Some insights into the magnetic "QCD" phase diagram from the Sakai-Sugimoto model

DAVID DUDAL

Department of Physics and Astronomy Ghent University, Belgium

Twelfth Workshop on Non-Perturbative Quantum Chromodynamics, l'Institut d'Astrophysique de Paris, June 10-13, 2013

In collaboration with:

Nele Callebaut (Ghent/Brussels)

Overview

Motivation

2 (Magnetic) holographic setup

3 The ρ meson mass in a magnetic field

4 Chiral transition in a magnetic field

Overview

2 (Magnetic) holographic setup

3 The ρ meson mass in a magnetic field

he ρ meson mass in a magnetic field 2000 200000000000

Why study strong magnetic fields?

• experimental relevance: appearance in QGP after a heavy ion collision (order $eB \sim 1-15m_\pi^2$) (work of Skokov, Tuchin, Kharzeev, McLerran, Deng, Huang

- lifetime_{constantB} \sim 10 fm _{McLerran}, Skokov, arXiv:1305.0774; Tuchin, arXiv:1305.5806. lifetime_{QGP} \sim 1 – 10 fm \rightarrow Incentive to take *eB* constant (ignoring "spatial decay" as well!))
- from a holographic viewpoint: interesting for comparison with recent lattice efforts

he ρ meson mass in a magnetic field 200 200000000000

Why study strong magnetic fields?

Figure : Tuchin, arXiv:1305.5806

Figure : McLerran, Skokov, arXiv:1305.0774

Studied effects

• split between $T_c(eB)$ and $T_{\gamma}(eB)?$

ρ meson condensation

Studied effect: ρ meson condensation in vacuum (T = 0) (see: Chernodub, Van

Doorsselaere, Verschelde; PRD85 (2012) 045002; Chernodub, PRL106 (2011) 142003, first suggestion made in Schramm,

Muller, Schramm, MPLA7 (1992) 973, inspiration from Ambjorn, Olesen on W-condensation (80ies)

QCD vacuum instable towards forming a superconducting state of condensed charged ρ mesons at critical magnetic field eB_c

Small note: academic exercise ("hubris") since by the time p enters, B might have already (long) left...

Γhe ρ meson mass in a magnetic field 200 200000000000

ρ meson condensation: Landau levels

The energy levels ε of a free relativistic spin-*s* particle moving in a background of the external magnetic field $\vec{B} = B\vec{e}_z$ are the Landau levels

Landau levels

$$\varepsilon_{n,s_z}^2(p_z) = p_z^2 + m^2 + (2n - 2s_z + 1)|eB|.$$

Appropriate polarization combinations (spin $s_z = 1$ parallel to \vec{B}) can condense, since in the lowest energy state ($n = 0, p_z = 0$):

$$M^2_
ho(eB)=m^2_
ho-eB,$$

 \rightarrow tachyonic if the magnetic field is strong enough. Important: gyromagnetic ratio = 2!

The ρ meson mass in a magnetic field 200 200000000000

ρ meson condensation: Landau levels

$$M^2_
ho(eB)=m^2_
ho-eB,$$

 \Longrightarrow The fields ρ and ρ^{\dagger} should condense at the critical magnetic field

$$eB_c = m_{
ho}^2.$$

ρ meson condensation

- phenomenological models: $eB_c = m_\rho^2 = 0.6 \text{ GeV}^2$ (effective DSGS ρ -model, Chernodub, PRD82 (2010) 085011), $eB_c \approx 1 \text{ GeV}^2$ (NJL) Chernodub, PRL106 (2011) 142003
- lattice simulation: $eB_c pprox 0.9~{
 m GeV^2}$ Braguta et al, PLB718 (2012) 667
- ~> holographic approach:
 - can the ρ meson condensation be modeled?
 - can this approach deliver new insights? e.g. taking into account strong magnetic effects on constituents ($\rightarrow \rho$ -substructure), effect on eB_c

Callebaut, Dudal, Verschelde, JHEP 1303 (2013) 033; work in progress

Overview

Motivation

Holographic QCD

• What is holographic QCD?

