

perturba\ve	

intrinsic	charm	
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⌫µ ! µ�

⌫̄µ ! µ+

Intrinsic	charm	will	modify	the	
rela\ve	rates.	Look	for	par\cle/
an\par\cle	asymmetries.	



Conclusions	&	Future	Work	
•  The	modern	PDFs	and	high	energy	constraints	on	the	cross	

sec\on	are	a	start	to	developing	an	understanding	of	the	QCD	
uncertain\es	in	the	predic\on.	Ideally,	higher	rapidity	
measurements	would	be	made	for	charm	distribu\ons.	Nuclear	
correc\ons	are	important.	
	

•  Beam	dump	fluxes	of	tau	neutrinos	would	also	probe	charm	
produc\on	&	would	offer	a	significantly	larger	data	set	of	tau	
neutrino+an\-neutrino	events.	This	could	be	a	test	of	some	
intrinsic	charm	models	or	other	leading	par\cle	enhancements	
for	charm.	Geometry	of	detector	is	(of	course)	important.	
	

•  Work	in	progress	to	understand	asymmetries	in	muon	
neutrino-an\neutrino	produc\on	at	SHiP.	 35	



Comparison	with	ERS	
•  PDFs	nearly	the	same,	but	the	differen\al	energy	distribu\on	

of	the	charm	is	different:	dipole	model	vs	perturba\ve	
calcula\on.	The	Z-moment	emphasizes	large	xE,	which	does	
not	have	a	large	contribu\on	to	the	cross	sec\on.	The	ra\o	of	
the	Z-moments	is	approx.	factor	of	1.5	(ERS	approximately	
1.5xBERSS).	

•  We	use	a	different	value	of	Zpp:	in	ERS,	we	used	the	Thunman	
et	al	(TIG,	Astropart.	Phys.	5	(1996))	PYTHIA	value,		
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d�

dxE
⇠ (1� xE)

0.51Here:	

ZERS
pp (103 GeV) ' 0.5

ZBERSS
pp (103 GeV) ' 0.27



Approximate	formulae	

�low
� =

ZNMZM�

1� ZNN
�N

⇥high
� =

ZNMZM�

1� ZNN

ln(�M/�N )

1� �N/�M

�Mc
E

⇥N

Exponen\al	atmosphere,	1D,	approximate	factoriza\on	of	depth	
dependence.	

ZND, ZD�, ⇤D
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✏⇡c = 115 GeV

✏Kc = 850 GeV

✏Dc ⇠ 108 GeV

⇤M = �M/(1� ZMM )

c ! se+⌫ec ! sµ+⌫µ

Cosmic Rays and Particle Physics, T. Gaisser, Cambridge U Press; L. V. 
Volkova, Sov. J. Nucl. Phys. 31 (1980);P. Lipari, Astropart. Phys. 1 (1993) 



Comparison	with	recent	results	
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Broken	power	law,	with	CT14nlo	fit	and	GM-VFNS,	1705.10386	


