Magnetic Field Quenchingof Quarkonium DecayPARIS 2013P.Filip11. June 2013Institute of Physics, SAV, Bratislava

- $n, p, \Delta, \Xi, \Sigma, \Lambda, \Omega$: mag. moment $\mu_u, \mu_d, \mu_s \rightarrow \mu_c = 2\mu_s/3$ $\mu_b = \mu_s/9$
- Vector-meson elmag. properties open-flavor: D*,B*,K* quarkonium J/Ψ(cc'), Υ(bb'), φ(ss')
- J/ Ψ and $\Upsilon_{\text{(bb')}}$ in magn. Field:
 - $\rightarrow\,$ Mixing of $\eta\,$ states with $\Psi\,,\Upsilon$
 - \rightarrow Quenching (of Ψ, Υ decays)
- φ & Conclusions

PHYSICAL REVIEW VOLUME 98, NUMBER 6 JUNE 15, 1955 Static Magnetic Field Quenching of the Orthopositronium Decay

V. W. HUGHES, S. MARDER, AND C. S. WU Columbia University, New York, New York

MAIN IDEA: ortho-Ps $(e^+e^-) \rightarrow J/\Psi = (cc')$

Magnetic moments of Baryons [Quarks]

	baryon	$m [{ m MeV}]$	quarks	μ_{exp}	δ_{μ}	μ	$\mathbf{OII}(\mathbf{C})$
	\mathcal{P}	938.3	du-u	2.79	0	2.79	$\frac{5U(0)}{(4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -$
	n	939.6	du-d	-1.91	0	-1.91	$u = (4\mu_a - \mu_b)/5$
$\mu^* = \mu_s$	Λ	1115	du-s	-0.613	0	0.613	
	Σ^+	1189	us-u	2.46	9%	2.67	$u^* = (A u - u_1)/3$
	Σ^{-}	1197	ds-d	-1.16	6%	-1.09	$u = (4\mu_a - \mu_b)/3$
	Ξ^o	1315	us-s	-1.25	13%	-1.43	$(4 \mu_{-} \mu_{1})/3$
	 [1]	1322	ds-s	-0.65	24%	-0.49	$t = (4\mu_a - \mu_b)/5$
	Ω^{-}	1672	SSS	-2.02	9%	-1.84	$\mu^* = \sum \mu_{\alpha}$
pin 3/2	Δ^{++}	1232	uuu	6.14	(9%)	5.56	$\mu^* - \sum \mu$
	Δ^+	1232	uud	2.7	(1%)	2.73	$v = \sum \mu_q$

Quark magnetic moments:

quark	Q	$\mu_q \ [\mu_N]$	m^* [MeV]
u	2/3	1.852	338
d	-1/3	-0.972	322
S	-1/3	-0.613	510

Agreement: $\hbar Q$ $\mu_q =$

constituent quark mass

Magnetic moments of *Vector mesons*:

Observe: spin 3/2 baryons			μ_{exp}	$\delta_{m \mu}$	μ
Ω^{-}	1672	SSS	-2.02	9%	-1.84
Δ^{++}	1232	uuu	6.14	(9%)	5.56
Δ^+	1232	uud	2.7	(1%)	2.73
	-				$\mu^* = \sum \mu_q$

Vector mesons: spin	1 (L=0)
charged open-flavor	$\mu^* = \sum \mu_q$

	ρ^{-}	K^{*+}	D^{*-}	D_{s}^{*-}	B^{*-}
$m[{ m MeV}]$	770	892	2010	2112	5325
q ar q	$dar{u}$	$u\bar{s}$	$dar{c}$	$sar{c}$	$b \bar{u}$
$\mu \left[\mu_N ight]$	-2.82	2.46	-1.37	-1.02	-1.92

	$\hbar Q$	m* _b =4730
μ_q –	$2m^*$	m* _c =1510

quark	Q	$\mu_q \ [\mu_N]$
u	2/3	1.852
d	-1/3	-0.972
s	-1/3	-0.613
с	2/3	0.404
b	-1/3	-0.066

 $-> \mu_{\rm b} = \mu_{\rm s} / 9$

Agrees with L-QCD: Lee et al. PoS (LATTICE 2007) 151. $-> \mu_c = -2\mu_s / 3$

Using Analogy with Muonium:

Open-flavor Vector mesons in [B]

