

Work in collaboration with David Lin, Stefan Meinel and Matt Wingate

## Flavour physics in the LHC era

- "If it looks like a Higgs, swims like a Higgs and quacks like a Higgs, then it is probably a Higgs" M. Klute
- Higgs discovery an early triumph for the LHC
- What next?
- $\mathrm{LHC}(\mathrm{b})$ is also a phenomenal machine for flavour physics
- Look for deviations from the Standard Model
- Exciting opportunities in bottom baryon sector


# FCNC decays: $\Lambda_{\mathrm{b}} \rightarrow \Lambda \gamma, \Lambda_{\mathrm{b}} \rightarrow \Lambda \mu^{+} \mu^{-}$ 

[Detmold, Lin, Meinel, \& Wingate Phys. Rev. D 87, 074502 (20I 3)]

## Rare decay: $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu^{-} \bar{v}$ and $\left|V_{u b}\right|^{2}$

[Detmold, Lin, Meinel, \& Wingate arXiv: I 306.0446]

## Flavour-changing neutral currents

- Flavour changing neutral currents are absent in the SM at tree level
- First occur at loop level and are generally GIM suppressed
- Small size allows sensitivity to possible BSM contributions which may be of similar size
- Well studied in $B \rightarrow K$ decays and also more recently in studies of $B \rightarrow K^{*}$
- No significant evidence for deviations from SM


## Flavour-changing neutral currents

- Baryon decay modes $\Lambda_{b} \rightarrow \Lambda \gamma, \Lambda_{b} \rightarrow \Lambda I^{+} I^{-}$depend on polarisation of $\Lambda_{b}$ and $\Lambda$ so many angular observables possible $\Lambda_{b}$
- In principle different sensitivities to BSM physics [Mannel \& Recksiegel 1997]
- Final state undergoes further weak decay $\Lambda \rightarrow p$ which is self-analysing

$$
\frac{d N}{d \Omega}[\Lambda \rightarrow p \pi] \sim\left(1+a \vec{s}_{\Lambda} \cdot \vec{p}_{p}\right), \quad a=0.64(1)
$$

- At $\mathrm{LHC}, \Lambda_{\mathrm{b}}$ is produced almost unpolarised [Aaij 1302.5578]
- First observation of baryonic decay at CDF [2012]
- LHCb preliminary results shown recently [FPCP 2013]


## Effective Hamiltonian

- At hadronic scales the relevant interactions are described by the effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1, \ldots, 10, S, P}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right),
$$

where the relevant $\mathrm{b} \rightarrow$ s operators are

$$
\begin{array}{rlrl}
O_{7} & =\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma^{\mu \nu} P_{R} b F_{\mu \nu}^{(\text {e.m. })}, & & O_{7}^{\prime}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma^{\mu \nu} P_{L} b F_{\mu \nu}^{(\text {e.m.) }}, \\
O_{9} & =\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} l, & O_{9}^{\prime}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} l, \\
O_{10} & =\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} \gamma_{5} l, & O_{10}^{\prime}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} \gamma_{5} l, \\
O_{S} & =\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{R} b \bar{l} l, & O_{S}^{\prime}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{L} b \bar{l} l, \\
O_{P} & =\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{R} b \bar{l} \gamma_{5} l, & O_{P}^{\prime}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{L} b \bar{l} \gamma_{5} l,
\end{array}
$$

$C_{i}$ are Wilson coefficients containing short distance physics

## $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

- Decay amplitude determined by matrix elements of $\mathrm{H}_{\text {eff }}$

$$
\mathcal{M}=-\left\langle\Lambda\left(p^{\prime}, s^{\prime}\right) \ell^{+}\left(p_{+}, s_{+}\right) \ell^{-}\left(p_{-}, s_{-}\right)\right| \mathcal{H}_{\mathrm{eff}}\left|\Lambda_{b}(p, s)\right\rangle
$$

