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1) First first-principled dynamical quark confining potential for quarks,  [Fried et al. Eur. 
Phys. J. C 65, 395 2010]

2) A potential that allows nucleons to be bounded, thus provided the first-principled 
model deuteron,                                                      [Fried et al. Ann. Phys. 338, 2013]

3) New property of Effective Locality, provides the summation of all gluonic exchanges 
between two quarks, but moreover, the interaction becomes a Local Interaction.              
                  [Thierry Grandou et al. Ann. Phys. 327 (2012),  Mod. Phys. Lett. A, Vol.32(2017); 1706.02264 ]

4) Extended Asymptotic Freedom as supported by Dyson Schwinger Equation (g>>1 
and g small) [Fried, Grandou, Sheu 1207.5017],

5) A qualitative description of Hadron Confinement mass scale(s),              [Fried, PT 
2015]

6) The full SU(3) algebraic content of QCD amplitudes.

7) First-principled calculation of elastic  proton-proton scattering at ISR and LHC 
energies.

Analytic, Finite, Gauge-Invariant, Non-Perturbative QCD 
formulation obtained



  

Schwinger Generating Functional for QCD

a) Starting Point: Schwinger Generating Functional (GF) for QCD, with gluon operators in an 
Arbitrary (Relativistic) Gauge.

b) Re-arrange this GF in terms of a “Reciprocity Relation”, and a “Gaussian Linkage Operation”; 
and the GF now depends upon two functionals of A,

c) Insert Halpern's half-century-old representation for the   

 

 

The next two steps were overlooked for decades:

Virtual quark loopQuark line

Halpern's Representation

1 2

Eur. Phys. J. C65, 395 (2010) arxiv 
1103.4179



  

GAUGE INVARIANCE BY GAUGE INDEPENDENCE

       Functional derivatives on Generative Functional,              , 

Gluon Bundle

Trivial re-arrangement can now be made to formally insure gauge-invariance, 
Even though the GF still apparently contains gauge-dependent gluon propagators.

2n-point functions

1

(Eur.Phys.J.C65:395-411,2010. arxiv 0903.2644)

Gluonic ghosts leads to To be removed by



  

No gauge dependence.

(H.M.Fried, Modern Physics Letters A, 2013)

All gluons exchanges summed!



  

Use Fradkin Representation for G[A] and L[A]

H. M. Fried, Y. Gabellini, T. Grandou, Y.-M. Sheu, Eur. Phys. Journal C 65 (2010).
H. M. Fried, Y. Gabellini, T. Grandou, and Y.-M. Sheu, Ann. Phys. 338 (2013) 

GaussianGaussian

GaussianGaussian
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All the Gaussian Linkage operations can then be carried through exactly, 
corresponding to the summation of all gluons exchanged between any pair 
of quark (and/or antiquark) lines, and including cubic and quartic gluon 
interactions. 

THE RESULT: 

Explicit cancellation of all gauge-dependent gluon propagators, with 
resulting GF exhibiting Manifest Gauge Independence.. and one finds a 
new, exact property of Non-Perturbative, Gauge-Invariant QCD,

Is gaussian functional operation, G[A] and L[A] are gaussian in Fradkin representation.
Functional derivatives operations with respect to sources            can be performed exactly.

This produces sum of all Feynman graphs corresponding to the exchange of infinite number 
of gluons between quarks.

Define a “Gluon Bundle” (GB) as the Sum over all gluon 
exchanges between any pair of quark lines,

= + + + +...



  

New QCD Property: 
Effective Locality (EL)

Define a “Gluon Bundle” (GB) as the Sum over all gluon 
exchanges between any pair of quark lines,

The space-time coordinates of both ends of a GB are equal, modulo small 
Uncertainties in their transverse coordinates. 

What this means is that, at high energies, the Halpern FI can be 
reduced to sets of Ordinary integrals, yielding a vast simplification in the 
calculation of all QCD Correlation functions. 

(Pencil and paper + desktop computer can now replace huge,
Multi-processing lattice calculations.)

= + + +

Eur. Phys. J. C65, pp.395-411 (2010). 0903.2644

See Thierry Grandou’s talk



  

We believe we know how to do this, but work still underway.

