Collective Dynamics of the p+Pb Collisions

Wojciech Broniowski

CEA Saclay & UJK Kielce & IFJ PAN Cracow

12th Workshop on Non-Perturbative QCD Paris, 10-13 June 2013

[Piotr Bożek & WB, PLB 718 (2013) 1557, 720 (2013) 250, arXiv:1304.3044]

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions:

- Collective flow
- Jet quenching

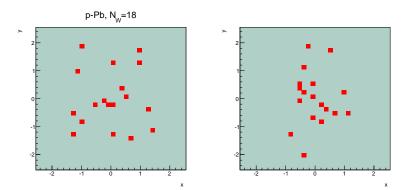
Flow manifests itself in harmonic components in the momentum spectra, certain features in correlation data (ridges), interferometry (femtoscopy), ...

- Bozek 2010: p+A and p+p in hydro
- Ridges discovered in small systems, p+A and high-multiplicity p+p

3-stage approach

Our three-phase approach: initial \rightarrow hydro \rightarrow statistical hadronization

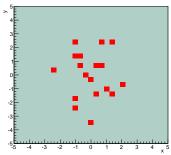
- Initial phase Glauber model
- Hydrodynamics 3+1 D viscous event-by-event
- Statistical hadronization


Main questions:

Are the central p-Pb collisions collective?

What is the nature of the initial state? What are the limits/conditions on applicability of hydrodynamics?

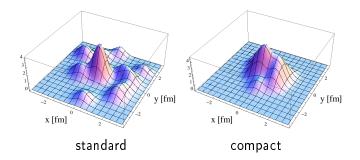
Snapshots of initial Glauber condition in central p+Pb


Typical transverse-plane configuration of centers of the participant nucleons in a p+Pb collision generated with GLISSANDO 5% of collisions have more than 18 participants, rms ~ 1.5 fm - quite large!

Snapshot of peripheral Pb+Pb

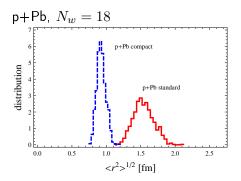
Most central values of N_w in p-Pb would fall into the 60-70% or 70-80% centrality class in Pb+Pb

Pb+Pb: c=60-70% $\equiv 22 \le N_w \le 40$, c=70-80% $\equiv 11 \le N_w \le 21$

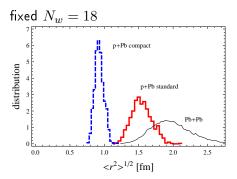


Pb+Pb, N_w=18

in Pb+Pb somewhat larger size than in p+Pb


Smearing

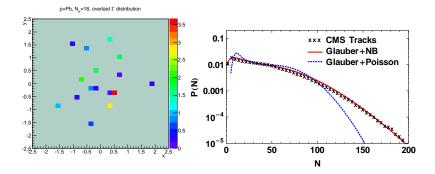
Gaussian smearing with width 0.4 fm (physical effect)


This is fed into e-by-e hydro as initial condition

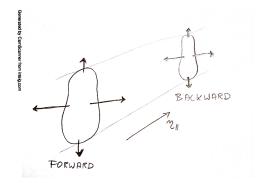
Size in p+Pb

red - centers of participants, blue - center-of-mass of colliding pairs

Size in p+Pb vs Pb+Pb



smaller size in $p+Pb \rightarrow$ larger entropy density \rightarrow more rapid expansion

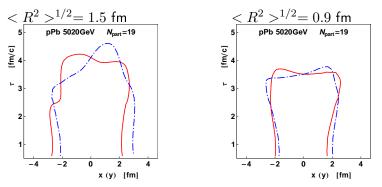

All in all, initial conditions in most central p+Pb not very far from peripheral Pb+Pb

Multiplicity distribution

To reproduce the multiplicity distribution of the most central events in p+Pb one needs to fluctuate the strength of the Glauber sources. We overlay the Gamma distribution (Gamma + Poisson = negative binomial). At statistical hadronization Poissonian fluctuations are generated

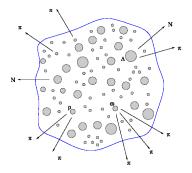
Assumed factorization of the transverse and longitudinal distributions

alignment of F and B event planes (can be checked experimentally) collimation of flow at distant longitudinal separations \rightarrow ridges!

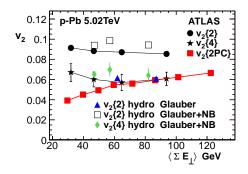

Surfers - the near-side ridge

Hydrodynamics [Bożek 2011]

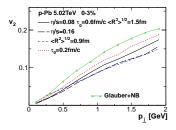
3+1 D viscous event-by-event hydrodynamics

