

Exclusive decays of heavy baryons

Work in collaboration with David Lin, Stefan Meinel and Matt Wingate

Technology

12th Workshop on Nonperturbative QCD, IAP, Paris, June 10th, 2013

Monday, June 10, 13

Flavour physics in the LHC era

- "If it looks like a Higgs, swims like a Higgs and quacks like a Higgs, then it is probably a Higgs" M. Klute
 - Higgs discovery an early triumph for the LHC
- What next?
 - LHC(b) is also a phenomenal machine for flavour physics
 - Look for deviations from the Standard Model
 - Exciting opportunities in bottom baryon sector

FCNC decays: $\Lambda_{b} \rightarrow \Lambda \gamma$, $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

[Detmold, Lin, Meinel, & Wingate Phys. Rev. D 87, 074502 (2013)]

Rare decay: $\Lambda_b \rightarrow p \ \mu^- \overline{\nu}$ and $|V_{ub}|^2$

[Detmold, Lin, Meinel, & Wingate arXiv: I 306.0446]

Flavour-changing neutral currents

• Flavour changing neutral currents are absent in the SM at tree level

u, c, t

- First occur at loop level and are generally GIM suppressed
- Small size allows sensitivity to possible BSM contributions which may be of similar size
- Well studied in $B \rightarrow K$ decays and also more recently in studies of $B \rightarrow K^*$
 - No significant evidence for deviations from SM

Flavour-changing neutral currents

• Baryon decay modes $\Lambda_b \rightarrow \Lambda \gamma$, $\Lambda_b \rightarrow \Lambda l^+ l^-$ depend on polarisation of Λ_b and Λ so many angular observables possible $\Lambda_b \rightarrow \Lambda_b \gamma$.

u, c,

- In principle different sensitivities to BSM physics [Mannel & Recksiegel 1997]
- Final state undergoes further weak decay $\Lambda \rightarrow$ p which is self-analysing

 $\frac{dN}{d\Omega}[\Lambda \to p\pi] \sim (1 + a\vec{s}_{\Lambda} \cdot \vec{p}_p), \qquad a = 0.64(1)$

- At LHC, Λ_b is produced almost unpolarised [Aaij 1302.5578]
- First observation of baryonic decay at CDF [2012]
- LHCb preliminary results shown recently [FPCP 2013]

Effective Hamiltonian

• At hadronic scales the relevant interactions are described by the effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1,\dots,10,S,P} (C_i O_i + C_i' O_i'),$$

where the relevant b \rightarrow s operators are

$$\begin{split} O_{7} &= \frac{e}{16\pi^{2}} m_{b} \, \bar{s} \sigma^{\mu\nu} P_{R} b \, F^{(\text{e.m.})}_{\mu\nu}, \qquad O_{7}' = \frac{e}{16\pi^{2}} m_{b} \, \bar{s} \sigma^{\mu\nu} P_{L} b \, F^{(\text{e.m.})}_{\mu\nu}, \\ O_{9} &= \frac{e^{2}}{16\pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \, \bar{l} \gamma_{\mu} l, \qquad O_{9}' = \frac{e^{2}}{16\pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \, \bar{l} \gamma_{\mu} l, \\ O_{10} &= \frac{e^{2}}{16\pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \, \bar{l} \gamma_{\mu} \gamma_{5} l, \qquad O_{10}' = \frac{e^{2}}{16\pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \, \bar{l} \gamma_{\mu} \gamma_{5} l, \\ O_{S} &= \frac{e^{2}}{16\pi^{2}} m_{b} \, \bar{s} P_{R} b \, \bar{l} l, \qquad O_{S}' = \frac{e^{2}}{16\pi^{2}} m_{b} \, \bar{s} P_{L} b \, \bar{l} l, \\ O_{P} &= \frac{e^{2}}{16\pi^{2}} m_{b} \, \bar{s} P_{R} b \, \bar{l} \gamma_{5} l, \qquad O_{P}' = \frac{e^{2}}{16\pi^{2}} m_{b} \, \bar{s} P_{L} b \, \bar{l} \gamma_{5} l, \end{split}$$

C_i are Wilson coefficients containing short distance physics

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

- Decay amplitude determined by matrix elements of H_{eff} $\mathcal{M} = -\langle \Lambda(p',s') \ \ell^+(p_+,s_+) \ \ell^-(p_-,s_-) | \mathcal{H}_{eff} | \Lambda_b(p,s) \rangle$
- Hadronic part determined by $\Lambda_{\rm b} \rightarrow \Lambda$ form factors
 - In general, 10 form factors contribute
 - In static limit ($m_b \rightarrow \infty$), only two FFs ($F_{1,2}$) survive

 $\langle \Lambda(p',s') | \, \overline{s} \Gamma Q \, | \Lambda_Q(v,0,s) \rangle = \overline{u}(p',s') \left[F_1(p' \cdot v) + v \, F_2(p' \cdot v) \right] \Gamma \, \mathcal{U}(v,s)$

where v=4-velocity of Λ_b and the FFs are independent of the choice of Dirac matrix Γ and we will use the basis $F_{\pm} = F_1 \pm F_2$

