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Outline

Landau and Cutkosky

Classic unitarity cuts

I Dispersion relations
I Modern unitarity method, with master integrals
I Dimensional regularization and masses [recent work with Mirabella, Ochirov]

Generalized or iterated cuts

I Double dispersion relations
I Cut integrals and discontinuities [work in progress with Abreu, Duhr, Gardi]
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Singularities of Feynman integrals: Landau conditions

Denominators: A
i

⌘ M2
i

� q2
i

Feynman parameters ↵
i

.

1st Landau condition:

↵
i

A
i

= 0 8i ,

2nd Landau condition:
X

↵
i

q
i

= 0, for each closed loop.
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Cutkosky cuts

Discontinuities = Landau singularities = replace propagators by
delta functions in integral

Any number of delta functions!

At one loop: geometric interpretation of 2nd Landau condition.

Polytope volume ! 0. Point Q falls into hyperplane of external
momenta.
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Unitarity Cuts

Scattering and interaction matrices:

S = 1 + iT

The unitarity condition: S†S = 1.

�i(T � T †) = T †T

2ImT = T †T
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Cut across one channel, with any number of loops.
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Dispersion relations

From the imaginary part, reconstruct the integral:

A(K 2) =
1

⇡

Z 1

0
ds

Im A(s)

s � K 2

Classic example: On-shell vertex function, 2 loops. [Van Neerven, 1986]

Integration is still hard work. At least at one loop, one can do
much better.

Ruth Britto Discontinuities of Feynman Integrals



Master integrals

box triangle bubble
K1

K2 K3

K4

A1�loop =
P

i

c
i

I
i

+ r , c
i

, r are rational functions.

Analytically known at 1-loop, some special cases beyond.
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Master integrals

box triangle bubble
K1

K2 K3

K4

A1�loop =
P

i

c
i

I
i

+ r , c
i

, r are rational functions.

Analytically known at 1-loop, some special cases beyond.

e.g. box
R
d4�2✏k 1

(`2)(`�K1)2(`�K1�K2)2(`�K1�K2�K3)2

scalar numerators

max. 4 propagators in 4d

can include masses
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Master integrals

box triangle bubble
K1

K2 K3

K4

A1�loop =
P

i

c
i

I
i

+ r , c
i

, r are rational functions.

Analytically known at 1-loop, some special cases beyond.

e.g.: If K2
3 = K

2
4 = 0,
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Amplitudes from unitarity cuts

A1�loop =
X

c
i

I
i

++c + c + c1 2 3c + c + c2 3A 1

1−loop

�A1�loop =
X

c
i

�I
i

Matching 4-dimensional cuts can su�ce to determine reduction
coe�cients! Logarithms with unique arguments.
“cut-constructibility”
[Bern, Dixon, Dunbar, Kosower]

But: we still get several coe�cients together in the same equation.

How do we evaluate a unitarity cut?
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Amplitudes from unitarity cuts

�A1�loop =
X

c
i

�I
i

+c + c + c1 2 3

LHS: work at the level of tree amplitudes. RHS: known masters.

Matching 4-dimensional cuts can su�ce to determine reduction
coe�cients! Logarithms with unique arguments.
“cut-constructibility”
[Bern, Dixon, Dunbar, Kosower]

But: we still get several coe�cients together in the same equation.

How do we evaluate a unitarity cut?
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Amplitudes from unitarity cuts

�A1�loop =
X

c
i

�I
i

+c + c + c1 2 3

Matching 4-dimensional cuts can su�ce to determine reduction
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“cut-constructibility”
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But: we still get several coe�cients together in the same equation.
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Cut integrals

�A1�loop =

Z
dµ Atree(�`, i , . . . , j , `� K) Atree(K � `, j + 1, . . . , i � 1, `)

dµ = d4` �(`2) �((`� K )2)

Change to homogeneous (CP1) spinor variables with

`
aȧ

= t �
a

�̃
ȧ

.

Integration measure:
Z

d4` �(`2) (•) =
Z 1

0
dt t

Z

�̃=�̄
h� d�i [�̃ d �̃] (•)

[Cachazo, Svrček, Witten]
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Systematic procedure: spinor integration

[Anastasiou, RB, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia]

Change variables, ` = t��̃, and use the spinor measure,
Z

d4` �(`2)�((`� K )2) =

Z
dt t

Z
h� d�i[�̃ d �̃]�((t��̃� K )2)

Use 2nd delta function to perform t-integral.

