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From optical lattices/trapped ions · · ·
Adjust parameters such that atoms in

optical traps act as d.o.f

a

b

cold atoms in optical lattices realize

Bosonic and Fermionic Hubbard type

models.

Ions confined in ion-trap with interactions

between individual ions can be controlled.

single qubit gate 2-qubit gate 

array of qubits

time
0

...

t∆t1

multi-qubit gate 

desired time evolution
on a coarse-grained 

time scale

e−iHeff t

physical operations on quantum hardware 
(e.g. laser pulses)

Advantage: Much more control over

interactions; Challenge: Scalability.

Prepare the ”quantum” system and let it evolve. Make measurements at times ti on

identically prepared systems. Achievement: observation of Mott-insulator (disordered)

to superfluid (ordered) phase. Greiner et. al. (2002)



· · · to real time/finite density QCD

• Lattice calculations of static and finite temperature
properties of QCD well controlled

• At finite µB, lattice methods fail due to the sign problem
• Questions about real-time dynamics also inaccessible:

〈Φ0|O(t)O(0)|Φ0〉 =
1
Z
∑

m

|〈Φ0|O|m〉|2 e−i(Em−E0)t

• What if the fermions themselves can be used as degrees
of freedom in themselves in simulations? Feynman, 1982

• Exploit the advances made in optical lattices to set up
systems which mimic Hamiltonians of interest to particle
physics

• Need finite Hilbert spaces! → Quantum Links
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The U(1) pure gauge theory

µ

ν

Ux,µ
x

Ux+µ̂,ν

U †
x+ν̂,µ

U †
x,ν

S[u] = −J
∑

x,µ>ν

[
u2 + u†2

]

u2 = ux,µux+µ,νu†x+ν,µu†x,ν
ux,µ = exp(iφx,µ); vx = exp(iαx )

u′x,µ = vxux,µvx+µ

Hamiltonian formulation:

ûx,µ, û†x,µ ∈ U(1) operators in
an infinite dimensional Hilbert
space. Dynamics of u: ê = −i∂φ

[ê, û] = û; [ê, û†] = −û†; [û, û†] = 0

U(1) gauge transformations
generated by Gauss Law:

Gx =
∑

i

(êx,i − êx−i,i ); [Gx ,H] = 0

U(1) gauge invariant Hamiltonian:

H =
g2

2

∑

x,i

ê2
x,i−

1
2g2

∑

x,i 6=j

(û2 + û†2)



The U(1) Quantum Link Model
• U = S1 + iS2, U† = S1 − iS2 and E = S3 ⇒ finite Hilbert space of quantum

spin S at each link
• continuous U(1) gauge invariance is exact, due to the commutation relations:

[E ,U] = U; [E ,U†] = −U†; [U,U†] = 2E

• Gauge theory with a 2-d Hilbert space at each link
Horn (1981); Orland (1990); Chandrasekharan, Wiese (1996)

H = −J
∑
2

(
U2 + U†2

)
+λ
∑
2

(
U2 + U†2

)2

• The Gauss Law as before generates gauge transformations:

Gx =
∑

i

(
Ex,i − Ex−i,i

)
; [Gx ,H] = 0

• Second term introduces non-trivial physics and interesting phase structure

HJ

HJ

λHλ

Hλ

-J



Phase diagram
Explored with exact diagonalization and a newly-developed efficient cluster alogrithm

DB, Jiang, Widmer, Wiese (2013)
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A global SO(2) symmetry is “almost” emergent at λc . However, description in terms of

a low-energy effective theory suggests weak 1st order transition.



Order parameters
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2-component order parameter constructed out of dual variables residing at the centre of

plaquettes. The phase is related to which of the two sublattices can order at a given λ.



Probability distributions of order parameters

Clockwise from top: (a) λ = −1 both sublattices order; (b)' λc “almost“ emergent SO(2) symmetry

(c) λc < λ < 0 (d) λ = 0 either sublattice orders



Crystalline confinement
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Schwinger model with quantum links and staggered fermions

H = −t
∑

x

[
ψ†x Ux,x+1ψx+1 + h.c.