• Calculating FFs requires lattice QCD

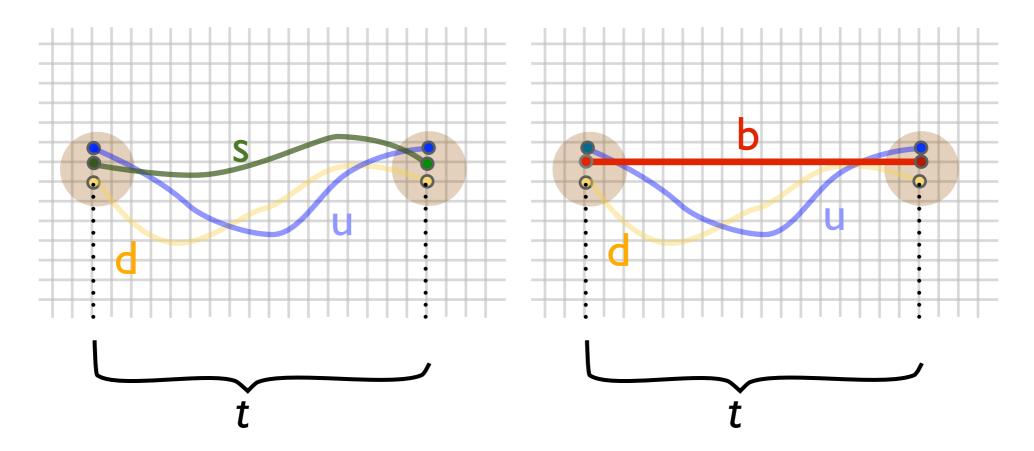
Anatomy of the QCD calculation

- Gluon configurations from RBC/UKQCD collaborations [Aoki et al. 2011]
 - Two lattice spacings with a single large volume
- Light and strange quarks: domain wall fermions with multiple quark masses (some partially quenched)
- b quarks: HQET static action [Eichten-Hill] with HYP-smearing

Set	$N_s^3 \times N_t \times N_5$	am_5	$am_s^{(\mathrm{sea})}$	$am_{u,d}^{(\mathrm{sea})}$	$a~({\rm fm})$	$am_s^{(\mathrm{val})}$	$am_{u,d}^{(\mathrm{val})}$	$m_{\pi}^{(\mathrm{vv})}$ (MeV)	$m_{\eta_s}^{(\mathrm{vv})}$ (MeV)	$N_{\rm meas}$
C14	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.001	245(4)	761(12)	2705
C24	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.002	270(4)	761(12)	2683
C54	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.005	336(5)	761(12)	2780
C53	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.03	0.005	336(5)	665(10)	1192
F23	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.03	0.002	227(3)	747(10)	1918
F43	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.03	0.004	295(4)	747(10)	1919
F63	$32^3 \times 64 \times 16$	1.8	0.03	0.006	0.0848(17)	0.03	0.006	352(7)	749(14)	2785

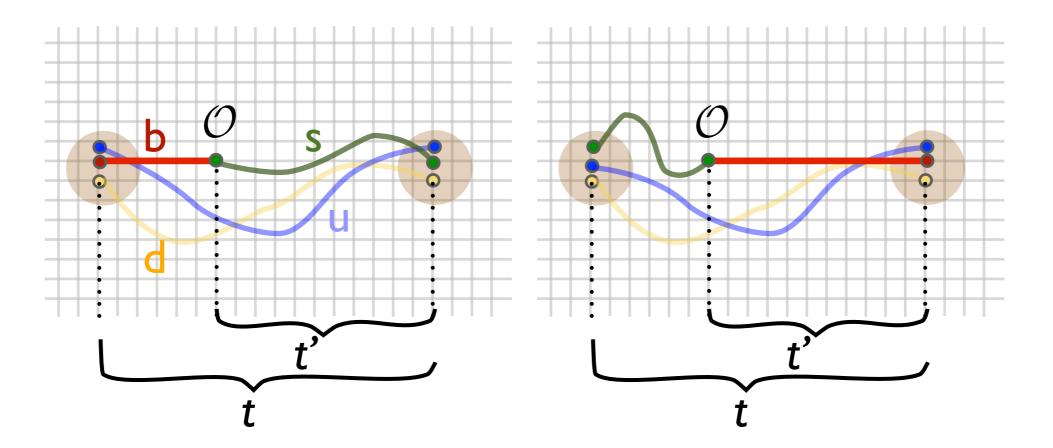
Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
 - Two-point functions for Λ_{b} and Λ are standard



Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
 - Two-point functions for Λ_{b} and Λ are standard
 - Forward and backward three-point functions



Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
 - Two-point functions for Λ_{b} and Λ are standard
 - Forward and backward three-point functions

$$C_{\delta\alpha}^{(3)}(\Gamma, \mathbf{p}', t, t') = \sum_{\mathbf{y}} e^{-i\mathbf{p}' \cdot (\mathbf{x} - \mathbf{y})} \left\langle \Lambda_{\delta}(x_0, \mathbf{x}) \ J_{\Gamma}^{(\mathrm{HQET})\dagger}(x_0 - t + t', \mathbf{y}) \ \overline{\Lambda}_{Q\alpha}(x_0 - t, \mathbf{y}) \right\rangle$$
$$C_{\alpha\delta}^{(3,\mathrm{bw})}(\Gamma, \mathbf{p}', t, t - t') = \sum_{\mathbf{y}} e^{-i\mathbf{p}' \cdot (\mathbf{y} - \mathbf{x})} \left\langle \Lambda_{Q\alpha}(x_0 + t, \mathbf{y}) \ J_{\Gamma}^{(\mathrm{HQET})}(x_0 + t', \mathbf{y}) \ \overline{\Lambda}_{\delta}(x_0, \mathbf{x}) \right\rangle$$

- NB: some technicalities in matching QCD current to HQET
- Spectral decomposition (ellipsis ~ excited states):

$$C_{\delta\alpha}^{(3)}(\Gamma, \mathbf{p}', t, t') = Z_{\Lambda_Q} \frac{1}{2E_{\Lambda}} \frac{1}{2} e^{-E_{\Lambda}(t-t')} e^{-E_{\Lambda_Q}t'} \left[(Z_{\Lambda}^{(1)} + Z_{\Lambda}^{(2)}\gamma^0)(m_{\Lambda} + \not p') (F_1 + \gamma^0 F_2) \Gamma (1+\gamma^0) \right]_{\delta\alpha} + \dots$$