"QCD" $\stackrel{dual}{=}$ (super)gravitation in a higher-dimensional background: 4*D* "QCD" "lives" on the boundary of a 5*D* space where the (super)gravitation theory is defined

• Origin of the QCD/gravitation duality idea?

AdS/CFT-correspondence (Maldacena 1997): supergravitation in AdS₅ space $\stackrel{dual}{=}$ conformal \mathcal{N} =4 SYM theory

he ρ meson mass in a magnetic field 200 200000000000

The Sakai-Sugimoto model

The D4-brane background

$$\begin{split} ds^{2} &= \left(\frac{u}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(u) d\tau^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^{2}}{f(u)} + u^{2} d\Omega_{4}^{2}\right), \\ e^{\phi} &= g_{s} \left(\frac{u}{R}\right)^{3/4} \quad , \quad F_{4} = \frac{N_{c}}{V_{4}} \epsilon_{4} \quad , \quad f(u) = 1 - \frac{u_{K}^{3}}{u^{3}} \, , \end{split}$$

he ρ meson mass in a magnetic field 200 200000000000

The Sakai-Sugimoto model

The Sakai-Sugimoto model

$$\begin{split} ds^{2} &= \left(\frac{u}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(u) d\tau^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^{2}}{f(u)} + u^{2} d\Omega_{4}^{2}\right), \\ e^{\phi} &= g_{s} \left(\frac{u}{R}\right)^{3/4} , \quad F_{4} = \frac{N_{c}}{V_{4}} \epsilon_{4} , \quad f(u) = 1 - \frac{u_{K}^{3}}{u^{3}}, \end{split}$$

The Sakai-Sugimoto model

- Flavour $\rightarrow N_f$ pairs of D8- $\overline{\text{D8}}$ flavour branes are added to the D4-brane background. Karch, Katz, JHEP 0206 (2002) 043
- Probe approximation N_f ≪ N_c: backreaction of flavour branes on background is ignored ~ quenched "QCD".
- Stack of N_f coinciding pairs of D8-D8 flavour branes → U(N_f)_L × U(N_f)_R theory, to be interpreted as the chiral symmetry in QCD
- background geometry (∪-shape) enforces "L = R" (joining of flavour branes): U(N_f)_L × U(N_f)_R → U(N_f)_V.

Sakai, Sugimoto, PTP113 (2005) 843; PTP114 (2005) 1083

The flavour gauge field

The $U(N_f)$ gauge field $A_{\mu}(x^{\mu}, u)$ that lives on the flavour branes describes a tower of vector mesons $v_{\mu,n}(x^{\mu})$ in the dual QCD-like theory:

$U(N_f)$ gauge field

$$A_{\mu}(x^{\mu},u)=\sum_{n\geq 1}v_{\mu,n}(x^{\mu})\psi_n(u)$$

with $v_{\mu,n}(x^{\mu})$ a tower of vector mesons with masses m_n , and $\{\psi_n(u)\}_{n\geq 1}$ a complete set of functions of u, satisfying the **eigenvalue** equation

$$u^{1/2}\gamma_B^{-1/2}(u)\partial_u\left[u^{5/2}\gamma_B^{-1/2}(u)\partial_u\psi_n(u)\right] = -R^3m_n^2\psi_n(u),$$

Magnetized (holographic) "QCD"

Why use the Sakai-Sugimoto model

• the way it works:

dynamics of the flavour D8/D8-branes: 5D YM theory $S_{DBI}[A_{\mu}] = \cdots$, $A_{\mu}(x^{\mu}, u) = \sum_{n \ge 1} v_{\mu,n}(x^{\mu})\psi_n(u)$ integrate out the extra radial dimension u

effective 4D meson theory for $v_{\mu}^{n}(x^{\mu})$

- ideal holographic QCD model to study low-energy QCD
 - confinement and chiral symmetry breaking
 - effective low-energy QCD models drop out: Skyrme (π, also: baryons as skyrmions), HLS (π,ρ coupling), VMD

Approximations of the model

Duality is valid in the limit $N_c \rightarrow \infty$ and large 't Hooft coupling $\lambda = g_{YM}^2 N_c \gg 1$, and at low energies (where redundant massive d.o.f. decouple).