]
+ m

∑
x
(−1)xψ†xψx +

g2

2

∑
x

E2
x,x+1

? Use the bosonic rishon representation

Ux,x+1 = S+ = bx b†x+1; Ex,x+1 = Sz =
1
2
(b†x+1bx+1 − b†x bx )

2x 2x + 1

E2x,2x+1 = (n1
2x+1 − n2

2x)/2

S+
2x+1,2x

S+
2x+1,2x Rishon for spin S = 1; N = 2

nx + nx+1 = 2S = 2

? Gauss Law: G̃x = ∇·E − ρ = nF
x + n1

x + n2
x − 2S + 1

2 [(−1)x − 1]

? In optical lattices, realized using a microscopic Hubbard-type Hamiltonian

H̃ =
∑

x
hx,x+1

B +
∑

x
hx,x+1

F + m
∑

x
(−1)x nF

x + U
∑

x
G̃2

x

= −tB
∑

x∈odd

b1†
x b1

x+1 − tB
∑

x∈odd

b2†
x b2

x+1 − tF
∑

x
ψ†xψx+1 + h.c.

+
∑

x,α,β

nαx Uαβnβx +
∑
x,α

(−1)x Uαnαx

DB, Dalmonte, Müller,Rico Ortega, Stebler, Wiese, Zoller (2012)



Optical lattice setup
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Static and Real-time physics
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Static and Real-time physics
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Non-Abelian quantum link models
For QCD with quantum links and domain-wall fermions Brower, Chandrasekharan, Wiese (1999)

The Hamiltonian with staggered fermions are given by:

H = −t
∑
〈xy〉

(
sxyψ

i†
x U ij

xyψ
j
y + h.c.

)
+ m

∑
x

sxψ
i†
x ψ

i
x + V

∑
x
(ψi†

x ψ
i
x )

2

where sx = (−1)x1+···+xd and sxy = (−1)x1+···+xk−1 , with y = x + k̂ .
DB, Bögli, Dalmonte, Rico Ortega, Stebler, Wiese, Zoller (2012)

The non-Abelian Gauss law:

Ga
x = ψi†

x λ
a
ijψ

j
x +

∑
k

(
La

x,x+k̂
+ Ra

x−k̂,x

)
, Gx = ψi†

x ψ
i
x −

∑
k

(
Ex,x+k̂ − Ex−k̂,x

)
,

λa: Gell-Mann matrices; La
xy ,Ra

xy : SU(N) electric fluxes, Exy : Abelian U(1) flux.

Other possible terms in the Hamiltonian: g2

2
∑
〈xy〉

(
La

xy La
xy + Ra

xy Ra
xy
)
, g′2

2
∑
〈xy〉 E2

xy ,
1

4g2

∑
2 (U2 + h.c.). Not included in our study.

U(N) gauge invariance requires:

[La, Lb] = 2ifabcLc , [Ra,Rb] = 2ifabcRc , [La,Rb] = [E , La] = [E ,Ra] = 0,

[La,U] = −λaU, [Ra,U] = Uλa, [E ,U] = U

To study SU(N) theories, we must include the term γ
∑
〈xy〉(detUxy + h.c.)



Rishons: the magic of the QLMs
Non-Abelian link fields can be represented by a finite-dimensional fermionic
representation:

La
xy = c i†

x,+λ
a
ij c

j
x,+, Ra

xy = c i†
y,−λ

a
ij c

j
y,−, Exy =

1
2
(c i†

y,−c i
y,−−c i†

x,+c i
x,+), U ij

x,y = c i
x,+c j†

y,−.

c i
x,±k , c i†

x,±k with color index i ∈ {1, 2, ...,N} are rishon operators. They anti-commute:

{c i
x,±k , c

j†
y,±l} = δxyδ±k,±lδij , {c i

x,±k , c
j
y,±l} = {c

i†
x,±k , c

j†
y,±l} = 0.