Correlator ratios

• Form ratios of correlators to cancel energy and time dependence for ground-state contribution

$$\mathcal{R}(\Gamma, \mathbf{p}', t, t') = \frac{4 \operatorname{Tr} \left[C^{(3)}(\Gamma, \mathbf{p}', t, t') \ C^{(3, \text{bw})}(\Gamma, \mathbf{p}', t, t - t') \right]}{\operatorname{Tr} \left[C^{(2,\Lambda, \text{av})}(\mathbf{p}', t) \right] \operatorname{Tr} \left[C^{(2,\Lambda_Q, \text{av})}(t) \right]}$$

• Combine for different Dirac structures

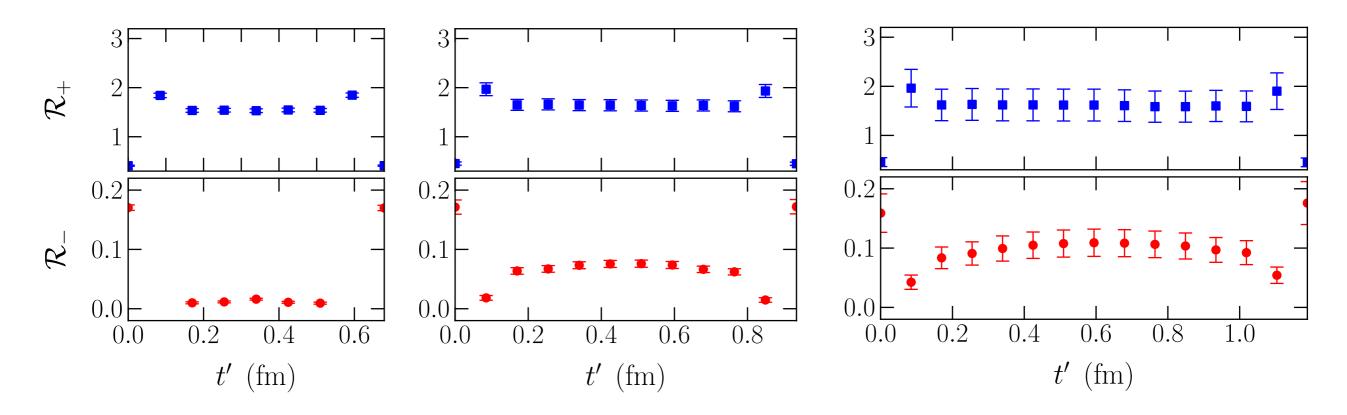
$$\mathcal{R}_{+}(\mathbf{p}',t,t') = \frac{1}{4} \left[\mathcal{R}(1,\mathbf{p}',t,t') + \mathcal{R}(\gamma^{2}\gamma^{3},\mathbf{p}',t,t') + \mathcal{R}(\gamma^{3}\gamma^{1},\mathbf{p}',t,t') + \mathcal{R}(\gamma^{1}\gamma^{2},\mathbf{p}',t,t') \right]$$
$$\mathcal{R}_{-}(\mathbf{p}',t,t') = \frac{1}{4} \left[\mathcal{R}(\gamma^{1},\mathbf{p}',t,t') + \mathcal{R}(\gamma^{2},\mathbf{p}',t,t') + \mathcal{R}(\gamma^{3},\mathbf{p}',t,t') + \mathcal{R}(\gamma_{5},\mathbf{p}',t,t') \right]$$

• Determine form factors (up to exponential contamination)

$$R_{+}(|\mathbf{p}'|^{2},t) = \sqrt{\frac{E_{\Lambda}}{E_{\Lambda} + m_{\Lambda}}} \mathcal{R}_{+}(|\mathbf{p}'|^{2},t,t/2) \xrightarrow{t \to \infty} F_{+}(v \cdot p) + \dots$$
$$R_{-}(|\mathbf{p}'|^{2},t) = \sqrt{\frac{E_{\Lambda}}{E_{\Lambda} - m_{\Lambda}}} \mathcal{R}_{-}(|\mathbf{p}'|^{2},t,t/2) \xrightarrow{t \to \infty} F_{-}(v \cdot p) + \dots$$

Form factor extractions

- Ratios are relatively insensitive to operator insertion time
 - Take midpoint to reduce excited state