�, �̃ ! z , z̄ familiar complex variables.

Evaluate with residue theorem.

Identify cuts of basis integrals and read o↵ coe�cients.
D-dimensional cuts also treated, for complete amplitudes.

We have given formulas for the resulting coe�cients.
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Dimensional regularization at one loop

In D = 4� 2✏ dimensions, the result of reduction is

A =
X

i

e
i

(pentagon) +
X

i

d
i

(box)

+
X

i

c
i

(triangle) +
X

i

b
i

(bubble)

No extra rational term.
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Unitarity in D = 4� 2✏ dimensions

Orthogonal decomposition, keeping external momenta in 4
dimensions. [Bern, Chalmers, Mahlon, Morgan]

Z
d4�2✏`4�2✏ =

(4⇡)✏

�(�✏)

Z 1

0
du u�1�✏

Z
d4`4.

where `2�2✏ =
K

2

4 u.

The integral over u will remain. The u-dependence is controlled:

�A =

Z 1

0
du u�1�✏

Z
d4` �(`2) �(

p
1� u K 2 � 2K · `)

Recognize and perform the 4-d integral as before.
(Cf. methods by Ossola, Papadopoulos, Pittau; Forde; Ellis, Giele, Kunszt; Kilgore;

Giele, Kunszt, Melnikov; Badger)
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Massive particles

Cut amplitude:

Z
h� d�i[�̃ d �̃]

 p
�[K 2,M2

1 ,M
2
2 ]

K 2

!
(K 2)n+1

h�|K |�̃]n+2

Q
n+k

j=1 h�|Rj

|�̃]
Q

k

i=1h�|Qi

|�̃]

The integral coe�cients have the same form.
[RB, Feng, Mastrolia, Yang]

New master integrals.
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The special “massive” master integrals

0 2 m2

m2

m2

m2

0 0 m

These integrals do not have kinematic cuts.

I1 = m2�2✏�(1 + ✏)

✏(✏� 1)

I2(0;m
2,m2) = m�2✏�(1 + ✏)

✏

I2(m
2; 0,m2) = m�2✏ �(1 + ✏)

✏(1� 2✏)
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Divergent cuts for on-shell bubbles

Try to apply unitary cuts to the special massive master
integrals

Cut of massless on-shell bubble diverges, due to internal
on-shell propagator

Must include the counterterms.
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Masses, fermions and unitarity [EGKM]

[Ellis, Giele, Kunszt, Melnikov]

Isolate and remove the divergent diagrams

Implicit use of counterterm

Feynman-diagram decomposition is gauge dependent

Embedded in a numerical algorithm
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Our method [RB, Mirabella]

Use an o↵-shell continuation of the fermion mass. The cut is finite
until we take the on-shell limit.

Power series expansion in the o↵-shell parameter

In the on-shell limit, divergences are guaranteed to cancel:
keep only finite terms

Explicit use of counterterms. Gauge dependence enters only in
tree level currents.

Clean analytic results
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O↵-shell continuation

Momentum-conserving shift: k ! k̂ = k + ⇠r , r ! r̂ = r � ⇠r .

Can choose k̄ = r for some null external momentum r , so it stays
on shell: r̂2 = r2 = 0.

Propagator of interest: k2 �m2 ! ⇠(2k · r)

Cut diverges as 1/⇠.
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Reduction of the shifted divergent diagram

A
L

=
1

k̂2 �m2

⇣
ū
k̂�` /"

⇤
` (m + /̂k) Ĵ

⌘
,

A3 = ū
k

/"` u
k̂�`

For internal helicity sum, use Feynman gauge as in EGKM:
X

�=±
"�µ

⇣
"�⌫

⌘?
= �gµ⌫
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Reduction of the shifted divergent diagram

Simple reduction of linear bubble gives

Z
A3A

L

! 1

⇠(2k · k̄)(4m
2 ū

k

Ĵ + 2⇠m ū
k

/̄kĴ ) B0(k̂
2).

Also expand o↵-shell current and scalar bubble to 1st order:

Ĵ = J + ⇠J 0

B0(k̂
2) = B0(m

2) + ⇠(2k · k̄)B 0
0(m

2)

Result:

1

⇠

4m2ū
k

J B0

(2k · k̄) +
4m2(2k · k̄) ū

k

J B 0
0 + 4m2 ū

k

J 0 B0 + 2m ū
k

/̄kJ B0

(2k · k̄) .
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Reduction: tadpole part

Similar, except gluon polarization sum ! propagator, �igµ⌫/`2.