- Hadronic part determined by $\Lambda_{b} \rightarrow \Lambda$ form factors
- In general, IO form factors contribute
- In static limit ( $\mathrm{m}_{\mathrm{b}} \rightarrow \boldsymbol{\infty}$ ), only two $\mathrm{FFs}\left(\mathrm{F}_{1,2}\right)$ survive
$\left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{s} \Gamma Q\left|\Lambda_{Q}(v, 0, s)\right\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[F_{1}\left(p^{\prime} \cdot v\right)+v F_{2}\left(p^{\prime} \cdot v\right)\right] \Gamma \mathcal{U}(v, s)$
where $v=4$-velocity of $\Lambda_{\mathrm{b}}$ and the FFs are independent of the choice of Dirac matrix $\Gamma$ and we will use the basis $F_{ \pm}=F_{1} \pm F_{2}$
- Calculating FFs requires lattice QCD


## Anatomy of the QCD calculation

- Gluon configurations from RBC/UKQCD collaborations [Aoki et al. 20 II ]
- Two lattice spacings with a single large volume
- Light and strange quarks: domain wall fermions with multiple quark masses (some partially quenched)
- b quarks: HQET static action [Eichten-Hill] with HYP-smearing

| Set | $N_{s}^{3} \times N_{t} \times N_{5}$ | $a m_{5}$ | $a m_{s}^{(\text {sea })}$ | $a m_{u, d}^{(\text {sea }}$ | $a(\mathrm{fm})$ | $a m_{s}^{(\text {val })}$ | $a m_{u, d}^{(\text {val })}$ | $m_{\pi}^{(\text {(vv) }}(\mathrm{MeV})$ | $m_{\eta_{s}}^{(\mathrm{vv})}(\mathrm{MeV})$ | $N_{\text {meas }}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C14 | $24^{3} \times 64 \times 16$ | 1.8 | 0.04 | 0.005 | $0.1119(17)$ | 0.04 | 0.001 | $245(4)$ | $761(12)$ | 2705 |
| C24 | $24^{3} \times 64 \times 16$ | 1.8 | 0.04 | 0.005 | $0.1119(17)$ | 0.04 | 0.002 | $270(4)$ | $761(12)$ | 2683 |
| C54 | $24^{3} \times 64 \times 16$ | 1.8 | 0.04 | 0.005 | $0.1119(17)$ | 0.04 | 0.005 | $336(5)$ | $761(12)$ | 2780 |
| C53 | $24^{3} \times 64 \times 16$ | 1.8 | 0.04 | 0.005 | $0.1119(17)$ | 0.03 | 0.005 | $336(5)$ | $665(10)$ | 1192 |
| F23 | $32^{3} \times 64 \times 16$ | 1.8 | 0.03 | 0.004 | $0.0849(12)$ | 0.03 | 0.002 | $227(3)$ | $747(10)$ | 1918 |
| F43 | $32^{3} \times 64 \times 16$ | 1.8 | 0.03 | 0.004 | $0.0849(12)$ | 0.03 | 0.004 | $295(4)$ | $747(10)$ | 1919 |
| F63 | $32^{3} \times 64 \times 16$ | 1.8 | 0.03 | 0.006 | $0.0848(17)$ | 0.03 | 0.006 | $352(7)$ | $749(14)$ | 2785 |

## Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
- Two-point functions for $\Lambda_{\mathrm{b}}$ and $\Lambda$ are standard





## Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
- Two-point functions for $\Lambda_{\mathrm{b}}$ and $\Lambda$ are standard
- Forward and backward three-point functions



## Correlation functions

- Matrix elements extracted from ratios of two and threepoint correlation functions
- Two-point functions for $\Lambda_{\mathrm{b}}$ and $\Lambda$ are standard
- Forward and backward three-point functions

$$
\begin{gathered}
C_{\delta \alpha}^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})}\left\langle\Lambda_{\delta}\left(x_{0}, \mathbf{x}\right) J_{\Gamma}^{(\mathrm{HQET}) \dagger}\left(x_{0}-t+t^{\prime}, \mathbf{y}\right) \bar{\Lambda}_{Q \alpha}\left(x_{0}-t, \mathbf{y}\right)\right\rangle \\
C_{\alpha \delta}^{(3, \mathrm{bw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t-t^{\prime}\right)=\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{y}-\mathbf{x})}\left\langle\Lambda_{Q \alpha}\left(x_{0}+t, \mathbf{y}\right) J_{\Gamma}^{(\mathrm{HQET})}\left(x_{0}+t^{\prime}, \mathbf{y}\right) \bar{\Lambda}_{\delta}\left(x_{0}, \mathbf{x}\right)\right\rangle
\end{gathered}
$$