• Strongly dependent on source-sink separation

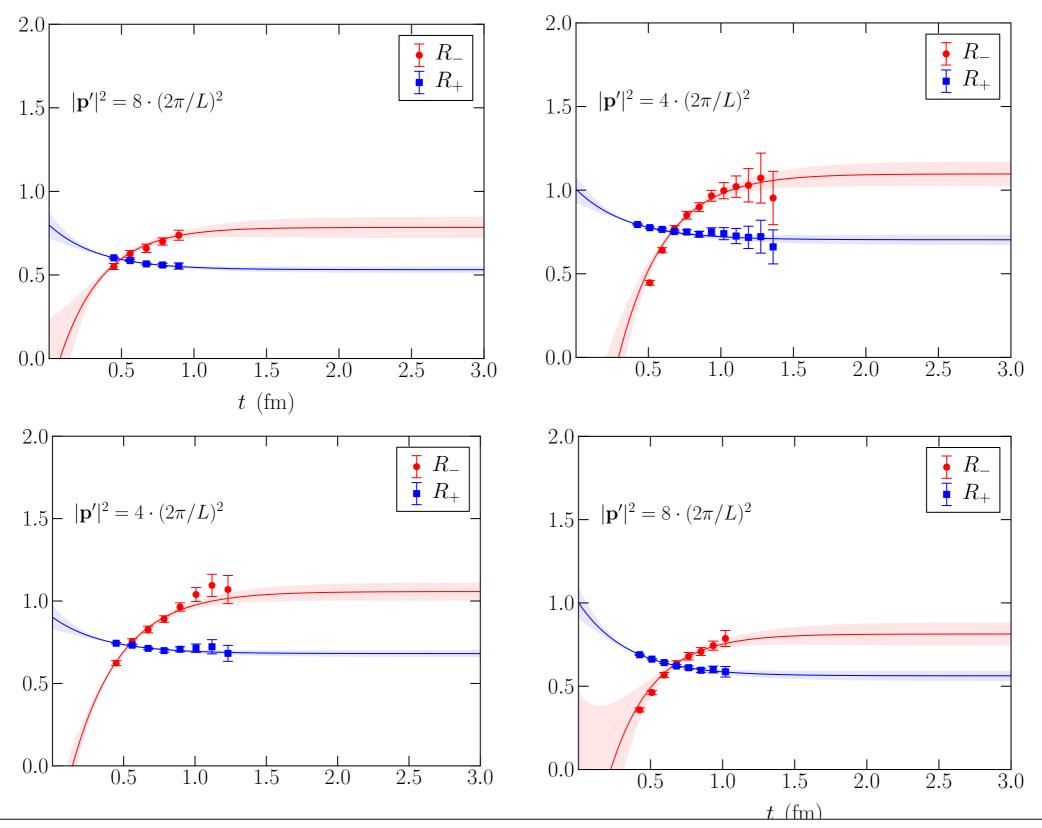
Source sink separation

- Extrapolate to infinite source-sink separation to extract ground state matrix elements
 - Allow for single exponential contamination

 $R^{i,n}_{\pm}(t) = F^{i,n}_{\pm} + A^{i,n}_{\pm} \exp[-\delta^{i,n} t]$

- Constrain energy gap to be positive and to be similar between the fits to the different ensembles
- Systematic fitting uncertainty assessed by adding a second exponential contamination and by dropping data at short *t*

Source sink separation

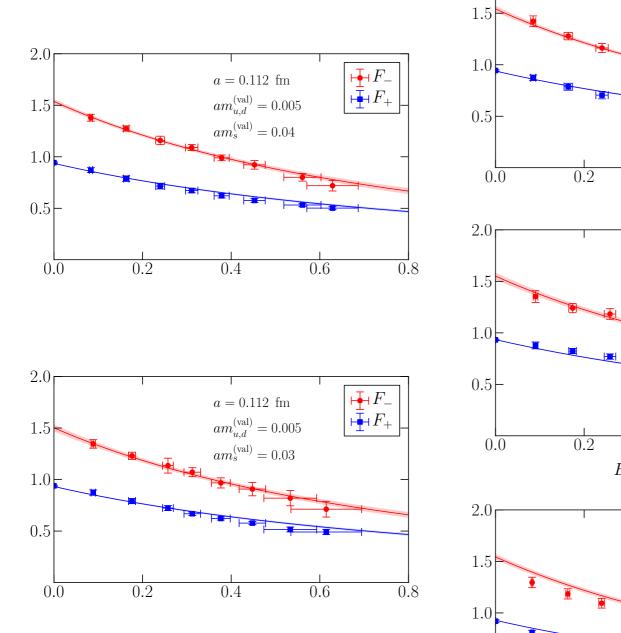


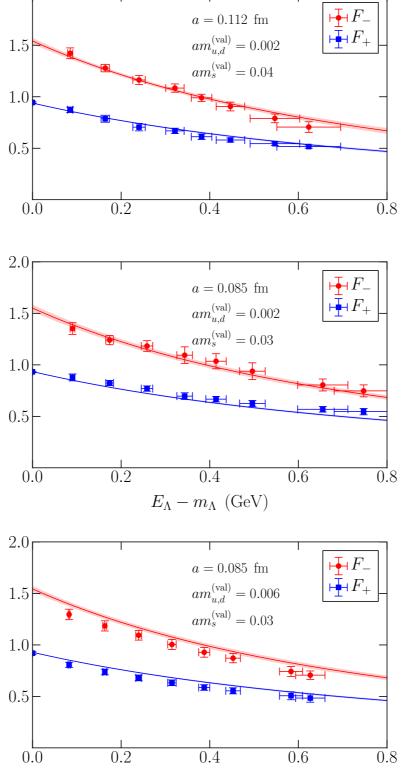
Monday, June 10, 13

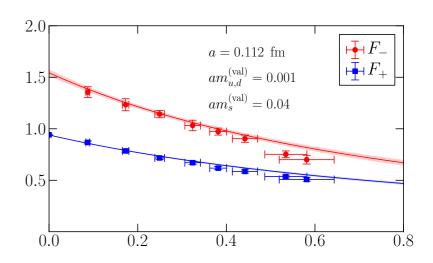
Form factors

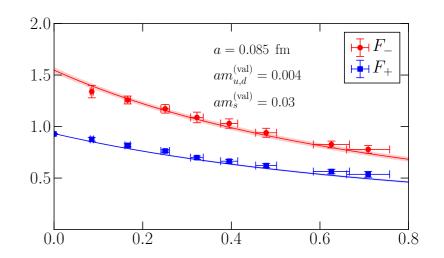
a = 0.112 fm

2.0









Extrapolation of form factors

- Form factors extracted at non-zero lattice spacing, unphysical quark masses and for a limited range of momenta
- Coupled extrapolations performed using the form