By fixing the no of rishons on a link, the Hilbert space can be truncated in a completely
gauge-invariant manner: Nxy = c i†

y,−c i
y,− + c i†

x,+c i
x,+; [Nxy ,H] = 0

Action of the plaquette

and the determinant on a

SU(3) theory with

Nxy = 3 rishons per link.



Implementation of the non-Abelian models

Lattice with quark and rishon sites as a physical optical lattice for fermionic atoms.

x x + 1x − 1

−− ++− +

a)

U Ut̃ t̃t̃

ψi
x

ci
x,− ci

x,+

U ij
x,x+1ψi

x

d)c)

det Uxy

x + 1xb)a)

 †
xcx,+c†

x+1,� x+1

x + 1x

| "i| #i � | #i| "i

• Force the rishon number constraint per link by the term: U
∑
〈xy〉(Nxy − n)2.

• Hopping is induced perturbatively with a Hubbard-type Hamiltonian.
• Color d.o.f are encoded in the internal states ( the 2I + 1 Zeeman levels of

the electronic ground state 1S0) of fermionic alkaline-earth atoms.
• Remarkable property: scattering is almost exactly 2I + 1 symmetric.

• Since the hopping process between quarks and rishon sites is gauge

invariant, the induced effective theory is also gauge invariant.

[ Quantum simulator constructions also by Reznick, Zohar, Cirac (Tel-Aviv, Münich) and Tagliacozzo, Celi, Zamora,

Lewenstein (Barcelona) ]



Chiral Dynamics

dimension group N C flavor baryon phenomena
(1 + 1)D U(2) 1 no no no χSB, Tc = 0
(2 + 1)D U(2) 2 yes Z(2) no χSB, Tc > 0

(2 + 1)D SU(2) 2 yes Z(2) U(1)
boson

χSB,Tc > 0
χSR, nB > 0

(3 + 1)D SU(3) 3 yes Z(2)2 U(1)
fermion

χSB,Tc > 0
χSR, nB > 0

Table: Symmetries and phenomena in some QLMs.
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Top: Chiral symmetry breaking in a U(2) QLM
with m = 0 and V = −6t .

Bottom: Real-time evolution of the order

parameter profile

(ψψ)x (τ) = sx 〈ψi†
x ψ

i
x −

N
2 〉 for L = 12,

mimicking the expansion of a hot quark-gluon

plasma.



Chiral symmetry restoration at finite density
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Conclusions
• Although quantum simulating QCD is still far away, many of the

simpler models have similar physical phenomena. Very useful
for insight into the physics of QCD.

• Realization of a quantum simulator for the Schwinger model
would be quite remarkable achievement. Most of the tools
needed in setting it up is available separately.

• Quantum simulators need to be validated by efficient classical
simulations. Development of new efficient algorithms.

• In toy systems, this would allow quantum simulation of real-time
evolution of string breaking and the study of ”nuclear” physics
and dense “quark“ matter

• More interesting models may allow investigation of chiral
symmetry restoration, baryon superfluidity, color
superconductivity at high densities and ”nuclear“ collisions

• Every development brings the promise of interesting physics
along with it!



Backup: An example of real-time evolution

Use the Trotter-Suzuki
decomposition

e−iHt ' e−iH1t e−iH2t e[H1,H2]t
2/2

to study the real time evolution of

2-quantum spins

Time-dependent variation of
parameters possible

Trotter errors known and bounded;

gate errors under control;

Implementation with upto 6

ions/spins Lanyon et. al. 2011



Backup: Classical vs Quantum Simulation

Example of a quantum quench in a strongly correlated Bose gas.
S. Trotzky et. al., Nature Physics (2012).

H =
∑

j

[
−J(a†j aj+1 + h.c.) +

U
2

nj (nj − 1) +
K
2

nj j2
]

Start the system in the state |ψ(t = 0)〉 = | · · · , 1, 0, 1, 0, 1, · · · 〉 and then study the

evolution by the Hamiltonian

U/J = 5.16(7)

K/J = 1.7 × 10¬2

4Jt/h
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