- NB: some technicalities in matching QCD current to HQET
- Spectral decomposition (ellipsis ~ excited states):
$C_{\delta \alpha}^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=Z_{\Lambda Q} \frac{1}{2 E_{\Lambda}} \frac{1}{2} e^{-E_{\Lambda}\left(t-t^{\prime}\right)} e^{-E_{\Lambda} t^{\prime}}\left[\left(Z_{\Lambda}^{(1)}+Z_{\Lambda}^{(2)} \gamma^{0}\right)\left(m_{\Lambda}+p^{\prime}\right)\left(F_{1}+\gamma^{0} F_{2}\right) \Gamma\left(1+\gamma^{0}\right)\right]_{\delta \alpha}+\ldots$


## Correlator ratios

- Form ratios of correlators to cancel energy and time dependence for ground-state contribution

$$
\mathcal{R}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{4 \operatorname{Tr}\left[C^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right) C^{(3, \mathrm{bw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t-t^{\prime}\right)\right]}{\operatorname{Tr}\left[C^{(2, \Lambda, \mathrm{av})}\left(\mathbf{p}^{\prime}, t\right)\right] \operatorname{Tr}\left[C^{\left(2, \Lambda_{Q}, \mathrm{av}\right)}(t)\right]}
$$

- Combine for different Dirac structures

$$
\begin{aligned}
& \mathcal{R}_{+}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{1}{4}\left[\mathcal{R}\left(1, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{2} \gamma^{3}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{3} \gamma^{1}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{1} \gamma^{2}, \mathbf{p}^{\prime}, t, t^{\prime}\right)\right] \\
& \mathcal{R}_{-}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{1}{4}\left[\mathcal{R}\left(\gamma^{1}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{2}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{3}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma_{5}, \mathbf{p}^{\prime}, t, t^{\prime}\right)\right]
\end{aligned}
$$

- Determine form factors (up to exponential contamination)

$$
\begin{aligned}
& R_{+}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t\right)=\sqrt{\frac{E_{\Lambda}}{E_{\Lambda}+m_{\Lambda}} \mathcal{R}_{+}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t, t / 2\right)} \xrightarrow{t \rightarrow \infty} F_{+}(v \cdot p)+\ldots \\
& R_{-}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t\right)=\sqrt{\frac{E_{\Lambda}}{E_{\Lambda}-m_{\Lambda}} \mathcal{R}_{-}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t, t / 2\right)} \xrightarrow{t \rightarrow \infty} F_{-}(v \cdot p)+\ldots
\end{aligned}
$$

## Form factor extractions

- Ratios are relatively insensitive to operator insertion time
- Take midpoint to reduce excited state



- Strongly dependent on source-sink separation


## Source sink separation

- Extrapolate to infinite source-sink separation to extract ground state matrix elements
- Allow for single exponential contamination

$$
R_{ \pm}^{i, n}(t)=F_{ \pm}^{i, n}+A_{ \pm}^{i, n} \exp \left[-\delta^{i, n} t\right]
$$

- Constrain energy gap to be positive and to be similar between the fits to the different ensembles
- Systematic fitting uncertainty assessed by adding a second exponential contamination and by dropping data at short $t$


## Source sink separation



## Form factors








## Extrapolation of form factors

- Form factors extracted at non-zero lattice spacing, unphysical quark masses and for a limited range of momenta
- Coupled extrapolations performed using the form

$$
F_{ \pm}^{i, n}=\frac{N_{ \pm}}{\left(X_{ \pm}^{i}+E_{\Lambda}^{i, n}-m_{\Lambda}^{i}\right)^{2}} \cdot\left[1+d_{ \pm}\left(a^{i} E_{\Lambda}^{i, n}\right)^{2}\right]
$$

with $X_{ \pm}^{i}=X_{ \pm}+c_{l, \pm} \cdot\left[\left(m_{\pi}^{i}\right)^{2}-\left(m_{\pi}^{\text {phys }}\right)^{2}\right]+c_{s, \pm} \cdot\left[\left(m_{\eta_{s}}^{i}\right)^{2}-\left(m_{\eta_{s}}^{\text {phys }}\right)^{2}\right]$