Result:
✓

2

⇠(2k · k̄) �
1

m2

◆
ū
k

J +
1

(2k · k̄)mū
k

/̄k J +
2

(2k · k̄) ūk J
0
�
A0.
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Counterterm

� 1

⇠(2k · k̄) ūk
⇣
/k�Z + ⇠ /̄k�Z �m�Z �m�Z

m

⌘
(/k + ⇠ /̄k +m) bJ

Renormalization constants in on-shell scheme:

�Z
m

=
A0

m2
+ 2B0,

�Z =
A0

m2
� 4m2B 0

0.

Verify total cancellation of divergent diagram.
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Small examples with Feynman Diagrams

H ! bb̄
3 loop diagrams + 2 counterterm diagrams

qq̄ ! tt̄
12 loop diagrams + 2 counterterm diagrams

1. Implemented momentum shift

2. Computed bubble and tadpole coe�cients from unitarity cut

3. Checked cancellation of divergences against counterterm and
agreement of finite result with Passarino-Veltman reduction.
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The fermion-channel cut in the spinor-helicity formalism

The spinor-helicity convention for the polarization vectors requires
axial gauge:

"�(p) = �
p
2
|pi [q|+ |q] hp|

[qp]
, "+(p) = �

p
2
|p] hq|+ |qi [p|

hqpi .

The completeness relation is

X

�=±
"�µ(p)

⇣
"�⌫ (p)

⌘?
= �gµ⌫ +

pµq⌫ + qµp⌫
p · q .

Specific gauge choice = choice of q for each p.
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Additional counterterm in axial gauge, for spinors

The double cut gets an extra O(⇠0) contribution:

1

⇠(2k · k̄)
Z

dµ2,k

2

4

⇣
ū
k

/̀ u
k̂�`
⌘⇣

ū
k̂�` /q (m + /̂k) Ĵ

⌘

q · `

+

⇣
ū
k

/q u
k̂�`
⌘⇣

ū
k̂�` /̀ (m + /̂k) Ĵ

⌘

q · ` .

3

5

Second term vanishes by Ward identity with cut gluon.
First term is cancelled by a new (non-divergent) counterterm:

Mk = � 1

2k · k̄ ūk

(/̄k �m) /̂k/q �Z

0
k

�
(/̂k +m)Ĵ ,

�Z 0
k

=
B0

q · k
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Example from tt̄ ! gg amplitude

Full analytic result computed previously by other methods. [Körner,

Merabashvili; Badger, Sattler, Yundin]

Color decomposition

3-point tree ⇥ 5-point tree for m2 on-shell bubbles

Checked cancellation of divergence and evaluated on-shell
bubble coe�cient, for equal-helicity gluons
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On-shell recursion for o↵-shell currents [RB, Ochirov]

Finite parts of the counterterm need o↵-shell bJ explicitly, not the
gauge-invariant ALAR.

The current bJ depends on gauge choices of external gluons—these
cancel among counterterms.

Generate bJ by BCFW-type relations, starting purely from 3-point
vertices with the polarizations

"�(p) = �
p
2
|pi [q|+ |q] hp|

[qp]
, "+(p) = �

p
2
|p] hq|+ |qi [p|

hqpi .

BCFW shifts available for any pair of massless quarks/gluons.
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On-shell recursion for o↵-shell currents [RB, Ochirov]

2

3 4− −

Example: Take q3 = q4 = q.

iJ = �i
|q] h3|+ |3i [q|

[q3̂]

p2 � bp3 +m

(p2 � p3)2 �m2

|q] ⌦4̂��+ ��4̂↵ [q|
[q4]

|2)

=
i

[q3][q4]

(
1

h3|2|3]

 
|4i[q|2|3i[q|� |q]h4|1|q]h3|

+m|q]h43i[q|
!

� 1

[34]

 
[q3]

⇣
|q]h3|+ |3i[q|

⌘

+[q4]
⇣
|q]h4|+ |4i[q|

⌘!)
|2)
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On-shell recursion for o↵-shell currents [RB, Ochirov]

For a nice recursion, we need

Residue at infinity = 0

Poles from propagators only

Residue at infinity can be made zero, no worse than on-shell case.
Argument from groups of Feynman diagrams.

Reference spinors generically introduce “unphysical poles” which
can be avoided for some gauge choices.