How to introduce transverse quark fluctuations 
from First Principles?

What we have done is to introduce phenomenological transverse fluctuation amplitudes for
Every quark-gluon vertex, replacing the usual gluon-quark current interaction at the same 
space-time point, 

by

With real and symmetric, and 

The probability of finding two quarks separated by a transverse (or impact parameter) 
distance is then: 



  

How to choose          ? It is directly related to quark binding; how 
does          produce          , the            binding potential whose 
lowest bound state represents the pion?

First try: A Gaussian,                              where        sets the scale of 
transverse fluctuations. Then, all absurdities of correlation functions 
disappear. But this distribution is “too symmetric”, and gives a zero

Second try: A “deformed” Gaussian,                                              
with           a  “deformation parameter”, real and small.

A straight-forward calculation yields, for small                    



  

CONCERNING TRANSVERSE QUARK FLUCTUATIONS

Starting from conventional, quark-field-operator equations of motion, one 
can define “IN” and “OUT” operator fields,                  as in any Abelian 
Theory; QCD just has more complicated interaction, no?

But this assumption is wrong. For decades we have known that all 
asymptotic quark states are hadronic Bound states of quarks; and for
 such a bound state we can specify longitudinal and time Coordinates, 
but not transverse coordinates, since they are always fluctuating.

NB: The conventional “static quark” approximation used in lattice and other 
model Binding-potential calculations in all non-perturbative Amplitudes are 
plagued with divergences because the “static quarks” are not physical.

Without taking such “transverse imprecision” into account, all 
non-perturbative Amplitudes are plagued with absurdities.  



  

Substituting this potential into a Schrodinger binding equation, using the 
“quantic” approximation , then yields                              . 

This is sensible, since the max.   fluctuations should be       than

Our result encompasses two different lattice calculations,                  and  
                           . But all lattice and other model calculations of                 
  binding correspond to an amplitude containing only one of the two 

Casimir SU(3) invariants,              ; our amplitude contains both.

What method do we use to pass from               to              ?

Imagine that a           and a           are scattering at high energy. One can 
write an Eikonal approximation, valid in the limit of                         , for 
the conventional scattering amplitude. (Details for QCD eikonals were 
worked out by HMF. YG, JA, and BMcK in two papers circa 1983.  )         

Mass of pion from QCD

(H.M.Fried, T.Grandou, R.Hoffman, Euro. Journal Phys. 2015
. 1504.05502)

[1104.4663, and 
L evy-Leblon, Balibar, Quantics:   ́
Rudiments of Quantum Physics]



  

No static approximation required! Our analysis gives            
explicitly, in terms of           , so that we can calculate              for 
any choice of                       .  The minimal bound state energy 
representing the pion shows that most of the pion mass comes 
from the gluons forming the GB, and relatively little from the quark 
masses.

Pion's mass from QCD



  

It has been well-known for a half-century that, assuming a specific               , in 
ordinary QM, or in Abelian QFTs, the corresponding eikonal function                   is 
given by      

where            is a constant depending on CM energy and the type of interaction. 

We can write the non-perturbative amplitude corresponding to a GB exchanged 
between a    q   and a       ; and we see that the Eikonal limit of this amplitude has  
            defined in terms of           , and proportional to:                     . Here,             
                             , and                                 .

Our method: Calculate the 2-D Fourier transform                of            . 

Extend                                                , so that we now have                        ; and 
then calculate the 3-D transform of this                       , which will yield              .

Eikonal to Potential

More on Eikonal in slide 26 on Scattering Amplitude



  

If you look up Nuclear forces on Wikipedia, you'll find the statement that 
there exists no derivation on the basis of QCD. 

Here is the first (to our knowledge) example of nucleon binding (for a Model 
deuteron) from basic QCD. The Model neglects electrical charge, and 
nucleon spins (which can always be added in ); this is a Qualitative model, 
describing the essence of Nuclear Physics.

Question of Scale: Quark binding takes place for                         , but 
nucleon binding takes place at 2, or 3, or 4 times that distance. How to 
achieve this? 