Approximations (inherent to the model):

- quenched approximation ($N_f \ll N_c$)
- chiral limit ($m_{\pi} = 0$, bare quark masses zero)

Choices of parameters:

- *N_c* = 3
- $N_f = 2$ to model charged mesons

(Magnetic) holographic setup ○○○○○○○ ●○	The ρ meson mass in a magnetic field 000 00000000000	Chiral transition in a magnetic field

How to turn on the magnetic field

A non-zero value of the flavour gauge field $A_m(x^{\mu}, z)$ on the boundary,

$$A_m(x^{\mu}, u \to \infty) = \overline{A}_{\mu},$$

corresponds to an external gauge field in the boundary field theory that couples to the quarks

$$\overline{\psi}i\gamma_{\mu}D_{\mu}\psi$$
 with $D_{\mu}=\partial_{\mu}+\overline{A}_{\mu}$.

To apply an external electromagnetic field A_{μ}^{em} , put

$$A_{\mu}(u
ightarrow +\infty) = -iQ_{em}A^{em}_{\mu} = \overline{A}_{\mu}$$

Introducing the magnetic field

How to turn on the magnetic field

To apply a magnetic field along the x_3 -axis,

$$A_2^{em}=x_1B,$$

in the $N_f = 2$ case,

$$Q_{em} = \left(\begin{array}{cc} 2/3 & 0 \\ 0 & -1/3 \end{array} \right) = \frac{1}{6} \mathbf{1}_2 + \frac{1}{2} \sigma_3,$$

we set

$$\overline{\textit{A}}_{\mu}=-\textit{ieQ}_{em}\textit{A}_{\mu}^{em}=-\textit{ieQ}_{em}\textit{x}_{1}\textit{B}\delta_{\mu2}$$

Overview

Motivation

Chiral transition in a magnetic field

Plan

DBI action:

$$\mathcal{S}_{DBI} = - T_8 \int d^4x \ 2 \int_{u_0}^{\infty} du \int \epsilon_4 \ e^{-\phi} \ \mathrm{STr} \sqrt{-\det[g_{mn}^{D8} + (2\pi\alpha')iF_{mn}]},$$

with

- $STr(F_1 \cdots F_n) = \frac{1}{n!}Tr(F_1 \cdots F_n + \text{all permutations})$ the symmetrized trace,
- $g_{mn}^{D8} = g_{mn} + g_{\tau\tau} (D_m \tau)^2$ the induced metric on the D8-branes (with covariant derivative $D_m \tau = \partial_m \tau + [A_m, \tau]$)
- $\tau =$ the brane embedding (+ fluctuations)

The ρ meson mass in a magnetic field •OO •OO •OO

First approximation: Landau levels

Simplest embedding to start: $u_0 = u_K$

- Embedding trivial: $\partial_u \bar{\tau} = 0$ for all values of the magnetic field
- **2** Determine EOM for ρ_{μ} :
 - STr reduces to regular Tr (because of coincident branes)
 - \tilde{A}_m and $\tilde{\tau}$ automatically decouple
 - $\tilde{A}_{\mu} = \rho_{\mu}(x)\psi(u)$ (retain only lowest meson of the tower, most likely to condense)

$$\mathcal{L}_{5D} = \int d^4x \int du \left\{ -\frac{1}{4} f_1(F^a_{\mu\nu})^2 - \frac{1}{2} f_2(F^a_{\mu\mu})^2 - \frac{1}{2} f_3 \sum_{\mu,\nu=1}^2 \overline{F}^3_{\mu\nu} \varepsilon_{3ab} \tilde{A}^a_{\mu} \tilde{A}^b_{\nu} \right\}$$