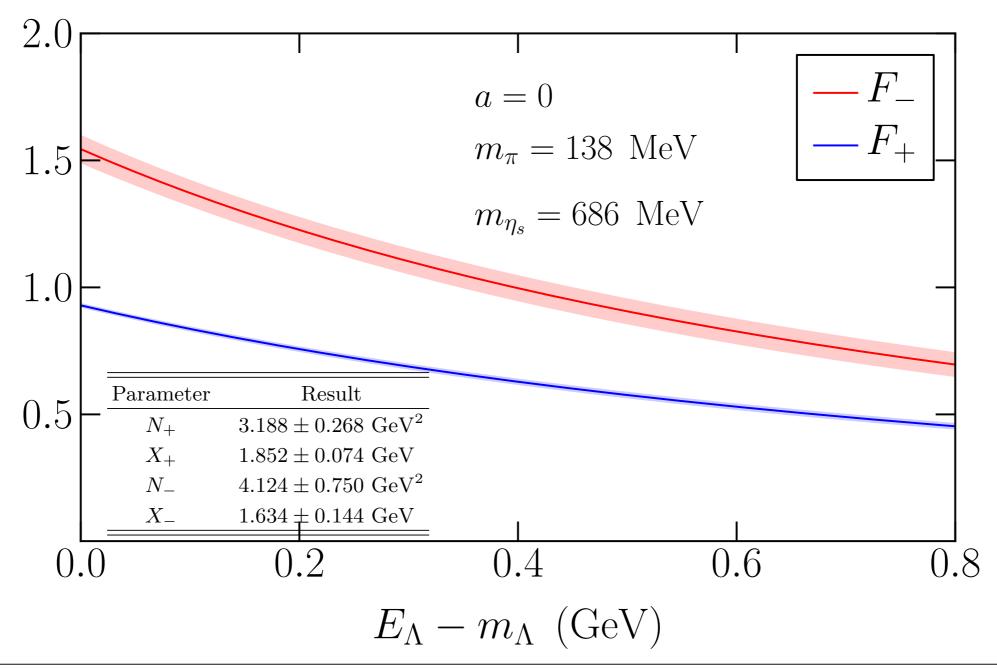
$$F_{\pm}^{i,n} = \frac{N_{\pm}}{(X_{\pm}^{i} + E_{\Lambda}^{i,n} - m_{\Lambda}^{i})^{2}} \cdot [1 + d_{\pm} (a^{i} E_{\Lambda}^{i,n})^{2}]$$

with $X_{\pm}^{i} = X_{\pm} + c_{l,\pm} \cdot \left[(m_{\pi}^{i})^{2} - (m_{\pi}^{\text{phys}})^{2} \right] + c_{s,\pm} \cdot \left[(m_{\eta_{s}}^{i})^{2} - (m_{\eta_{s}}^{\text{phys}})^{2} \right]$

- Simple modified dipole form
 - Necessarily phenomenological (momenta of Λ beyond range of applicability of $\chi \text{PT})$
 - Lattice spacing and light and strange quark mass dependence through c's and d's