	0 -						
Magnetic moment: charged open-flavor $J^P = 1^-$ mesons							
ρ^{-} K^{*+} D^{*-} D^{*-}_{s} B^{*-}							
m[MeV]	770	892	2010	2112	5325		
$qar{q}$	dū	us	$d\bar{c}$	sē	bū		
$\mu^*[\mu_N]$	-2.82	2.46	-1.37	-1.02	-1.92		

$$\mu^* = \sum \mu_q$$

$$\mu^* = \sum \mu_q$$

$$\mu_{B^*} = \mu_u + \mu_b = 1.9 \mu_N$$
Similar to μ_{neutron}

Open-flavor NEUTRAL mesons in [B]

$$|\Psi_{o}^{+}=rac{c_{lpha}+s_{lpha}}{\sqrt{2}}|\uparrow\downarrow
angle+rac{c_{lpha}-s_{lpha}}{\sqrt{2}}|\downarrow\uparrow
angle$$

[induced magnetic moment]

 $\langle \Psi_o^+ | \hat{\mu}_{c\bar{u}} | \Psi_o^+ \rangle = -(|\mu_c| + |\mu_u|) \sin(2\alpha)$

-> *Magnetic moment* $E = -\mu \cdot B$

-> Magnetic polarizability: induced magnetic moment is LARGER than STATIC μ_Do*

	B *0	B_s^{*o}	<i>K</i> ^{<i>o</i>*}	D^{o*}
m [MeV]	5325	5415	896	2007
$q\bar{q}$	$d\bar{b}$	sīb	ds	сū
$\mu^*[\mu_N]$	-0.9	-0.5	-0.3	-1.4

-> neutral Vector mesons:

Hidden flavour+Heavy = Quarkonium E [MeV] induced magnetic moment $\mu^* = -2\mu_c$ J/\ {1,0} 3150 $\frac{J/\psi \{1,+1\}}{J/\psi \{1,-1\}} \xrightarrow{\text{Tr}} \longrightarrow Magnetic moment = 0$ 3100 3050 (3097) $\mu_{\boldsymbol{\psi}} = (|\boldsymbol{\mu}_{\boldsymbol{c}}| - |\boldsymbol{\mu}_{\boldsymbol{c}}|) = 0$ 3000 **Polarizability** 2950 η_c Bottomonium in Magnetic Field 1×10^{15} 2×10^{15} 3×10^{15} 4×1015 B [Tesla] $\mu^* \rightarrow 2\mu_b$ E [MeV] $B \rightarrow large: \mu^* \rightarrow 2\mu_c$ (2980) Y {1,0} 9460 Υ {1,+1}, Υ {1,-1} $\mu_{\gamma} = 0$ 9440 $\Psi_p^- = \frac{c_\alpha - s_\alpha}{\sqrt{2}} |\uparrow\downarrow\rangle - \frac{c_\alpha + s_\alpha}{\sqrt{2}} |\downarrow\uparrow\rangle$ 1×10^{15} 2×10^{15} 4×10^{15} 3×10^{15} 5×10¹⁵ B[T] $QUARKONIUM \approx POSITRONIUM$ 9400 induced $\mu^* \rightarrow 2\mu_b$ - mixing of ortho \leftrightarrow para states η_b - quenching of ortho-Ps decay 9380 └

Predicted in (1934)

1955: Magnetic Quenching observed

PHYSICAL REVIEW VOLUME 98, NUMBER 6 JUNE 15, 1955 Static Magnetic Field Quenching of the Orthopositronium Decay

V. W. HUGHES, S. MARDER, AND C. S. WU Columbia University, New York, New York

ortho-Ps {1,0} (e^+e^-) -> 2 γ

In the presence of a magnetic field the $M=\pm 1$ magnetic substates of orthopositronium are still pure ortho-states, and will decay by the three quantum annihilation characteristic of orthopositronium decay. On the other hand, the M=0 state of orthopositronium has a small admixture of para-state due to the interaction with the magnetic field, and hence can decay either by three-quantum annihilation or by twoquantum annihilation. The relative probabilities of these two modes of decay depend of course, on the

- Mixing in [B]: $|M;1,0\rangle = c |M;\uparrow\downarrow\rangle + s |M;\downarrow\uparrow\rangle$ for B=0 $c^2 = s^2 = 1/2$ $|M;0,0\rangle = -s |M;\uparrow\downarrow\rangle + c |M;\downarrow\uparrow\rangle$ in [B] orto-Ps (J=1) and para-Ps (J=0) states get Mixed together $X=2|\mu_e|B/\Delta E_{hf}$
- 30% decays affected. J/ Ψ : B=10¹⁵T $s = \frac{1}{\sqrt{2}} \left[1 \frac{X}{\sqrt{1+X^2}} \right]^{\frac{1}{2}}, c = \frac{1}{\sqrt{2}} \left[1 + \frac{X}{\sqrt{1+X^2}} \right]^{\frac{1}{2}}.$