(Magnetic) holographic setup	The ρ meson mass in a magnetic field	Chiral transition in a magnetic field
0000000 00	000 0000000000	

First approximation: Landau levels

EOM for ρ for $u_0 = u_K$

$$\mathcal{L}_{5D} = \int d^4 x \int du \left\{ -\frac{1}{4} f_1 \underbrace{(F^a_{\mu\nu})^2}_{(\mathcal{F}^a_{\mu\nu})^2 \psi^2} - \frac{1}{2} f_2 \underbrace{(F^a_{\mu\nu})^2}_{(\rho^a_{\mu})^2 (\partial_u \psi)^2} - \frac{1}{2} f_3 \sum_{\mu,\nu=1}^2 \overline{F}^3_{\mu\nu} \varepsilon_{3ab} \underbrace{\tilde{A}^a_{\mu} \tilde{A}^b_{\nu}}_{\rho^a_{\mu} \rho^b_{\nu} \psi^2} \right\}$$

demand $\int du f_1 \psi^2 = 1$ and $\int du f_2 (\partial_u \psi)^2 = m_\rho^2$, then $\int du f_3 \psi^2 = k$

$$\Rightarrow \mathcal{L}_{4D} = \int d^4x \left\{ -\frac{1}{4} (\mathcal{F}^a_{\mu\nu})^2 - \frac{1}{2} m^2_{\rho} (\rho^a_{\mu})^2 - \frac{1}{2} k \sum_{\mu,\nu=1}^2 \overline{F}^3_{\mu\nu} \epsilon_{3ab} \rho^a_{\mu} \rho^b_{\nu} \right\}$$

(with $\mathcal{F}_{\mu\nu}^{a} = D_{\mu}\rho_{\nu}^{a} - D_{\nu}\rho_{\mu}^{a}$) standard 4D Lagrangian for a vector field in an external EM field

	(Magnetic) holographic setup	The ρ meson mass in a magnetic field	Chiral transition in a magnetic field
	000000 00	000 0000000000	
First services	tion: Londou louolo		

Landau levels for Sakai-Sugimoto $u_0 = u_K$

Standard 4D Lagrangian for a vector field in an external EM field with k = 1 ($\Leftarrow f_3 = f_1$)

 \rightsquigarrow Landau levels and

$$M^2_
ho(eB)=m^2_
ho-eB$$

The ρ meson mass in a magnetic field

Chiral transition in a magnetic field

Taking into account constituents

General embedding $u_0 > u_K$

 $u_0 > u_K$ to model non-zero constituent quark mass which is related to the distance between u_0 and u_K .

Aharony, Sonnenschein, Yankielowicz, Ann.Phys.322 (2007) 1420

Taking into account constituents

Numerical fixing of holographic parameters

There are three unknown free parameters (u_K , u_0 and $\kappa(\sim \lambda N_c)$). In order to get results in physical units, we fix the free parameters by matching to

- the constituent quark mass $m_q = 0.310$ GeV,
- the pion decay constant $f_{\pi} = 0.093$ GeV and
- the ρ meson mass in absence of magnetic field $\textit{m}_{\rho}=0.776$ GeV. Results:

$$u_{K} = 1.39 \text{ GeV}^{-1}, \quad u_{0} = 1.92 \text{ GeV}^{-1} \text{ and } \kappa = 0.00678$$

• <u>cross-check:</u> "QCD" string tension $\sigma \approx 0.18 \text{ GeV}^2$ (= standard lattice estimate)

The ρ meson mass in a magnetic field 000 0000000000

Taking into account constituents

eB-dependent embedding for $u_0 > u_K$

Keep *L* fixed: $u_0(eB)$ rises with *eB*. This models magnetic catalysis of chiral symmetry breaking Johnson, Kundu JHEP0812 (2008) 053; in general: Miransky et al. Non-Abelian: $u_{0,u}(eB) > u_{0,d}(eB)! U(2) \rightarrow U(1)_u \times U(1)_d$

Taking into account constituents

eB-dependent embedding for $u_0 > u_K$

Change in embedding models:

- chiral magnetic catalysis \Rightarrow $m_u(eB)$ and $m_d(eB) \nearrow$
- *eB* explicitly breaks global $U(2) \rightarrow U(1)_u \times U(1)_d$

Effect on p mass?