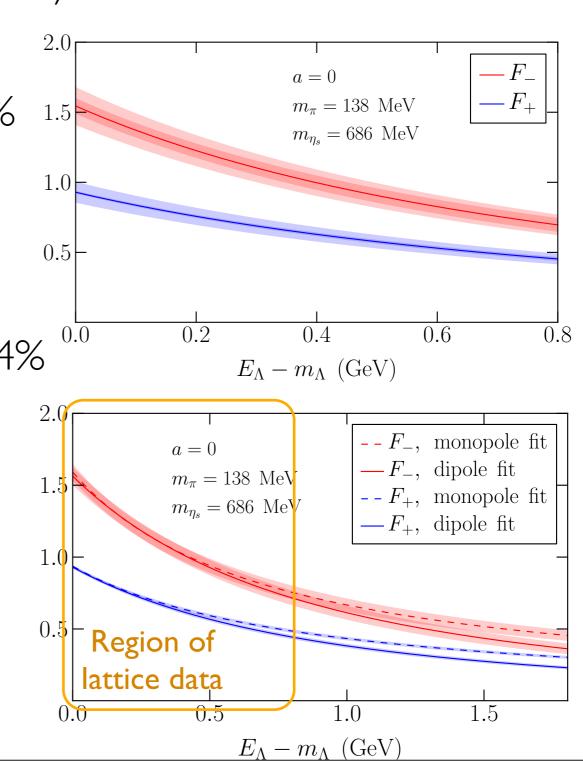
Form factors

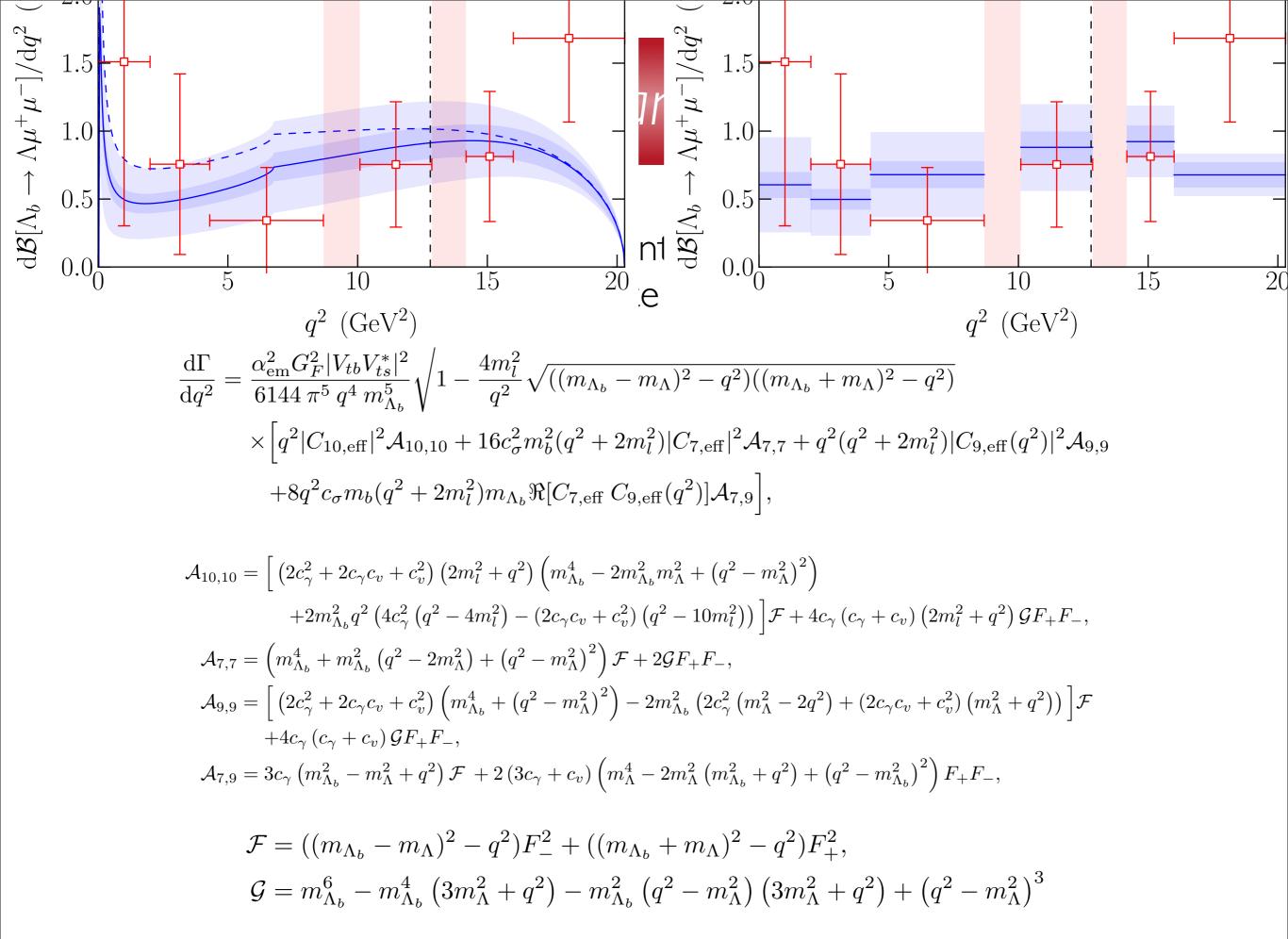
• Fit has χ^2 /dof <1 and fitted lattice spacing and quark mass parameters consistent with zero



Systematic Uncertainties

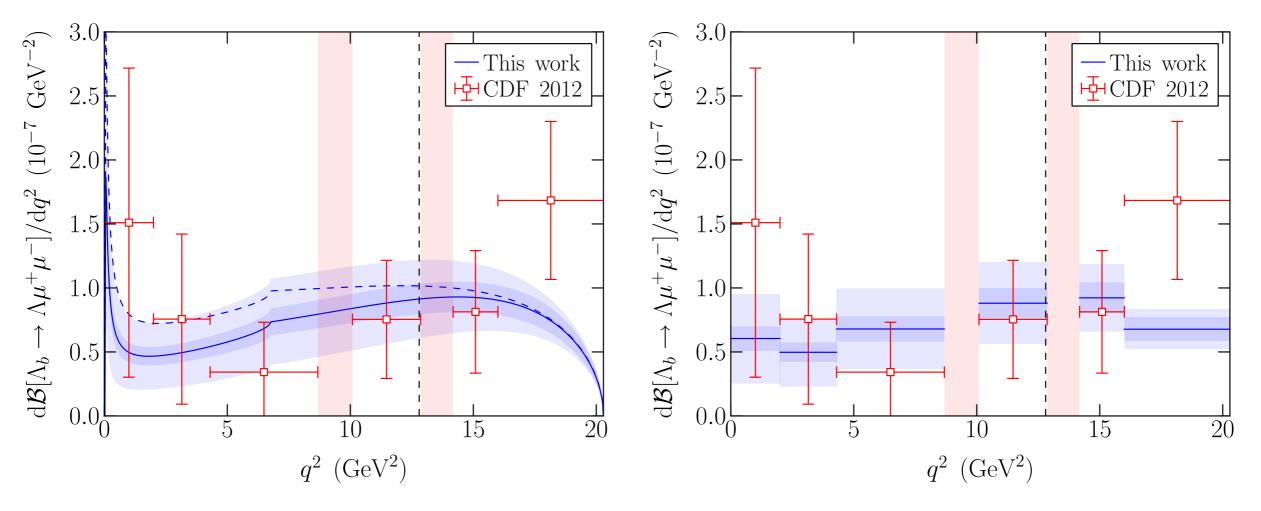
- Main sources of systematic uncertainty in FFs are
 - Higher order effects in renormalisation of currents ~6% 1.5
 - Finite volume ~3%
 - Chiral extrapolation ~5%
 - Residual discretisation effects ~4%
- Extrapolation functional form
 - Dipole vs monopole vs ...
 - Agree in data region
 Uncertainty hard to quantify