- Simple modified dipole form
- Necessarily phenomenological (momenta of $\Lambda$ beyond range of applicability of $\chi \mathrm{PT}$ )
- Lattice spacing and light and strange quark mass dependence through c's and d's


## Form factors

- Fit has $\chi^{2} /$ dof $<1$ and fitted lattice spacing and quark mass parameters consistent with zero



## Systematic Uncertainties

- Main sources of systematic uncertainty in FFs are
- Higher order effects in renormalisation of currents $\sim 6 \%$
- Finite volume $\sim 3 \%$
- Chiral extrapolation $\sim 5 \%$
- Residual discretisation effects $\sim 4 \%$

- Extrapolation functional form
- Dipole vs monopole vs ...
- Agree in data region Uncertainty hard to quantify



## Differential branching fraction

- Taking SM Wilson coefficients from the literature we can compute the SM decay rate

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}=\frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{6144} \pi^{5} q^{4} m_{\Lambda_{b}}^{5} \sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}} \sqrt{\left(\left(m_{\Lambda_{b}}-m_{\Lambda}\right)^{2}-q^{2}\right)\left(\left(m_{\Lambda_{b}}+m_{\Lambda}\right)^{2}-q^{2}\right)} \\
& \times {\left[q^{2}\left|C_{10, \mathrm{eff}}\right|^{2} \mathcal{A}_{10,10}+16 c_{\sigma}^{2} m_{b}^{2}\left(q^{2}+2 m_{l}^{2}\right)\left|C_{7, \mathrm{eff}}\right|^{2} \mathcal{A}_{7,7}+q^{2}\left(q^{2}+2 m_{l}^{2}\right)\left|C_{9, \mathrm{eff}}\left(q^{2}\right)\right|^{2} \mathcal{A}_{9,9}\right.} \\
&\left.+8 q^{2} c_{\sigma} m_{b}\left(q^{2}+2 m_{l}^{2}\right) m_{\Lambda_{b}} \Re\left[C_{7, \mathrm{eff}} C_{9, \mathrm{eff}}\left(q^{2}\right)\right] \mathcal{A}_{7,9}\right], \\
& \mathcal{A}_{10,10}= {\left[\left(2 c_{\gamma}^{2}+2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(2 m_{l}^{2}+q^{2}\right)\left(m_{\Lambda_{b}}^{4}-2 m_{\Lambda_{b}}^{2} m_{\Lambda}^{2}+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right)\right.} \\
&\left.+2 m_{\Lambda_{b}}^{2} q^{2}\left(4 c_{\gamma}^{2}\left(q^{2}-4 m_{l}^{2}\right)-\left(2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(q^{2}-10 m_{l}^{2}\right)\right)\right] \mathcal{F}+4 c_{\gamma}\left(c_{\gamma}+c_{v}\right)\left(2 m_{l}^{2}+q^{2}\right) \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{7,7}=\left(m_{\Lambda_{b}}^{4}+m_{\Lambda_{b}}^{2}\left(q^{2}-2 m_{\Lambda}^{2}\right)+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right) \mathcal{F}+2 \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{9,9}= {\left[\left(2 c_{\gamma}^{2}+2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(m_{\Lambda_{b}}^{4}+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right)-2 m_{\Lambda_{b}}^{2}\left(2 c_{\gamma}^{2}\left(m_{\Lambda}^{2}-2 q^{2}\right)+\left(2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(m_{\Lambda}^{2}+q^{2}\right)\right)\right] \mathcal{F} } \\
&+4 c_{\gamma}\left(c_{\gamma}+c_{v}\right) \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{7,9}=3 c_{\gamma}\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}+q^{2}\right) \mathcal{F}+2\left(3 c_{\gamma}+c_{v}\right)\left(m_{\Lambda}^{4}-2 m_{\Lambda}^{2}\left(m_{\Lambda_{b}}^{2}+q^{2}\right)+\left(q^{2}-m_{\Lambda_{b}}^{2}\right)^{2}\right) F_{+} F_{-}, \\
& \mathcal{F}=\left(\left(m_{\Lambda_{b}}-m_{\Lambda}\right)^{2}-q^{2}\right) F_{-}^{2}+\left(\left(m_{\Lambda_{b}}+m_{\Lambda}+m_{\Lambda_{b}}^{4}\left(3 m_{\Lambda}^{2}+q^{2}\right)-m_{\Lambda_{b}}^{2}\left(q^{2}-m_{\Lambda}^{2}\right)\left(3 m_{\Lambda}^{2}+q^{2}\right)+\left(q^{2}-m_{\Lambda}^{2}\right)^{3}\right.\right.
\end{aligned}
$$

