Integrability of Conformal Fishnet Theory

Gregory Korchemsky
IPhT, Saclay

In collaboration with
David Grabner, Nikolay Gromov, Vladimir Kazakov
arXiv:1711.04786

15th Workshop on Non-Perturbative QCD, June 14, 2018

Integrability and fishnet graphs

\checkmark Fishnet graphs are four-dimensional scalar conformally invariant Feynman diagrams

\checkmark Define completely integrable lattice model
\checkmark Appear everywhere in planar $\mathcal{N}=4$ SYM:
x Scattering amplitudes
x Correlation functions
\checkmark What is the relation between integrability of planar $\mathcal{N}=4$ SYM and fishnet Feynman diagrams?
\checkmark Simplified model: γ-deformed $\mathcal{N}=4$ SYM
x A non-unitary 'chiral' (almost) CFT dominated by fishnet graphs
x Integrable in planar limit, related to conformal $S U(2,2)$ spin chain

This talk: compute exactly correlation functions in γ-deformed $\mathcal{N}=4$ SYM

$$
\begin{aligned}
L= & -\frac{1}{4} F_{\mu \nu}^{2}+D^{\mu} \phi_{i}^{\dagger} D_{\mu} \phi^{i}+i \bar{\psi}_{A} D \psi^{A}+L_{\mathrm{int}} \\
L_{\mathrm{int}} & =g^{2}\left(\frac{1}{4}\left\{\phi_{i}^{\dagger}, \phi^{i}\right\}\left\{\phi_{j}^{\dagger}, \phi^{j}\right\}-\mathrm{e}^{-i \epsilon^{i j k} \gamma_{k}} \phi_{i}^{\dagger} \phi_{j}^{\dagger} \phi^{i} \phi^{j}\right. \\
& \left.-\mathrm{e}^{-\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{j} \phi^{j} \bar{\psi}_{4}+\mathrm{e}^{\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{4} \phi^{j} \bar{\psi}_{j}+i \epsilon_{i j k} \mathrm{e}^{\frac{i}{2} \epsilon_{j k m} \gamma_{m}^{+}} \bar{\psi}^{k} \phi^{i} \bar{\psi}^{j}+c . c .\right)
\end{aligned}
$$

Twist parameters $\gamma_{1}^{ \pm}=-\left(\gamma_{3} \pm \gamma_{2}\right) / 2, \gamma_{2}^{ \pm}=-\left(\gamma_{1} \pm \gamma_{3}\right) / 2, \gamma_{3}^{ \pm}=-\left(\gamma_{2} \pm \gamma_{1}\right) / 2$
Is expected to be integrable in the planar limit
Double scaling limit: strong twist + weak coupling
[Gurdogan,Kazakov]

$$
g^{2} \rightarrow 0, \quad \gamma_{1,2}=\text { fixed }, \quad \gamma_{3} \rightarrow+i \infty, \quad \xi^{2}=g^{2} \mathrm{e}^{-i \gamma_{3}}=\text { fixed }
$$

Gauge field, fermions and one scalar decouple

$$
L=\operatorname{tr}\left[\partial^{\mu} \phi_{1}^{\dagger} \partial_{\mu} \phi_{1}+\partial^{\mu} \phi_{2}^{\dagger} \partial_{\mu} \phi_{2}+\xi^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right]
$$

Supersymmetry and R-symmetry is broken $P S U(2,2 \mid 4) \rightarrow S U(2,2) \times U(1) \times U(1)$

Bi-scalar chiral CFT

$$
\mathcal{L}=N_{c} \operatorname{tr}\left[\partial^{\mu} \bar{X} \partial_{\mu} X+\partial^{\mu} \bar{Z} \partial_{\mu} Z+(4 \pi)^{2} \xi^{2} \bar{X} \bar{Z} X Z\right]
$$

Non-unitary theory, chiral vertex
Feynman rules:

The theory is not complete at the quantum level
[Fokken,Sieg,Wilhelm]

Double-trace counter terms have to added

Beta functions

\checkmark Quantum corrections induce double-trace interaction vertices

$$
\mathcal{L}_{\mathrm{dt}} /(4 \pi)^{2}=\alpha_{2}^{2}\left[\operatorname{tr}\left(X^{2}\right) \operatorname{tr}\left(\bar{X}^{2}\right)+\operatorname{tr}\left(Z^{2}\right) \operatorname{tr}\left(\bar{Z}^{2}\right)\right]-\alpha_{1}^{2}[\operatorname{tr}(X Z) \operatorname{tr}(\bar{X} \bar{Z})+\operatorname{tr}(X \bar{Z}) \operatorname{tr}(\bar{X} Z)]
$$

$\checkmark \xi^{2}$ does not run, but new couplings develop beta-functions $\beta_{i}=d \alpha_{1}^{2} / d \ln \mu \neq 0$ - conformal anomaly!

$$
\begin{aligned}
& \beta_{1}=2\left(\alpha_{1}^{2}-\xi^{2}\right)^{2} \\
& \beta_{2}=a(\xi)+\alpha_{2}^{2} b(\xi)+\alpha_{2}^{4} c(\xi)
\end{aligned}
$$