 $J/\Psi\{1,0\} \longleftarrow MIXING \longrightarrow \eta_{c}\{0,0\}$ $\mu_{c} = 0.4*\mu_{N} = \mu_{e}/4500 \quad X = 2|\mu_{e}|B/\Delta E_{hf} \quad \Delta E_{cc} = \Delta E_{ee}*1.4 \ 10^{11}$ 1) opens $\eta_{c} \longrightarrow e^{+}e^{-}$ channel (directly to dilepton) 2) opens $J/\Psi \longrightarrow \gamma\gamma$, gg channel (C-parity OK: $\gamma\gamma - \gamma^{*})$ virtual

(LHC)

3) $\Gamma_{J/\Psi}$ increases: shorter " $c\tau$ "

However:

- STATIC strong B needed: 10¹⁵ T
- RHIC: B=10¹⁴ T short time: 0.1fm J/Ψ : ct=2100fm η_c : ct=7fm Υ : ct=3400fm -> small effect

Magnetic Fields in Au+Au / Pb+Pb

PHYSICAL REVIEW C 85, 044907 (2012)

LHC: **B** \approx 4.10¹⁵**T** RHIC: **B** \approx 3.10¹⁴**T eB** \approx 3m_{π}²

PHYSICAL REVIEW C 82, 034904 (2010)

Kirill Tuchin

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA and

We study the synchrotron radiation of gluons by fast quarks in strong magnetic field produced by colliding relativistic heavy ions. We argue that due to high electric conductivity of plasma, the magnetic field is almost constant during the entire plasma lifetime. We calculate the energy loss due to synchrotron radiation of gluons by fast quarks. We find that the typical energy loss per unit length for a light quark at the Large Hadron Collider

-> Plasma keeps [B] fields: QGP is elmag. plasma

in QED plasma -> stabilization of Magnetic Fields

Quarkonium $(J/\Psi, \Upsilon)$ and <u>Positronium</u> mixing of states in magnetic field.

$$\Psi_{\Upsilon}^{+} = \cos(\alpha)\Upsilon + \sin(\alpha)\eta_{b}$$
(82%)
(2.4%) $e^{+}e^{-}$ ggg gg gg

$$\Psi_o^+ = \cos(\alpha)\Psi_o + \sin(\alpha)\Psi_p$$

$$\psi_{\gamma\gamma\gamma} \qquad \psi_{\gamma\gamma\gamma}$$
in field B = 1 Tesla

Charmonium $(J/\Psi \leftrightarrow \eta_c)$ mixing quantum state superposition in [B].

Decay width of J/Ψ and Υ (increasing) due $\rightarrow gg$ channel.

Fraction of **J/** Ψ and Υ decays via <u>original</u> channels (also e^+e^- , $\mu^+\mu^-$).

At B = 10¹⁵ Tesla

• 30% of $J/\psi \rightarrow e^+e^$ decays are quenched (missing from e^+e^- spectrum)

• 12% of $\Upsilon \rightarrow \mu^+ \mu^$ missing = quenched.

*Static magnetic field is assumed.

* Resulting e⁺e⁻ Peak(J/ Ψ) has its Mass shifted down + little **bump** (η_c).

φ: cτ = 46 fm/c η': cτ = 990 fm/cφ: Γ = 4.3 MeV η': Γ = 199 keV If mixing happens: $->\eta'$: starts decaying $e^+e^ ->\Gamma_{\eta'}$, increase (bump of e^+e^-)

1) Heavy Quarkonium <---> Positronium

- mixing of $\eta_c \leftrightarrow J/\Psi$ states in static $B = [5*10^{14} \text{ Tesla}]$ $\eta_h \leftrightarrow \Upsilon$ (2*10¹⁵ Tesla is required) \rightarrow reduced lifetime of J/Ψ , Υ (9460) (decay \rightarrow 2 gluons) \rightarrow missing $\mu^+\mu^-$, e^+e^- (J/ Ψ , Υ , max 30%): <u>QGP signal affected</u> $\rightarrow direct \quad \eta \rightarrow e^+e^- \text{ possible (small } e^+e^- \text{ bumps below } J/\Psi \text{ or } \Upsilon)$ 2) Sensitive to Magnetic field <u>duration</u> in HIC -> parton plasma gives longer [B] lifetime 3) Mixing of $\eta' \leftrightarrow \phi$, $\eta \leftrightarrow \omega$, $\pi^o \leftrightarrow \rho^o$ possible

THANK YOU

for Your

ATTENTION

*Neglected: <qq'>[B] (chiral condensates)