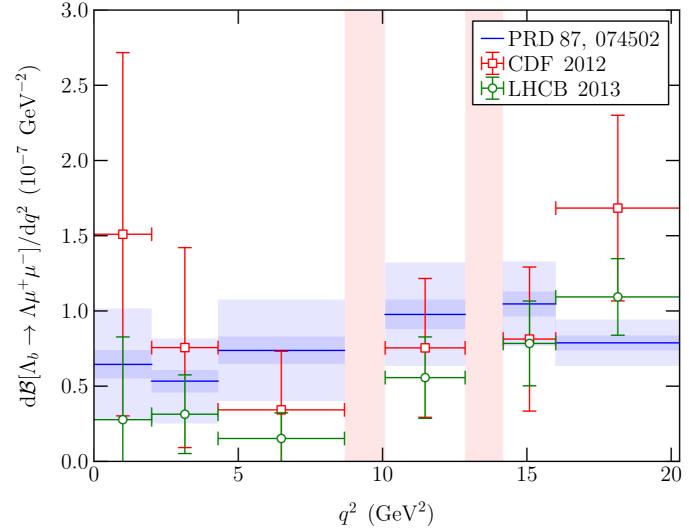
Differential branching fraction

- Evaluate using lattice FFs
- Additional systematic uncertainty from using static limit FFs taken as $\sqrt{|\vec{p}|^2 + \Lambda_{\rm QCD}^2} / m_b$
- Comparison to CDF measurements (RHS binned)



Differential branching fraction

New LHCb data are more precise (and will become even more so)



• LQCD calculation will also improve (relativistic heavy quarks)

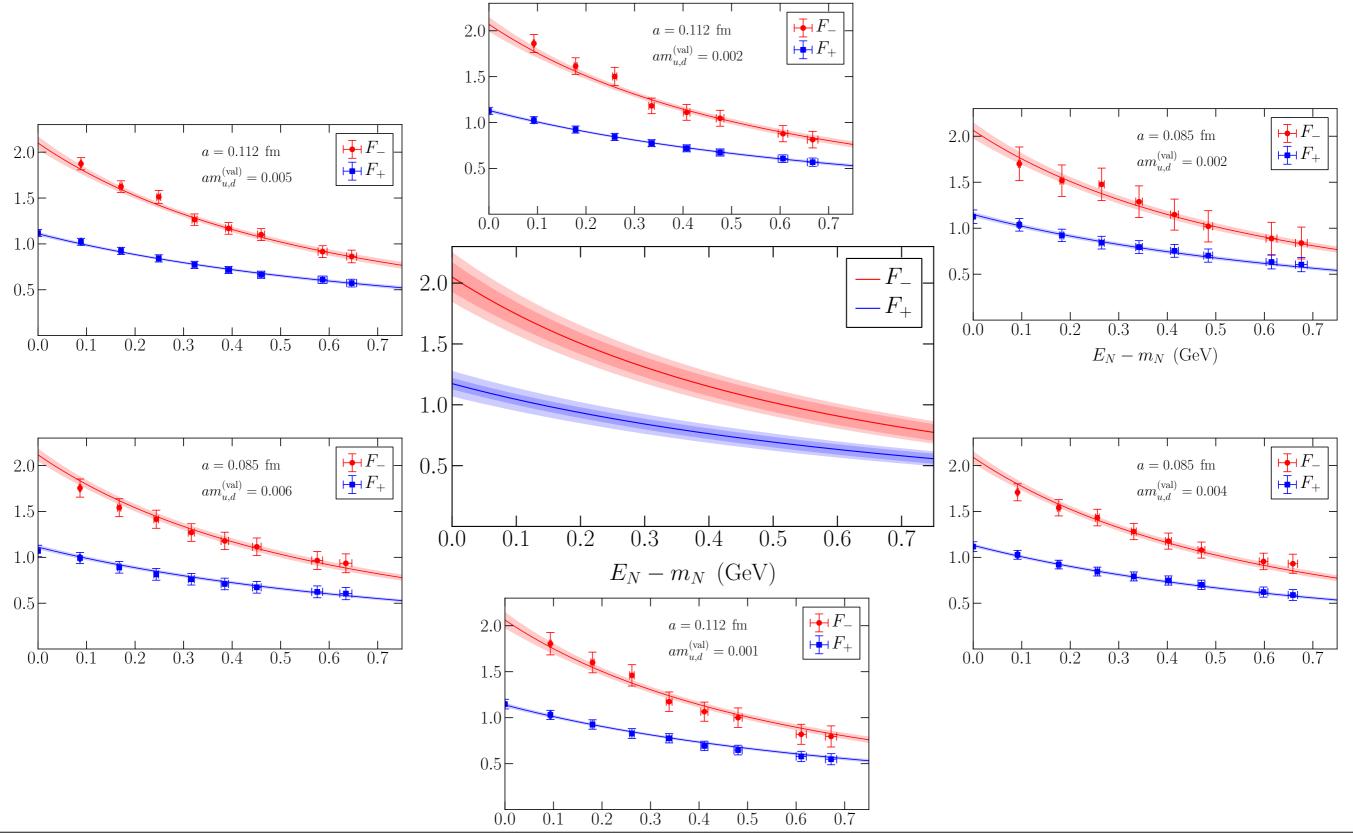
Rare decay: $\Lambda_b \rightarrow p \ \mu^- \overline{v}$ and $|V_{ub}|^2$

- Puzzle in current determinations of V_{ub} [PDG]
 - Inclusive B \rightarrow X_u decays: $|V_{ub}|_{incl.} = (4.41 \pm 0.15^{+0.15}_{-0.17}) \cdot 10^{-3}$
 - Exclusive B $\rightarrow \Pi$ decays: $|V_{ub}|_{\text{excl.}} = (3.23 \pm 0.31) \cdot 10^{-3}$
- Worryingly discrepant: likely not new physics, but an independent determination would be useful
- The baryonic decay $\Lambda_b \rightarrow p \ \mu^- \overline{v}$ also depends on $|V_{ub}|^2$
 - At the LHC, this may be easier to measure than B $\rightarrow \Pi \mu^{-} \nabla$ as the final state is more distinctive [U Egede]
 - Extraction requires calculation of hadronic matrix elements

Matrix elements & form factors

- Calculational details are very similar to previous case
 - Static limit again reduces to two form factors
 - Somewhat simpler as only need vector and axial-vector currents
 - Contractions involve extra term
 - Behaviour of correlators and ratios similar Uncertainties a little larger

