

The early stages of heavy ion collisions

Paris, 11th June 2013

Thomas EPELBAUM IPhT

OUTLINE

INTRODUCTION

- **2** THEORETICAL FRAMEWORK
- **3** FIXED VOLUME
- **4** EXPANDING VOLUME
- **6** GAUGE CASE
- **6** CONCLUSION

INTRODUCTION

THEORETICAL FRAMEWORK CGC JIMWLK Pacummation Schome

3 FIXED VOLUME

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

EXPANDING VOLUME

The model Isotropization Comparison with Hydro

GAUGE CASE

Spectrum of fluctuations

6 CONCLUSION

THE GENERAL PICTURE

THE GENERAL PICTURE

Out of thermal equilibrium: No Equation of state (EOS) Huge anisotropy f_k far from being thermal Close from thermal equilibrium: EOS Small anisotropy f_k close from being thermal

THE GENERAL PICTURE

Out of thermal equilibrium: No Equation of state (EOS) Huge anisotropy f_k far from being thermal Close from thermal equilibrium: EOS Small anisotropy f_k close from being thermal

WHY DO WE TRUST HYDRODYNAMICS IN THE FIRST PLACE?

[LUZUM, ROMATSCHKE (2008)]

THOMAS EPELBAUM

HOW TO STUDY THE TRANSITION THEN?

Dilute Regime

How to study the transition then?

HOW TO STUDY THE TRANSITION THEN?

THEORETICAL FRAMEWORK

- Color Glass Condensate (CGC)
- JIMWLK Equation
- Resummation Scheme

Objectives:

TRANSITIONS?

- No (EOS), big anisotropy \Rightarrow EOS, small anisotropy ?
- f_k far from Bose-Einstein $\Rightarrow f_k \sim \frac{1}{e^{\beta \cdot \omega_k} 1}$?
- Thermalization time?

HYDRO PREREQUISITES?

- Actual value of ϵ , P_T , P_L ?
- Actual value of the transport coefficients? ^η/_s...

INTRODUCTION

THEORETICAL FRAMEWORK CGC JIMWLK Resummation Scheme

3 FIXED VOLUME

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

EXPANDING VOLUME

The model Isotropization Comparison with Hydro

G GAUGE CASE

Spectrum of fluctuations

6 CONCLUSION

THEORETICAL FRAMEWORK CGC JIMWLK Resummation Scheme

THE COLOR GLASS CONDENSATE (CGC) [MCLERRAN, VENUGOPALAN (1994)]

Fast and slow partons are not considered in the same way

THE MAIN ASSUMPTIONS

• Fast partons $(k > \Lambda) \Rightarrow$ static color sources.

 $\boldsymbol{J}^{\mu}(\boldsymbol{x}^{+},\boldsymbol{x}^{-},\boldsymbol{x}_{\perp}) = \delta^{\mu+}\delta(\boldsymbol{x}^{-})\boldsymbol{\rho}^{1}(\boldsymbol{x}_{\perp}) + \delta^{\mu-}\delta(\boldsymbol{x}^{+})\boldsymbol{\rho}^{2}(\boldsymbol{x}_{\perp})$

- Small $x \Rightarrow$ Gluon saturation $\Rightarrow J \propto g^{-1}$.
- Probabilistic knowledge of the $\rho \Rightarrow W_{\Lambda}[\rho]$.
- Slow partons $\Rightarrow \mathcal{A}^{\mu}$.
- System boost-invariant $\Rightarrow \mathcal{A}^{\mu}$ rapidity independant.

THE COLOR GLASS CONDENSATE (CGC) [MCLERRAN, VENUGOPALAN (1994)]

Fast and slow partons are not considered in the same way

THE MAIN ASSUMPTIONS

• Fast partons $(k > \Lambda) \Rightarrow$ static color sources.

 $\boldsymbol{J}^{\mu}(\boldsymbol{x}^{+},\boldsymbol{x}^{-},\boldsymbol{x}_{\perp}) = \delta^{\mu+}\delta(\boldsymbol{x}^{-})\boldsymbol{\rho}^{1}(\boldsymbol{x}_{\perp}) + \delta^{\mu-}\delta(\boldsymbol{x}^{+})\boldsymbol{\rho}^{2}(\boldsymbol{x}_{\perp})$

- Small $x \Rightarrow$ Gluon saturation $\Rightarrow J \propto g^{-1}$.
- Probabilistic knowledge of the $\rho \Rightarrow W_{\Lambda}[\rho]$.
- Slow partons $\Rightarrow \mathcal{A}^{\mu}$.
- System boost-invariant $\Rightarrow \mathcal{A}^{\mu}$ rapidity independent.