Consider: 

This requires extraction and regularization of the logarithmic UV divergence 
of the loop, which contributes two essential features: 

Nuclear Physics from QCD



  

a) It “stretches”, so that distances larger than            can 
easily enter.   

b) It provides a crucial change of sign for the effective n-n 
binding potential.

This sign change can be the basis of nucleon-binding to 
form nuclei. 

1104.4663



  

A single 'dressed' quark has an amplitude proportional to 

While two scattering quarks are described by 

All the basic, “radiative correction” structure of non-perturbative QCD 
comes from interacting closed-quark-loops with GBs. How can this be 
efficiently described? I will try to do this in words, describing the 
functional operations that need to be performed. 

And                is the Halpern functional variable originally used 
to represent       

Virtual Closed-Quark Loops, their interactions with GBs .



  

Every GB exchanged is represented by the linkage 
operator connecting the two              to each other, and 
the              to            .

And here the relative simplicity of non-perturbative QCD 
shows itself clearly, for all of its “self-energy” graphs 
vanish, either by the asymmetry of the                 color 
and coordinate indices, or by explicit loop integration.   

What is the        of a (non-perturbative) quark?          . 

Non-Perturbative QCD is far simpler than QED!

= 0

 1412.2072



  

The 'radiative corrections' of QCD enter when there is momentum transfer between 
one quark and another quark; and the procedure may occur when the momentum 
transfer passes through intermediate GBs and/or closed quark loops. 

For simplicity, let us suppress possible quark binding into hadrons, and just 
consider two quarks exchanging momentum transfer in their CM. 

A useful technique is the exact Functional Cluster Expansion,

With linkage operator

QCD Renormalization



  

For example, 

And 

Things get complicated very quickly; e.g.       is 
given by 

+ + +...

(Basics of Functional Methods and Eikonal Models, H.M.Fried)



  

Even functionally, it is a horrid mess. But, there exists one way of reducing this 
to an easily-calculated set of 'chain-graph-loops',

Which form a geometric series that can be summed.

But this depends  crucially on the definition of renormalization....

At this point, let's 'take stock' of where we stand. We began with a Theory of 
quarks and gluons; but the gluons have disappeared, and only their GB sums 
remain.

What to do? Renormalize the GB's: 

……

I



QCD Renormalization



  

Because each quark represents the “physical particle” of QCD, we'll replace the      
at each quark site by        , a finite quantity. But where the      connects to the loop – 
which is a virtual and not a physical particle – it remains      , and (very shortly) → 0. 

In this one-loop, 2 GB drawing, there is a net         multiplying the loop. 

But the loop is proportional to an expected UV log divergence, which we'll call            
                      .

This loop – as well as every such loop in a chain of such GB loops – produces a 
factor of                                            ,                    

which we DEFINE to be real, finite, positive number (subsequently determined by 
experiment). 

QCD Renormalization
y x

  



Q1

Q2

Q3

Q4

Q5

(1412.2072)



Q1

Q2

Q3

Q4

Q5

(1412.2072)



To calculate scattering problems:

1) Reduce full 6 body problem with 2 body scattering problem

2) Write f•χ as √R where R is real number.

Gluon Bundles Chain loops Interference terms



Energy Dependence

Simplifying the full 6 body problem of 2 hadrons scattering, along with using 
f∙χ as √R where R is real does not allow us to keep track of energy dependences.

2 body problem:  [Fried, Grandou,Hofmann 2016]

N = D (N
c
 – 1) gives N(N-1)/2 terms or 2496 monomials.