## Differential branching fraction

- Evaluate using lattice FFs
- Additional systematic uncertainty from using static limit FFs taken as $\sqrt{|\vec{p}|^{2}+\Lambda_{\mathrm{QCD}}^{2}} / m_{b}$
- Comparison to CDF measurements (RHS binned)




## Differential branching fraction

- New LHCb data are more precise (and will become even more so)

- LQCD calculation will also improve (relativistic heavy quarks)


## Rare decay: $\Lambda_{\mathrm{b}}$

- Puzzle in current determinations of $\bigvee_{u b}$ [PDG]
- Inclusive B $\rightarrow X_{u}$ decays: $\left|V_{u b}\right|_{\text {incl. }}=\left(4.41 \pm 0.15_{-0.17}^{+0.15}\right) \cdot 10^{-3}$
- Exclusive $\mathrm{B} \rightarrow \Pi$ decays: $\left|V_{u b}\right|_{\text {excl. }}=(3.23 \pm 0.31) \cdot 10^{-3}$
- Worryingly discrepant: likely not new physics, but an independent determination would be useful
- The baryonic decay $\Lambda_{b} \rightarrow$ p $\mu^{-} \bar{v}$ also depends on $\left|V_{u b}\right|^{2}$
- At the LHC, this may be easier to measure than $B \rightarrow \Pi \mu^{-} \bar{v}$ as the final state is more distinctive [U Egede]
- Extraction requires calculation of hadronic matrix elements


## Matrix elements \& form factors

- Calculational details are very similar to previous case
- Static limit again reduces to two form factors
- Somewhat simpler as only need vector and axial-vector currents
- Contractions involve extra term
- Behaviour of correlators and ratios similar Uncertainties a little larger


## $\Lambda_{b} \rightarrow p$ form factors



## $\Lambda_{\mathrm{b}}$ <br> $\rightarrow$ <br> $\Lambda_{b} \rightarrow \Lambda$

- Form factors larger for proton final state than for $\Lambda$
- Significantly different than model estimates



## $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p}$ Iv decay rate

- Differential decay rate again computed using extracted form factors
- Shown for $\boldsymbol{\mu}$ and $\boldsymbol{\tau}$ final states (electron is identical to $\boldsymbol{\mu}$ ) and only in regime where momentum dependence is controlled by lattice data



## $\left|V_{u b}\right|^{2}$ extraction

- Results are promising for extraction of $\mathrm{V}_{\mathrm{ub}}$ from this channel
- Construct partially integrated decay rate

$$
\frac{1}{\left|V_{u b}\right|^{2}} \int_{14 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow p \ell^{-} \bar{\nu}_{\ell}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}= \begin{cases}15.3 \pm 2.4 \pm 3.4 \mathrm{ps}^{-1} & \text { for } \ell=e \\ 15.3 \pm 2.4 \pm 3.4 \mathrm{ps}^{-1} & \text { for } \ell=\mu, \\ 12.5 \pm 1.9 \pm 2.7 \mathrm{ps}^{-1} & \text { for } \ell=\tau\end{cases}
$$

- Theory uncertainty on $\mathrm{V}_{\text {ub }}$ about $15 \%$
- Theoretical uncertainties smaller than difference between current inclusive and exclusive extractions
- We need to wait for experimental results from LHCb (studies are underway)


## Summary

- Flavour physics alive and well in the LHC era
- First calculations of hadronic form factors for $\Lambda_{b} \rightarrow p$ and $\Lambda_{b} \rightarrow \Lambda$ transitions allow
- Tests of the Standard Model in $\Lambda_{\mathrm{b}} \rightarrow \mu^{+} \mu^{-}$
- Independent extraction of $\bigvee_{\mathrm{ub}}$ from $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mid \boldsymbol{v}$ decays
- Calculations will be improved in the future using improved discretisations of $b$ quarks, lighter light quarks and nonperturbative renormalisation of currents