Langrangian of theory reads

$$\mathcal{L}=-rac{1}{4}\mathcal{F}_{\mu
u}\mathcal{F}^{\mu
u}+J_{\mu}\mathcal{A}^{\mu}$$

THE COLOR GLASS CONDENSATE (CGC) [MCLERRAN, VENUGOPALAN (1994)]

Fast and slow partons are not considered in the same way

THE MAIN ASSUMPTIONS

• Fast partons $(k > \Lambda) \Rightarrow$ static color sources.

 $\boldsymbol{J}^{\mu}(\boldsymbol{x}^{+},\boldsymbol{x}^{-},\boldsymbol{x}_{\perp}) = \delta^{\mu+}\delta(\boldsymbol{x}^{-})\boldsymbol{\rho}^{1}(\boldsymbol{x}_{\perp}) + \delta^{\mu-}\delta(\boldsymbol{x}^{+})\boldsymbol{\rho}^{2}(\boldsymbol{x}_{\perp})$

- Small $x \Rightarrow$ Gluon saturation $\Rightarrow J \propto g^{-1}$.
- Probabilistic knowledge of the $\rho \Rightarrow W_{\Lambda}[\rho]$.
- Slow partons $\Rightarrow \mathcal{A}^{\mu}$.
- System boost-invariant $\Rightarrow \mathcal{A}^{\mu}$ rapidity independent.

Perturbative expansion of observables

$$T^{\mu\nu}[\rho^1,\rho^2] = \frac{1}{g^2} \left[c_0 + c_1 g^2 + c_2 g^4 ... \right]$$

THEORETICAL FRAMEWORK CGC JIMWLK Resummation Scheme

JIMWLK EQUATION [Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997)]

Schematical vision of the degrees of freedom

Theory Λ dependant $\rightarrow \log(\Lambda)$ appears at NLO

JIMWLK EQUATION [Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997)]

Schematical vision of the degrees of freedom

Theory Λ dependant $\rightarrow \log(\Lambda)$ appears at NLO

RENORMALIZATION GROUP EQUATION

$$\Lambda \frac{\partial}{\partial \Lambda} W_{\Lambda}[\rho] = \mathcal{H} W_{\Lambda}[\rho]$$

JIMWLK EQUATION [Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997)]

Schematical vision of the degrees of freedom

Theory Λ dependant $\rightarrow \log(\Lambda)$ appears at NLO

RENORMALIZATION GROUP EQUATION

$$\Lambda \frac{\partial}{\partial \Lambda} W_{\Lambda}[\rho] = \mathcal{H} W_{\Lambda}[\rho]$$

Issues:

- Very Anisotropic system at $\tau = 0^+$
- Secular divergences.

$$\mathbf{\epsilon} = E_T^2 + B_T^2 + E_L^2 + B_L^2$$
$$\mathbf{P}_T = E_L^2 + B_L^2$$
$$\mathbf{P}_L = E_T^2 + B_T^2 - E_L^2 - B_L^2$$

[LAPPI, MCLERRAN (2006)]

$$\boldsymbol{\epsilon} = \underbrace{E_T^2}_{0} + \underbrace{B_T^2}_{0} + E_L^2 + B_L^2$$
$$\boldsymbol{P}_T = E_L^2 + B_L^2$$
$$\boldsymbol{P}_L = \underbrace{E_T^2}_{0} + \underbrace{B_T^2}_{0} - E_L^2 - B_L^2$$

Initial $T^{\mu\nu}$ is $(\epsilon, \epsilon, \epsilon, -\epsilon)!$

[FUKUSHIMA, GELIS (2012)]

SECULAR DIVERGENCES

[ROMATSCHKE, VENUGOPALAN (2006)]

Fluctuations grows like $e^{\sqrt{\mu\tau}}!$

THOMAS EPELBAUM

SECULAR DIVERGENCES

[ROMATSCHKE, VENUGOPALAN (2006)]

when $ge^{\sqrt{\mu\tau}} \approx 1$, perturbative expansion breaks down!