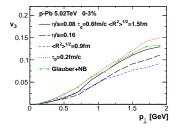

- $\tau_{\text{init}} = 0.6 \text{ fm/c}, \ \eta/s = 0.08 \text{ (shear)}, \ \zeta/s = 0.04 \text{ (bulk)}$
- freezeout at $T_f = 150 \text{ MeV}$
- average initial temperature in the center of the fireball $T_i = 242$ MeV ($< R^2 >^{1/2} = 1.5$ fm), or 319 MeV ($< R^2 >^{1/2} = 0.9$ fm) adjusted to fit multiplicity
- realistic equation of state (lattice + hadron gas [Chojnacki & Florkowski 2007]), viscosity necessary for small systems
- lattice spacing of 0.15 fm (thousands of CPU hours)

isotherms at freeze-out $T_f = 150 \ {\rm MeV}$ for two sections in the transverse plane


evolution lasts about 4 fm/c - shorter but more rapid than in A+A

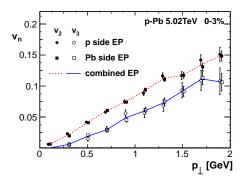
Statistical Hadronization


Statistical hadronization via Frye-Cooper formula + resonance decays (THERMINATOR), transverse-momentum conservation approximately imposed, local charge conservation included


LHC: v_2 vs ATLAS

Flow

$v_2\{2\}$ and $v_3\{2\}$ vs p_T



collectivity	in	p-P
Elow		

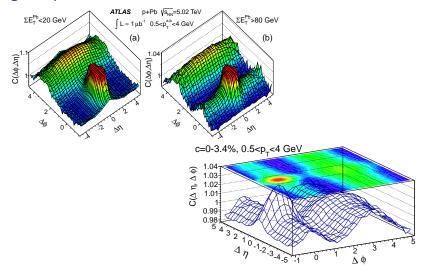
v_2 and v_3 from the scalar-product method

[STAR 2002, Luzum & Ollitrault 2012]

v_2 and v_3

cuts:
$$|\eta| < 2.5, \ 0.3 < p_T < 5$$
 GeV $< R^2 >^{1/2} = 1.5$ fm

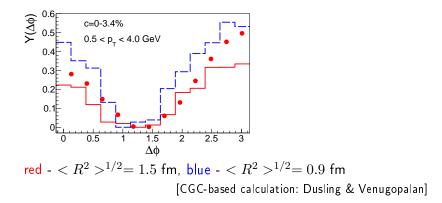
	<i>c</i> =0-3.4%	<i>c</i> =3.4-7.8%	
Glauber+Poisson			
$v_2\{2\}^2 [10^{-3}]$	3.70(1)	3.78(2)	
$v_3\{2\}^2 [10^{-3}]$	1.04(1)	0.95(1)	
$v_2{4}^4$ [10 ⁻⁶]	-0.4(4)	1.83(5)	
Glauber+NB			
$v_2\{2\}^2 [10^{-3}]$	8.18(12)	8.24(10)	
$v_3\{2\}^2 [10^{-3}]$	1.52(8)	1.51(6)	
$v_2\{4\}^4 [10^{-6}]$	15(7)	16(6)	

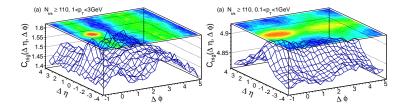

more fluctuations \rightarrow more harmonic flow $v_2{4}$ very sensitive (fluctuations)

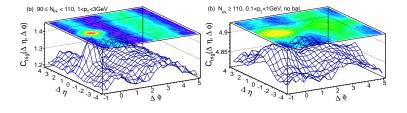
Definition of the 2D correlation function

$$C(\Delta\eta, \Delta\phi) = \frac{N_{\rm phys}^{\rm pairs}(\Delta\eta, \Delta\phi)}{N_{\rm mixed}^{\rm pairs}(\Delta\eta)} = \frac{S(\Delta\eta, \Delta\phi)}{B(\Delta\eta, \Delta\phi)}$$

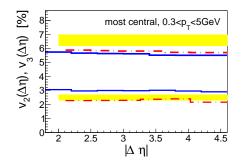
(more convenient than the "per-trigger" correlations)


Ridge in p-Pb, ATLAS

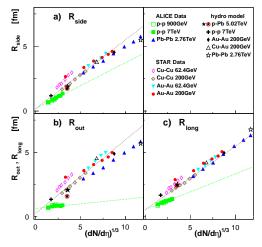

Projection on $2 \le |\Delta \eta| \le 5$, ATLAS


$$Y(\Delta\phi) = \frac{\int B(\Delta\phi)d(\Delta\phi)}{N}C(\Delta\phi) - b_{\text{ZYAM}}$$

The near-side ridge from our model:



Ridge in p-Pb


Flow from correlations (two-particle cumulants) LHC: $v_n\{2, |\Delta \eta| > 2 \text{GeV}\}$ vs CMS top - v_2 , bottom - v_3

yellow - CMS blue - standard (<
$$R^2>^{1/2}=1.5~{\rm fm}$$
 red - compact (< $R^2>^{1/2}=0.9~{\rm fm}$)

HBT radii

Interferometric radii due to Bose-Einstein correlations - measure of the size of the system at freeze-out

Conclusions

In hydro there is flow! Is there collectivity in small systems?

 \rightarrow collective dynamics is compatible with high-multiplicity LHC data for p-Pb

- v_n coefficients measured in p-Pb reproduced semiquantitatively - v₃ large
- Model 2-D correlations exhibit the two ridges, in particular the near-side ridge ("surfers")
- Interferometric radii for p+Pb are close to the A+A line, away from the p+p line - way to distinguish, will be verified shortly by ALICE
- Other effects (jets, corona, ...) not included
- p+p [Bozek 2010] needs structure of the proton
- Other models of the initial collision [Bzdak et al. 2013, CGC+hydro]