- expect $m_{\rho}(eB) \nearrow$ as constituents get heavier
- split between branes generates other mass mechanism: 5D gauge field gains mass through holographic Higgs mechanism

The ρ meson mass in a magnetic field 000 0000000000 Chiral transition in a magnetic field

Taking into account constituents

eB-induced Higgs mechanism

The string associated with a charged ρ meson ($\overline{u}d$, $\overline{d}u$) stretches between the now separated up- and down brane \Rightarrow because a string has tension it contributes to the mass.

EOM for ρ for $u_0 > u_K$?

Non-trivial embedding

$$\overline{\tau}(u) = \begin{pmatrix} \overline{\tau}_u(u)\theta(u-u_{0,u}) & 0\\ 0 & \overline{\tau}_d(u)\theta(u-u_{0,d}) \end{pmatrix} \not\sim \mathbf{1},$$

describing the splitting of the branes, utterly complicates the analysis (but necessary for a realistic modeling!).

$$\mathcal{L}_{5D} = \mathsf{STr} \left\{ ... \left([\tilde{A}_m, \bar{\tau}] + D_m \tilde{\tau} \right)^2 + ... (F_{\mu\nu})^2 + ... (F_{\mu\mu\nu})^2 + ... \overline{F}_{\mu\nu\nu} [\tilde{A}_\mu, \tilde{A}_\nu] \right. \\ \left. + ... (\partial_u \bar{\tau}) \overline{F} \left([\tilde{A}, \bar{\tau}] + D \tilde{\tau} \right) F \right\}$$

with all the .. different functions $\mathcal{H}(\partial_u \overline{\tau}, \overline{F}; u)$ of the background fields $\partial_u \overline{\tau}, \overline{F}$.

STr-prescription

Myers, JHEP 9912 (1999) 022; Denef, Sevrin, Troost, Nucl. Phys. B581 (2000) 135

STr = symmetric average over all orderings of *F_{ab}*, *D_aφⁱ*, [φⁱ, φ^j] and the individual non-Abelian scalars φ^k appearing in the non-Abelian Taylor expansions of the background fields.

$$STr\left(\mathcal{H}(\overline{F})\widetilde{F}^{2}
ight) = -rac{1}{2}\sum_{a=1}^{2}\widetilde{F}_{a}^{2} I(\mathcal{H}) + \sum_{a=0,3}\cdots$$

with

$$I(\mathcal{H}) = \frac{\int_0^1 d\alpha \mathcal{H}(F_0 + \alpha F_3) + \int_0^1 d\alpha \mathcal{H}(F_0 - \alpha F_3)}{2}$$

The integral functions *I*(*H*) are complicated functions of *eB* and *u*, even discontinuous in *u* (at *u* = *u*_{0.*u*}).

Chiral transition in a magnetic field

Taking into account constituents

STr-prescription

After many pages of computations (analytical + numerical)

(Magnetic) holographic setup	The ρ meson mass in a magnetic field	Chiral transition in a magnetic field
000000 00	000 00000000000	