THOMAS EPELBAUM

THEORETICAL FRAMEWORK CGC

JIMWLK Resummation Scheme

RESUMMATION FORMULA

RESUMMATION

$$T_{\text{resum}}^{\mu\nu} = e^{\hat{O}} T_{\text{LO}}^{\mu\nu}[\phi_0] = T_{\text{LO}}^{\mu\nu}[\phi_0] + T_{\text{NLO}}^{\mu\nu}[\phi_0] + \dots$$

RESUMMATION FORMULA

RESUMMATION

$$T_{\text{resum}}^{\mu\nu} = e^{\hat{O}} T_{\text{LO}}^{\mu\nu}[\phi_0] = T_{\text{LO}}^{\mu\nu}[\phi_0] + T_{\text{NLO}}^{\mu\nu}[\phi_0] + \dots$$

INITIAL VALUE PROBLEM

$$\Phi(t_0, \mathbf{x}) = \varphi_0(\mathbf{x}) + \operatorname{Re} \int_{\mathbf{k}} c_k \, a_k(t, \mathbf{x})$$
$$\Box \Phi(t, \mathbf{x}) + V'[\Phi(t, \mathbf{x})] = 0$$

• INTRODUCTION

THEORETICAL FRAMEWORK CGC JIMWLK Besummation Scheme

3 FIXED VOLUME

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

EXPANDING VOLUME

The model Isotropization Comparison with Hydro

G GAUGE CASE

Spectrum of fluctuations

6 CONCLUSION

FIXED VOLUME The Model

Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

SCALAR FIELD THEORY

LAGRANGIAN OF THE THEORY

$$\mathcal{L}(\phi) = \frac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi) - \underbrace{\frac{g^{2}}{4!}\phi^{4}}_{V(\phi)} + J\phi$$

WHY DO WE USE THIS MODEL?

- Scale invariance in 3 + 1 dimensions
- Parametric resonance
- A lot simpler!

INITIAL CONDITION

INITIAL CONDITION OF THE EOM

$$\phi_{\mathsf{i}}(t_0, \boldsymbol{x}) = \phi_0(\boldsymbol{x}) + \sum_{\boldsymbol{k}} \mathsf{Re}\left[c_{\boldsymbol{k}} \, \boldsymbol{a}_{\boldsymbol{k}}\right]$$

- All the Quantum information in the initial condition
- Purely classical evolution

INITIAL CONDITION

INITIAL CONDITION OF THE EOM

$$\phi_{\mathbf{i}}(t_0, \mathbf{x}) = \varphi_0(\mathbf{x}) + \sum_{\mathbf{k}} \operatorname{\mathsf{Re}}\left[c_k \, e^{i\omega_k t_0} \, \mathbf{v}_{\mathbf{k}}(\mathbf{x})\right]$$

$$\begin{split} \left[-\Delta + V''(\boldsymbol{\varphi_0})\right] v_{\boldsymbol{k}}(\boldsymbol{x}) &= \omega_{\boldsymbol{k}}^2 v_{\boldsymbol{k}}(\boldsymbol{x}) \\ \langle c_k \ c_l^* \rangle &= \delta(\boldsymbol{k} - \boldsymbol{l}) \end{split}$$

- All the Quantum information in the initial condition
- Purely classical evolution

3 FIXED VOLUME

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

$T_{LO}^{\mu\nu}$ [Dusling, TE, Gelis, Venugopalan (2010)]

 $T_{\rm LO}^{\mu
u}$

$T_{\rm NLO}^{\mu\nu}$: Secular divergences

 $T_{
m NLO}^{\mu
u}$

$T_{\text{RESUM}}^{\mu\nu}$: Pressure equilibration

 $T_{\rm resum}^{\mu
u}$

THOMAS EPELBAUM

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

"CLASSICAL" EQUILIBRIUM DISTRIBUTION

"CLASSICAL" EQUILIBRIUM DISTRIBUTION

- [BERGES, SEXTY(2012)]
- [MICHA, TKACHEV(2004)]