By symmetry, 2120  



Simplier problem N = 4 gives

Gives  p~ 0.26 

(Fried, Grandou, Gabellini, Sheu, PT, to appear)



  

Parameters to learn from experiments

● g coupling
●

●

(m/E)p though can be derived in principle●

Loop renormalization constant

Gluon Bundle m
ext

, Loop Chain masses m
int
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Differential Cross-Section 

● Calculations

dσ

dt
=

m4

16π p2 E2
|T|

2
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Differential Cross-Section 

● Calculations

dσ

dt
=

m4

16π p2 E2|T|
2

d σ

dt
=k [−9×3×4

β g2

4 π (mE )
2 p

( mE )
2 p

exp(
−1
8

x

m2 )+9×3×6
βg2

4 π (mE )
2 p

4 πλ κ
x

m2 exp (
−x

2m2 )]
2

(
m
√ ŝ )

2 p

Energy dependence of a single quark-quark subprocess yields: 

(H.M.Fried, T.Grandou,Y.-M.Sheu  Ann. Physics 2014)
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Gluon Bundles + One loop  

dσ

dt
=k [−12

β g2

4π (mE )
2 p

(mE )
2 p

exp(−3
8

x

m2 )+9
β g2

4π (mE )
2 p

4πλ κ
x

m2 exp( −x

2m2 )]
2

g=2.9
m=2m

π

p=0.01
κ=0.0296

ISR elastic pp data
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Differential Cross-Section 

● Calculations

dσ

dt
=

m4

16π p2 E2|T|
2

d σ

dt
=k [−12

β g2

4 π ( mE )
2 p

(mE )
2 p

exp(
−1
8

x

m2 )+9
β g2

4 π (mE )
2 p

4π λ κ
x

m2 exp (
−x

2m2 )]
2

+ + + +

+ +

Infinite loops:

one loop:

Infinite loops:
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Gluon bundles + infinite loops summed

g=6.0
m

ext
≈1m

π.      
m

int
≈3m

π

p=0.10
 

κ=4 10-6

GB+one loop
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Gluon bundles + infinite loops summed

GB+one loop

Note the dip moves to the left with increasing 
Energy. This can be obtained with the exact
6 body problem. Here we input the energy dependence
As (E/m)^(2p)

g=6.0
m

ext
≈1m

π.      
m

int
≈3m

π

p=0.1
κ=4 10-6
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Gluon bundles + infinite loops summed

GB+one loop

g=6.0
m

ext
≈1m

π.      
m

int
≈3m

π

p=0.1
Κ=4.5 10-6
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Gluon bundles + infinite loops summed

GB+one loop

g=6.0
m

ext
≈1m

π.      
m

int
≈3m

π

p=0.1
Κ=4.9 10-6
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Gluon bundles + infinite loops summed

GB+one loop √s = 63 GeV

g=6.0
m

ext
≈1m

π.      
m

int
≈3m

π

p=0.1
κ=4.9 10-6
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Extension to LHC 

σ=
4π

k
ℑ[T (0)]
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 LHC data compared with our QCD formalism

7 TeV

g=6.0
m

ext 
≈1m

π.      
m

int 
≈2m

π

p=0.02
κ=5 10-5



 LHC data compared with our QCD formalism

Very preliminary 8 TeV data

Preliminary 13 TeV Data

g=6.0
m

ext 
≈1m

π.      
m

int 
≈3m

π

p=0.02
κ=5.4 10-5
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Without inteference terms.
Interference terms account for smoothing out of the dip.
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κ  is proportional to √E



  

Perhaps it is time to end this talk. What we have done is 
we began with the Schwinger Action, writing down the
QCD Lagrangian, introduced transverse fluctuations for quarks.
Gauge Invariance is insured by Gauge Independence.
Preserve both Casimir, C

2
 and C

3
 invariants. New property in Effective Locality  

Individual gluons have disappeared giving the entire sum as a 
Gluon Bundle.
→ all radiative corrections in QCD are formed from GB and Loops
→ Quark Binding
→ Nucleon Binding
→ Pion mass
→ Summed infinite loops graphs after making a particular (re)normalization
→ Compared with ISR and LHC data
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Scattering Amplitude

● Having a relation between            and the Eikonal χ

T eikonal(s , t ; g
2
)=

is

2m2∫d2beiqb
[1−eiχ0(s ,b)

]

eiχ(s ,b )
=N '∫0

∞

dR R3e iR2
/4+ig~ϕ (b)/R

Now we can calculate the elastic cross-section, with differential cross-section as 

dσ

dt
=

m4

16π p2 E2|T summed|
2

~ϕ (b)

The energy, s, dependence will come from our renormalization 
in slide to come. 
We use approximation √ χ2  = R2
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