Taking into account constituents

EOM for ρ for $u_0 > u_K$ $\mathcal{L}_{5D} = \int d^4 x \int du \left\{ -\frac{1}{4} f_1(eB) \underbrace{(F^a_{\mu\nu})^2}_{(\mathcal{F}^a_{\mu\nu})^2 \psi^2} - \frac{1}{2} f_2(eB) \underbrace{(F^a_{\mu\mu})^2}_{(\rho^a_{\mu})^2 (\partial_{\mu}\psi)^2} - \frac{1}{2} f_3(eB) \sum_{\mu,\nu=1}^2 \overline{F}^3_{\mu\nu} \varepsilon_{3ab} \underbrace{\tilde{A}^a_{\mu} \tilde{A}^b_{\nu}}_{\rho^a_{\mu} \rho^b_{\nu} \psi^2} - \frac{1}{2} f_4(eB) \underbrace{(\tilde{A}^a_{\mu})^2}_{(\rho^a_{\mu})^2 \psi^2} \right\}$

demand $\int du f_1(eB)\psi^2 = 1$ and $\int du f_2(eB)(\partial_u \psi)^2 + f_4(eB)(\overline{\tau}^3)^2 \psi^2 = m_{\rho}^2(eB)$, then $\int du f_3(eB)\psi^2 = k(eB) \neq 1 (\Leftrightarrow f_3(eB) \neq f_1(eB))$

$$\Rightarrow \mathcal{L}_{4D} = \int d^4x \left\{ -\frac{1}{4} (\mathcal{F}^a_{\mu\nu})^2 - \frac{1}{2} m^2_{\rho} (eB) (\rho^a_{\mu})^2 - \frac{1}{2} \frac{k(eB)}{2} \sum_{\mu,\nu=1}^2 \overline{F}^3_{\mu\nu} \varepsilon_{3ab} \rho^a_{\mu} \rho^b_{\nu} \right\}$$

modified 4D Lagrangian for a vector field in an external EM field, with *eB*-dependent gyromagnetic coupling!

(Magnetic) holographic setup ೦೦೦೦೦೦೦ ೦೦	The ρ meson mass in a magnetic field ○○○ ○○○○○○○○○○○○	Chi

Taking into account constituents

Solve the eigenvalue problem

The normalization condition and mass condition on the $\boldsymbol{\psi}$ combine to the eigenvalue equation

$$f_1^{-1}\partial_u(f_2\partial_u\psi) - f_1^{-1}f_4(\overline{\tau}_3)^2\psi = -m_\rho^2\psi$$

with b.c. $\psi(x=\pm\pi/2)=0, \psi'(x=0)=0$

which we solve with a numerical shooting method to obtain $m_{\rho}^2(eB)$.

(Magnetic) hologra		

The ρ meson mass in a magnetic field ○○○ ○○○○○○○○○○○○

Taking into account constituents

Landau vs Sakai-Sugimoto $u_0 > u_K$

Modified 4D Lagrangian for a vector field in an external EM field with $k(eB) \neq 1 (\Leftarrow f_3(eB) \neq f_1(eB))$

 \rightsquigarrow modified Landau levels and, with $\xi = \frac{eB}{m_p^2(eB)}$, Tsai, Yildiz PRD4 (1971) 3643; Obukhov et

al, Theor.Math.Phys. 55 (1983) 536

$$M_{\rho}^{2}(eB) = m_{\rho}^{2}(eB) - eB + (1 - k(eB))m_{\rho}^{2}(eB)\left(\frac{\xi^{2}}{2} + \xi\sqrt{1 - \xi + \frac{\xi^{2}}{4}}\right)$$

Taking into account constituents

Summary p meson

Studied effect: possibility for ρ meson condensation

- phenomenological models: $eB_c = m_p^2 = 0.6 \text{ GeV}^2$
- lattice simulation: slightly higher value of $eB_c \approx 0.9 \text{ GeV}^2$
- ~ holographic approach:
 - can the ρ meson condensation be modeled? yes
 - can this approach deliver new insights? e.g. taking into account constituents, effect on *eB_c* Up and down guark constituents of the ρ meson can be modeled

Up and down quark constituents of the ρ meson can be modeled as separate branes, each responding to the magnetic field by changing their embedding. This is a modeling of the chiral magnetic catalysis effect. We take this into account and find also a string effect on the mass, leading to a $eB_c \approx 0.78 \text{ GeV}^2$