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

EVOLUTION OF THE CONDENSATE

$$f_{k} = rac{T}{\omega_{k} - \mu} - rac{1}{2} + n_{0}\delta(k)$$
 implies $rac{f_{0}}{V} = ext{cte}$

EVOLUTION OF THE CONDENSATE

• INTRODUCTION

THEORETICAL FRAMEWORK CGC JIMWLK Bosummation Schome

3 FIXED VOLUME

The Model Energy-Momentum Tensor Distribution Function Bose-Einstein Condensation

4 EXPANDING VOLUME

The model Isotropization Comparison with Hydro

GAUGE CASE Spectrum of fluctuation

6 CONCLUSION

EXPANDING VOLUME The model Isotropization Comparison with Hydro

SCALAR FIELD THEORY

SCALAR FIELD THEORY

$SCALAR \ FIELD \ THEORY$

INITIAL CONDITION

INITIAL CONDITION OF THE EOM

$$\phi_{\mathsf{i}}(\tau_0, \boldsymbol{x}_{\perp}, \boldsymbol{\eta}) = \boldsymbol{\varphi}_{\mathsf{0}}(\boldsymbol{x}_{\perp}) + \sum_{\boldsymbol{k}_{\perp}, \boldsymbol{\nu}} \mathsf{Re}\left[c_{\boldsymbol{\nu}\boldsymbol{k}_{\perp}} \, \boldsymbol{a}_{\boldsymbol{\nu}\boldsymbol{k}_{\perp}}(\tau, \boldsymbol{x}_{\perp}, \boldsymbol{\eta})\right]$$

- All the Quantum information in the initial condition
- Purely classical evolution

INITIAL CONDITION

INITIAL CONDITION OF THE EOM

$$\phi_{\mathsf{i}}(\tau_0, \mathbf{x}_{\perp}, \eta) = \phi_0(\mathbf{x}_{\perp}) + \sum_{\mathbf{k}_{\perp}, \mathbf{v}} \mathsf{Re}\left[c_{\mathbf{v}\mathbf{k}_{\perp}} H_{i\mathbf{v}}^{(2)}\left(\omega_{\mathbf{k}_{\perp}} \tau_0\right) e^{i\mathbf{v}\eta} v_{\mathbf{k}_{\perp}}(\mathbf{x}_{\perp})\right]$$

$$\begin{aligned} \left[-\Delta_{\perp} + V''(\boldsymbol{\varphi}_{0})\right] \boldsymbol{v}_{\boldsymbol{k}_{\perp}}(\boldsymbol{x}_{\perp}) &= \omega_{\boldsymbol{k}_{\perp}}^{2} \boldsymbol{v}_{\boldsymbol{k}_{\perp}}(\boldsymbol{x}_{\perp}) \\ \left\langle c_{\boldsymbol{\nu}\boldsymbol{k}_{\perp}} \ c_{\boldsymbol{\mu}\boldsymbol{l}_{\perp}}^{*} \right\rangle &= \delta(\boldsymbol{k}_{\perp} - \boldsymbol{l}_{\perp}) \delta(\boldsymbol{\nu} - \boldsymbol{\mu}) \end{aligned}$$

- All the Quantum information in the initial condition
- Purely classical evolution

EXPANDING VOLUME The model Isotropization Comparison with Hydro

$T_{\text{RESUM}}^{\mu\nu}$ [Dusling, TE, Gelis, Venugopalan (2012]

€ BEHAVIOUR

THOMAS EPELBAUM

 $\tau = 10 \quad [40 \times 40 \times 320]$

 $\tau = 50 \quad [40 \times 40 \times 320]$

 $\tau = 100 \quad [40 \times 40 \times 320]$

 $\tau = 300 \quad [40 \times 40 \times 320]$

 $\tau = 300 \quad [40 \times 40 \times 320]$

$$\epsilon \sim T^4 \sim \tau^{-4/3}$$

$$v \sim k_z \tau \sim \tau^{2/3}$$

THOMAS EPELBAUM

4 EXPANDING VOLUME

The model Isotropization Comparison with Hydro

COMPARISON WITH HYDRO: VISCOSITY

COMPARISON WITH HYDRO: VISCOSITY

see also [ASAKAWA, BASS, MULLER (2006-07)]

GAUGE CASE
 Spectrum of fluctuations

HOW TO CONSTRUCT THE SPECTRUM OF FLUCTUATIONS?