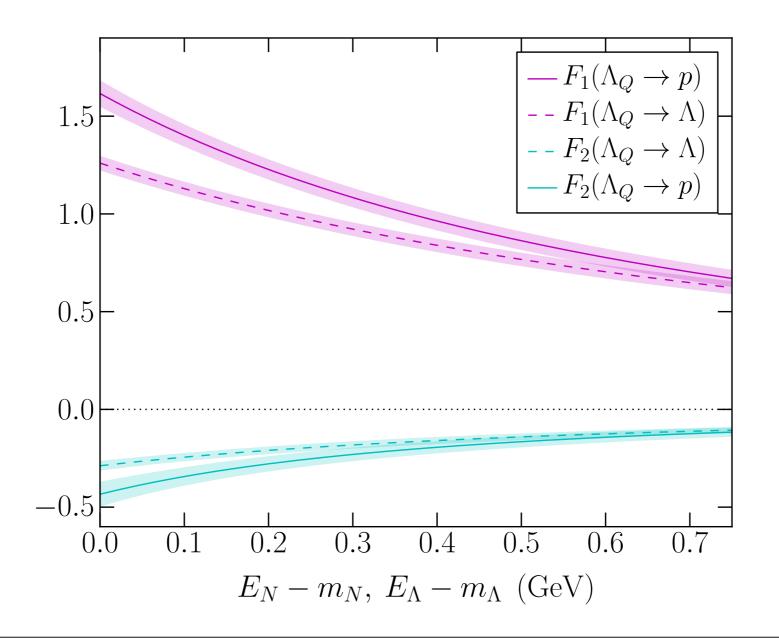
$\Lambda_b \rightarrow p form factors$



Monday, June 10, 13

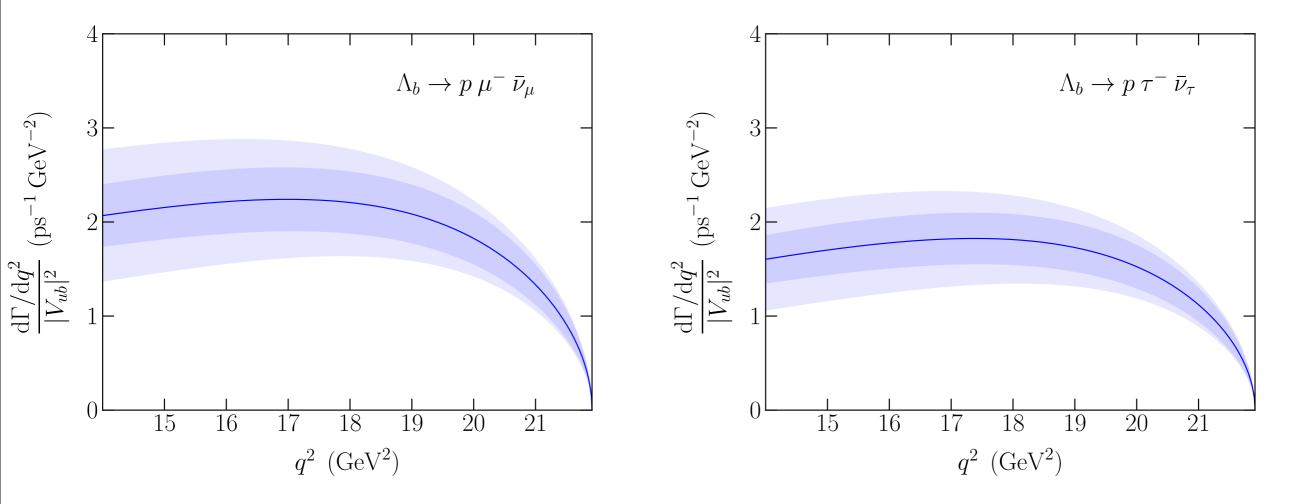
$\Lambda_b \rightarrow p \quad vs \quad \Lambda_b \rightarrow \Lambda$

- Form factors larger for proton final state than for Λ
- Significantly different than model estimates



$\Lambda_b \rightarrow p | \bar{v} decay rate$

- Differential decay rate again computed using extracted form factors
- Shown for μ and τ final states (electron is identical to $\mu)$ and only in regime where momentum dependence is controlled by lattice data



$|V_{ub}|^2$ extraction

- Results are promising for extraction of V_{ub} from this channel
- Construct partially integrated decay rate

$$\frac{1}{|V_{ub}|^2} \int_{14 \text{ GeV}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to p \,\ell^- \bar{\nu}_\ell)}{\mathrm{d}q^2} \mathrm{d}q^2 = \begin{cases} 15.3 \pm 2.4 \pm 3.4 \text{ ps}^{-1} & \text{for } \ell = e, \\ 15.3 \pm 2.4 \pm 3.4 \text{ ps}^{-1} & \text{for } \ell = \mu, \\ 12.5 \pm 1.9 \pm 2.7 \text{ ps}^{-1} & \text{for } \ell = \tau. \end{cases}$$

- Theory uncertainty on V_{ub} about 15%
- Theoretical uncertainties smaller than difference between current inclusive and exclusive extractions
- We need to wait for experimental results from LHCb (studies are underway)

- Flavour physics alive and well in the LHC era
- First calculations of hadronic form factors for $\Lambda_b \rightarrow p$ and $\Lambda_b \rightarrow \Lambda$ transitions allow
 - Tests of the Standard Model in $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
 - Independent extraction of V_{ub} from $\Lambda_b \rightarrow p \mid v$ decays
- Calculations will be improved in the future using improved discretisations of *b* quarks, lighter light quarks and non-perturbative renormalisation of currents