Overview

Motivation

Chiral temperature

 T_{χ} = temperature at which chiral symmetry is restored (chiral limit is understood) Studied effect: possible split between $T_c(eB)$ and $T_{\chi}(eB)$

Magnetic field, eB

Split between T_c and T_{χ}

Expected behaviour (Fig from '08):

- *T*_χ(*eB*) *i*: "chiral magnetic catalysis" seen in chirally driven models (e.g. NJL) Miransky,Shovkovy, PRD66 (2002) 045006
- $T_c(eB)$: quark gas thermodynamically favoured over pion gas (e.g. MIT bag)_{Agasian}, Fedorov, PLB663 (2008) 445; Fraga, Palhares, PRD86 (2012) 016008; Fukushima,

Hidaka, PRL110 (2013) 031601

The ρ meson mass in a magnetic field 200 200000000000

Some results in different models

PLSM_a model Mizher, Chernodub, Fraga, PRD82 (2010) 105016 Lattice D'Elia, Mukherjee, Sanfilippo, PRD82 (2010) 051501

Different PNJL models Gatto, Ruggieri, PRD82 (2010) 054027; PRD83 (2011) 034016

The ρ meson mass in a magnetic field 200 200000000000

Sakai-Sugimoto at finite temperature

"Black D4-brane background"

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} (\hat{f}(u)dt^{2} + \delta_{ij}dx^{i}dx^{j} + d\tau^{2}) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^{2}}{\hat{f}(u)} + u^{2}d\Omega_{4}^{2}\right)$$
$$\hat{f}(u) = 1 - \frac{u_{T}^{3}}{u^{3}}, \quad u_{T} \sim T^{2}$$

Numerical fixing of holographic parameters

Input parameters at eB = 0 $f_{\pi} = 0.093$ GeV and $m_{\rho} = 0.776$ GeV fix all holographic parameters except "brane separation" *L*.

Choice of *L* a priori free, determines a kind of choice of holographic theory:

- $L \text{ small} \sim \text{NJL-type boundary field theory}$ Antonyan, Harvey, Jensen, Kutasov, hep-th/0604017
- $L = \delta \tau / 2$ maximal \sim maximal probing of the gluon background (original antipodal Sakai-Sugimoto)

The ρ meson mass in a magnetic field 200 200000000000

Sakai-Sugimoto at finite T and eB

- no backreaction \Rightarrow T_c independent of eB
- *eB*-dependent embedding of flavour branes \Rightarrow $T_{\chi}(eB)$:

$$S_{merged} - S_{separated} = 0 \quad \Rightarrow \quad T_\chi$$

The ρ meson mass in a magnetic field 200 200000000000

Conclusion on $T_{\chi}(eB)$

The appearance of a split between T_{χ} (GeV) (blue) and T_c (GeV) (purple) depends on the choice of *L*!

Plots for fixed *L* (from small to large) respectively corresponding to $m_q(eB = 0) = 0.357, 0.310$ and 0.272 GeV and $T_c = 0.103, 0.115$ and 0.123 GeV Callebaut, Dudal, PRD87 (2013)106002

- Left: split for L small enough \sim NJL results
- Middle and right: split only at large *eB* or no split at all for parameter values that match best to QCD $\sim SU(2)$, $N_f = 2$ (chirally extrapolated) lattice data of Ilgenfritz et al, PRD85 (2012) 114504 (no split)

The ρ meson mass in a magnetic field 200 200000000000

(Locally) Inverse magnetic catalysis BIG BUT

Latest lattice data disagree with most previous results: $T_{\chi}(eB) \searrow$

 \rightarrow quenched vs. true QCD

Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg, Schafer, Szabo, JHEP 1202 (2012) 044; Phys.Rev. D86 (2012) 071502 Important task for future holographs: construct a "magnetized bulk geometry" that is sufficiently QCD-like

	** *		
C 11		16.3	
ς,			

he ρ meson mass in a magnetic field 000 00000000000 Chiral transition in a magnetic field

Fin

Merci!