Coefficient functions $a=-\xi^{4}+\xi^{8}+\ldots, b=-4 \xi^{4}+4 \xi^{8}+\ldots, c=-4-4 \xi^{4}+\ldots$
\checkmark The theory has two lines of fixed points

$$
\alpha_{1}^{2}=\xi^{2}, \quad \alpha_{2}^{2}=\alpha_{ \pm}^{2}= \pm \frac{i \xi^{2}}{2}-\frac{\xi^{4}}{2} \mp \frac{3 i \xi^{6}}{4}+\xi^{8} \pm \frac{65 i \xi^{10}}{48}-\frac{19 \xi^{12}}{10}+O\left(\xi^{14}\right)
$$

\checkmark In the planar limit, the bi-scalar theory with appropriately tuned double-trace couplings is a genuine non-unitary CFT

Bi-scalar theory at the fixed point

\checkmark Expected behaviour at the fixed points

$$
\left\langle\operatorname{tr}\left[X^{2}(x)\right] \operatorname{tr}\left[\bar{X}^{2}(0)\right]\right\rangle \sim \frac{1}{\left(x^{2}\right)^{\Delta_{ \pm}}}
$$

\checkmark Scaling dimensions of operators at weak coupling

$$
\Delta_{ \pm}=2 \mp 2 i \xi^{2} \pm i \xi^{6} \mp \frac{7 i}{4} \xi^{10}+O\left(\xi^{14}\right)
$$

\checkmark Satisfies remarkably simple exact relation

$$
(\Delta-4)(\Delta-2)^{2} \Delta=16 \xi^{4} .
$$

Hint for integrability of the theory

Four-point correlation function

Exploit the conformal symmetry to compute the four-point correlation function

Is obtained from $\left\langle\operatorname{tr}\left[X^{2}(x)\right] \operatorname{tr}\left[\bar{X}^{2}(0)\right]\right\rangle$ by point splitting the scalar fields

$$
G\left(x_{1}, x_{2} \mid x_{3}, x_{4}\right)=\frac{\mathcal{G}(u, v)}{x_{12}^{2} x_{34}^{2}}, \quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Admits the conformal partial wave expansion

$$
\mathcal{G}(u, v)=\sum_{\Delta, S / 2 \in \mathbb{Z}_{+}} C_{\Delta, S}^{2} u^{(\Delta-S) / 2} g_{\Delta, S}(u, v)
$$

The sum runs over operators with scaling dimensions Δ and even Lorentz spin S.
$C_{\Delta, S}$ the OPE coefficient, $g_{\Delta, S}(u, v)$ the conformal block
For $u \rightarrow 0$ and $v \rightarrow 1$, the leading contribution comes from operators $O=\operatorname{tr}\left[\bar{X}^{2}(0)\right]$

Four-point correlation function II

Feynman diagrams contributing in the planar limit

Sum of ladder diagrams glued together through double-trace vertices

$$
\mathcal{V}=
$$

Integral operators \mathcal{V} and \mathcal{H} insert quartic vertex and scalar loop, respectively

$$
G \sim\left\langle x_{1}, x_{2}\right| \frac{1}{1-\alpha^{2} \mathcal{V}-\xi^{4} \mathcal{H}}\left|x_{3}, x_{4}\right\rangle+\left(x_{1} \leftrightarrow x_{2}\right)
$$

α^{2} the double-trace coupling at the fixed point
The operators \mathcal{V} and \mathcal{H} commute with the generators of the conformal group

Eigenvalues of graph generating kernels

$$
\begin{aligned}
\mathcal{V} \Phi_{\Delta, S}\left(x_{1}, x_{2}\right) & =\delta(\Delta-2) \delta_{S, 0} \Phi_{\Delta, S}\left(x_{1}, x_{2}\right) \\
\mathcal{H} \Phi_{\Delta, S}\left(x_{1}, x_{2}\right) & =\frac{1}{h_{\Delta, S}} \Phi_{\Delta, S}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Conformal symmetry fixes the form of eigenstates of \mathcal{V} and \mathcal{H}

$$
\begin{aligned}
\Phi_{\Delta, S, n}\left(x_{10}, x_{20}\right) & =\left\langle\operatorname{tr}\left[X\left(x_{1}\right) X\left(x_{2}\right)\right] O_{\Delta, S, n}\left(x_{0}\right)\right\rangle \\
& =\frac{1}{x_{12}^{2}}\left(\frac{x_{12}^{2}}{x_{10}^{2} x_{20}^{2}}\right)^{(\Delta-S) / 2}\left(\left(n \partial_{x_{0}}\right) \ln \frac{x_{20}^{2}}{x_{10}^{2}}\right)^{S}
\end{aligned}
$$