[TE,GELIS (in preparation)]

HOW TO CONSTRUCT THE SPECTRUM OF FLUCTUATIONS?

The whole evolution

initial $A^a_{\mu} \rightarrow \text{known}$

$$A^{\mu a}(\tau_0, \eta, \boldsymbol{x}_{\perp}) = \mathcal{A}^{\mu a}(\boldsymbol{x}_{\perp}) + \mathsf{Re} \sum_{\lambda, c} \int_{\boldsymbol{k}} c_{\boldsymbol{k}\lambda c} \, \boldsymbol{a}^a_{\mu \boldsymbol{k}\lambda c}(\tau_0, \eta, \boldsymbol{x}_{\perp})$$

Instabilities

Instabilities

 \downarrow

Decoherence

FIXED VOLUME

BOSE-EINSTEIN condensate

FIXED VOLUME

Instabilities [BERGES, BOGUSLAVSKI, SCHLICHTING (2012)]

Instabilities [BERGES, BOGUSLAVSKI, SCHLICHTING (2012)]

 \downarrow

Decoherence

Instabilities [BERGES, BOGUSLAVSKI, SCHLICHTING (2012)]

↓ Decoherence

Equation of state $\epsilon = 2P_T + P_L$

Instabilities [BERGES, BOGUSLAVSKI, SCHLICHTING (2012)] Decoherence Equation of state $\epsilon = 2P_T + P_L$ Isotropization

Thank You!

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: $\epsilon = 2P_L + P_T$

IDEAL HYDRO	
Isotropic system	
$T_{\text{ideal}}^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P(g^{\mu\nu} - u^{\mu} u^{\nu})$	

HYDRODYNAMICS: IDEAL AND VISCOUS

Equation of state: $\epsilon = 2P_L + P_T$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu} T^{\mu\nu} = 0$):

$$\partial_{\tau}\epsilon + \frac{\epsilon + P_L}{\tau} = 0 \rightarrow \partial_{\tau}\epsilon + \frac{4}{3}\frac{\epsilon}{\tau} = \frac{4}{3}\frac{\eta}{\tau^2}$$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu} T^{\mu\nu} = 0$):

$$\partial_{\tau} \epsilon + rac{\epsilon + P_L}{\tau} = 0 \ o \partial_{\tau} \epsilon + rac{4}{3} rac{\epsilon}{\tau} = rac{4}{3} rac{\eta}{\tau^2}$$

assuming $\eta=\frac{\eta_0}{\tau}$ and STEFAN-BOLTZMANN entropy $s\approx\varepsilon^{\frac{3}{4}}$

$$\vartheta_{\tau} \epsilon + \frac{4}{3} \frac{\epsilon}{\tau} = \frac{4}{3} \underbrace{\frac{\eta}{s}}_{\text{cte}} \frac{\epsilon^{\frac{3}{4}}}{\tau^2}$$

FIRST ORDER VISCOUS HYDRODYNAMICS

BJORKEN's Law (coming from $\partial_{\mu}T^{\mu\nu} = 0$):

$$\partial_{\tau} \epsilon + rac{\epsilon + P_L}{\tau} = 0 \ o \partial_{\tau} \epsilon + rac{4}{3} rac{\epsilon}{\tau} = rac{4}{3} rac{\eta}{\tau^2}$$

assuming $\eta = \frac{\eta_0}{\tau}$ and STEFAN-BOLTZMANN entropy $s \approx \varepsilon^{\frac{3}{4}}$

$$\vartheta_{\tau} \epsilon + \frac{4}{3} \frac{\epsilon}{\tau} = \frac{4}{3} \underbrace{\frac{\eta}{s}}_{\text{cte}} \frac{\epsilon^{\frac{3}{4}}}{\tau^2}$$

At a given time, knowing ϵ , P_T , P_L and assuming

- an EOS
- STEFAN-BOLTZMANN entropy
- $\eta = \frac{\eta_0}{\tau}$
- $\frac{\eta}{s} = cte$

gives a very simple hydro model.

NON-ZERO INITIAL MODE: $\varphi_0 \sim \cos k.x$