"�(p̂) = �
p
2
|pi [q|+ |q] hp|
[qp]� z [qp0]

Result: recursion established for certain helicities, with preferred
gauge choice.
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More loops?

Conceptual challenges at two loops and beyond:

Master integrals more numerous, not canonical, and not all
known analytically

Nonplanar topologies

Need D-dimensional ingredients for cuts
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Generalized cuts

One-loop box coe�cients “quadruple cuts”
[RB, Cachazo, Feng]

Typically require complex momenta.

One-loop: sequence of quadruple, triple, double, single cuts.
“OPP method” underlies all state-of-the-art numerical codes.
Samples complex momenta. [Ossola, Papadopoulos, Pittau; Mastrolia; Forde; Kilgore;

Ellis, Giele, Kunszt; Giele, Kunszt, Melnikov; RB, Mirabella]
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Generalized cuts beyond one loop

Extension of OPP method at 2 loops and beyond.
Algebraic-geometric analysis of integrands and their relations.
[Mastrolia, Mirabella, Ossola, Peraro; Badger, Frellesvig, Zhang]

“Maximal cuts.” Multi-dimensional complex residues =
leading singularities. [Buchbinder, Cachazo; Bern, Carrasco, Johansson, Kosower; Larsen,

Kosower; Caron-Huot, Larsen; Johansson, Kosower, Larsen]

Can we make use of non-maximal cuts? Work without master
integrals?
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Double dispersion relations

Previously computed at one loop, with strictly real momenta.
[Mandelstam; Ball, Braun, Dosch]. From iterated cuts.

Spectral function: 3-cut of box with real momenta = 4-cut with
complex momenta = volume of tetrahedron

Check with more dimensions or more loops.
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Two or more loops [with Abreu, Duhr, Gardi]

Use symbol of multiple polylogarithms. [Goncharov, Spradlin, Vergu, Volovich]

Encodes discontinuities in various channels. [Gaiotto, Maldacena, Sever,

Viera]

Deeper entries in the symbol appear in terms of more natural
variables

Can match discontinuities to iterated cuts

Ruth Britto Discontinuities of Feynman Integrals



Two or more loops [with Abreu, Duhr, Gardi]

Use symbol of multiple polylogarithms. [Goncharov, Spradlin, Vergu, Volovich]

Encodes discontinuities in various channels. [Gaiotto, Maldacena, Sever,

Viera]

Deeper entries in the symbol appear in terms of more natural
variables
Can match discontinuities to iterated cuts

y ⌦ w ⌦ (w ⌦ w̄ + w̄ ⌦ w � w̄ ⌦ w̄) + x ⌦ (1� w)⌦ (w ⌦ w � w ⌦ w̄ � w̄ ⌦ w)

+y ⌦ w̄ ⌦ (w ⌦ w � w ⌦ w̄ � w̄ ⌦ w) + x ⌦ (1� w̄)⌦ (w ⌦ w̄ + w̄ ⌦ w � w̄ ⌦ w̄)

+x ⌦ x ⌦ ((1� w̄)⌦ w̄ � (1� w)⌦ w))

y = p

2
3/p

2
1 , x = p

2
2/p

2
1 , w = (p21 + p

2
2 � p

2
3 +

q
�(p21 , p

2
2 , p

2
3))/p

2
1

Ruth Britto Discontinuities of Feynman Integrals



Two or more loops [with Abreu, Duhr, Gardi]

Use symbol of multiple polylogarithms. [Goncharov, Spradlin, Vergu, Volovich]

Encodes discontinuities in various channels. [Gaiotto, Maldacena, Sever,

Viera]

Deeper entries in the symbol appear in terms of more natural
variables
Can match discontinuities to iterated cuts

The correspondence seems inexact: do cuts still have more
information?

One of many remaining challenges: control of complexified
momentum.
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Summary and Outlook

Discontinuities of Feynman integrals indicated by Landau and
Cutkosky

Not always easy to compute, but powerful:
I Dispersion relations
I Unitarity method with master integrals
I Generalized cuts with master integrals

Hard parts at one loop: rational parts, massive contributions.
Under control, though some parts need improvement
analytically. Clean method for divergent bubbles from o↵-shell
momentum continuation.

Beyond one loop: master integrals largely unknown. Seeking
systematic approach via on-shell methods (generalized cuts).
Using mathematics of multiple polylogarithms where
applicable.
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