All Lorentz indices are projected onto auxiliary light-cone vector n^{μ}
The operator $O_{\Delta, S, n}\left(x_{0}\right)$ carries the scaling dimension $\Delta=2+2 i \nu$ and Lorentz spin S
The states $\Phi_{\Delta, S, n}$ belong to the principal series of the conformal group
Eigenvalue of \mathcal{H}

$$
h_{\Delta, S}=\frac{1}{16}(\Delta+S-2)(\Delta+S)(\Delta-S-2)(\Delta-S-4)
$$

Correlation function

Decompose the four-point correlation function over the eigenstates

$$
\begin{aligned}
G\left(x_{1}, x_{2} \mid x_{3}, x_{4}\right) & =\sum_{x_{2}}^{x_{1}} \\
& =\sum_{S \geq 0} \int_{0}^{\infty} \frac{d \nu}{h(\nu, S)-\xi^{4}} \int d^{4} x_{0} \Phi_{\nu, S}^{\mu_{1} \ldots \mu_{S}}\left(x_{10}, x_{20}\right) \Phi_{-\nu, S}^{\mu_{1} \ldots \mu_{S}}\left(x_{30}, x_{40}\right) \\
& =\frac{1}{x_{12}^{2} x_{34}^{2}} \sum_{S \geq 0} \int_{-\infty}^{\infty} d \nu \frac{1}{h(\nu, S)-\xi^{4}} \underbrace{\mu(\nu, S)}_{\text {kinem.factor }} \underbrace{g_{2+2 i \nu, S}(u, v)}_{4 \text { dconf.block }}
\end{aligned}
$$

The sum runs over the states with $\Delta=2+2 i \nu$ and Lorentz spin S
Close the integration contour to the lowest half-plane and pick up residues at

$$
h(\nu, S)=\left(\nu^{2}+S^{2} / 4\right)\left(\nu^{2}+(S+2)^{2} / 4\right)=\xi^{4}, \quad \operatorname{Im} \nu<0
$$

Two solutions $i \nu_{2}=S / 2+O\left(\xi^{4}\right)$ and $i \nu_{4}=(S+2) / 2+O\left(\xi^{4}\right)$

Exact scaling dimensions

Exact scaling dimensions

$$
\begin{aligned}
& \Delta_{2}(S)=2+\sqrt{(S+1)^{2}+1-2 \sqrt{(S+1)^{2}+4 \xi^{4}}} \\
& \Delta_{4}(S)=2+\sqrt{(S+1)^{2}+1+2 \sqrt{(S+1)^{2}+4 \xi^{4}}}
\end{aligned}
$$

Describe conformal operators of twist 2 and 4
Special case: operators with $S=0$

$$
\Delta_{2}(0)=2+\frac{2 i \sqrt{2} \xi^{2}}{\sqrt{1+\sqrt{4 \xi^{4}+1}}}=2-2 i \xi^{2}+i \xi^{6}-\frac{7 i}{4} \xi^{10}+O\left(\xi^{14}\right)
$$

Agrees with the result of explicit calculation at 7 loops!

Exact OPE coefficients

$$
G\left(x_{1}, x_{2} \mid x_{3}, x_{4}\right)=\frac{1}{x_{12}^{2} x_{34}^{2}} \sum_{S \geq 0} C_{\Delta_{2}, S} g_{\Delta_{2}, S}(u, v)+C_{\Delta_{4}, S} g_{\Delta_{4}, S}(u, v)
$$

The OPE coefficients

$$
C_{\Delta, S}=-2 \pi i \times \operatorname{res}_{\nu} \frac{\mu(\nu, S)}{h(\nu, S)-\xi^{4}}
$$

The residue at the physical pole $h(\nu, S)=\xi^{4}$

$$
C_{\Delta, S}=\frac{4^{3-\Delta}(-1)^{S}(S+1) \Gamma\left(\frac{1}{2}(S-\Delta+5)\right) \Gamma\left(\frac{1}{2}(S+\Delta)\right)}{[(4-\Delta) \Delta+S(S+2)-2] \Gamma\left(\frac{1}{2}(S-\Delta+4)\right) \Gamma\left(\frac{1}{2}(S+\Delta-1)\right)}
$$

The dependence on the coupling constant enters through the scaling dimensions
The operators with zero Lorentz spin

$$
C_{\Delta, 0}=-\frac{4^{3-\Delta} \Gamma\left(\frac{5-\Delta}{2}\right) \Gamma\left(\frac{\Delta}{2}\right)}{((\Delta-4) \Delta+2) \Gamma\left(\frac{4-\Delta}{2}\right) \Gamma\left(\frac{\Delta-1}{2}\right)}
$$

The exact conformal data for any coupling ξ^{2} !

Conclusions and open questions

\checkmark Strongly γ-deformed planar $\mathcal{N}=4$ SYM has two lines of fixed points
\checkmark The corresponding non-unitary four-dimensional conformal field theory is integrable
\checkmark Closed expression for the four-point correlation function of the simplest protected operators, the exact conformal data
\checkmark Do conformal symmetry and integrability survive in γ-deformed planar $\mathcal{N}=4$ SYM for arbitrary values of the deformation parameters?
\checkmark Does the bi-scalar theory admit a dual AdS description?

