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Classical field theory

Scalar field

A classical field theory for a massless scalar field is given by

�φ+λφ3=j

The homogeneous equation can be solved by

Exact solution

φ=µ( 2
λ)

1
4 sn(p·x+θ,i) p2=µ2

√
λ
2

being sn an elliptic Jacobi function and µ and θ two constants. This
solution holds provided the given dispersion relation holds and
represents a free massive solution notwithstanding we started from a
massless theory.

Mass arises from the nonlinearities when λ is taken to be finite.



Classical field theory

Scalar field

When there is a current we ask for a solution in the limit λ→∞ as our
aim is to understand a strong coupling limit. So, we check a solution

φ=κ
∫
d4x ′G(x−x ′)j(x ′)+δφ

being δφ all higher order corrections.
One can prove that this is indeed so provided

Next-to-leading Order (NLO)

δφ=κ2λ
∫
d4x ′d4x ′′G(x−x ′)[G(x ′−x ′′)]3j(x ′)+O(j(x)3)

with the identification κ=µ, the same of the exact solution, and
�G(x−x ′)+λ[G(x−x ′)]3=µ−1δ4(x−x ′).
The correction δφ is known in literature and yields a sunrise diagram
in momenta. This needs a regularization.
Our aim is to compute the propagator G(x−x ′) to NLO.



Classical field theory

Scalar field

In order to solve the equation

�G(x−x ′)+λ[G(x−x ′)]3=µ−1δ4(x−x ′)

we can start from the d=1+0 case ∂2
t G0(t−t′)+λ[G0(t−t′)]3=µ2δ(t−t′).

It is straightforwardly obtained the Fourier transformed solution

G0(ω)=
∑∞

n=0(2n+1) π2

K2(i)

(−1)ne
−(n+ 1

2 )π

1+e−(2n+1)π
1

ω2−m2
n+iε

being mn=(2n+1) π
2K(i) (λ2 )

1
4 µ and K(i)=1.311028777... an elliptic integral.

We are able to recover the fully covariant propagator by boosting
from the rest reference frame obtaining finally

G(p)=
∑∞

n=0(2n+1) π2

K2(i)

(−1)ne
−(n+ 1

2 )π

1+e−(2n+1)π
1

p2−m2
n+iε

.



Classical field theory

Yang-Mills field

A classical field theory for the Yang-Mills field is given by

∂µ∂µAaν−(1− 1
ξ )∂ν (∂µAaµ)+gf abcAbµ(∂µAcν−∂νA

c
µ)+gf abc∂µ(AbµAcν )+g2f abc f cdeAbµAdµAeν=−jaν .

For the homogeneous equations, we want to study it in the formal
limit g →∞. We note that a class of exact solutions exists if we take
the potential Aa

µ just depending on time, after a proper selection of
the components [see Smilga (2001)]. These solutions are the
same of the scalar field when spatial coordinates are set to zero
(rest frame).

Differently from the scalar field, we cannot just boost away these
solutions to get a general solution to Yang-Mills equations due to
gauge symmetry. But we can try to find a set of similar solutions
with the proviso of a gauge choice.

This kind of solutions will permit us to prove that a set of them
exists supporting a trivial infrared fixed point to build up a
quantum field theory.



Classical field theory

Yang-Mills field

Exactly as in the case of the scalar field we assume the following
solution to our field equations

Aa
µ=κ

∫
d4x ′Dab

µν(x−x ′)jbν(x ′)+δAa
µ

Also in this case, apart from a possible correction, this boils down to
an expansion in powers of the currents as already guessed in the
’80 [R. T. Cahill and C. D. Roberts, Phys. Rev. D 32, 2419 (1985)].

This implies that the corresponding quantum theory, in a very strong
coupling limit, takes a Gaussian form and is trivial.

The crucial point, as already pointed out in the eighties [T. Goldman
and R. W. Haymaker, Phys. Rev. D 24, 724 (1981), T. Cahill and C.
D. Roberts (1985)], is the determination of the gluon propagator
in the low-energy limit.



Classical field theory

Yang-Mills field

The question to ask is: Does a set of classical solutions exist for
Yang-Mills equations supporting a trivial infrared fixed point for the
corresponding quantum theory?

The answer is yes! These solutions are instantons in the form
Aa
µ = ηaµφ with ηaµ a set of constants and φ a scalar field.

By direct substitution into Yang-Mills equations one recovers the
equation for φ that is

∂µ∂µφ− 1
N2−1

(
1− 1

ξ

)
(ηa·∂)2φ+Ng2φ3=−jφ

being jφ=ηaµj
µa and use has been made of the formula ηνaηaν=N2−1.

In the Landau gauge (Lorenz gauge classically) this equation is
exactly that of the scalar field given before and we get again a current
expansion.

So, a set of solutions of the Yang-Mills equations exists
supporting a trivial infrared fixed point. Our aim is to study the
theory in this case.



Classical field theory

Yang-Mills-Green function

The instanton solutions given above permit us to write down
immediately the propagator for the Yang-Mills equations in the
Landau gauge for SU(N) being exactly the same given for the scalar
field:

Gluon propagator in the infrared limit

∆ab
µν(p)=δab

(
ηµν−

pµpν

p2

)∑∞
n=0

Bn
p2−m2

n+iε
+O

(
1√
Ng

)

being

Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+ 1

2 )π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(
Ng2

2

) 1
4

Λ

Λ is an integration constant as µ for the scalar field.
This is the propagator of a massive field theory



Quantum field theory

Scalar field

We can formulate a quantum field theory for the scalar field starting
from the generating functional

Z [j]=
∫

[dφ] exp[i
∫
d4x( 1

2
(∂φ)2−λ

4
φ4+jφ)].

We can rescale the space-time variable as x →
√
λx and rewrite the

functional as

Z [j]=
∫

[dφ] exp[i 1
λ

∫
d4x( 1

2
(∂φ)2− 1

4
φ4+ 1

λ
jφ)].

Then we can seek for a solution series as φ=
∑∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.

The leading order correction can be computed solving the classical
equation

�φ0+φ3
0=j

that we already know how to manage. This is completely consistent
with our preceding formulation [M. Frasca, Phys. Rev. D 73, 027701
(2006)] but now all is fully covariant.



Quantum field theory

Scalar field

Using the approximation holding at strong coupling

φ0=µ
∫
d4xG(x−x ′)j(x ′)+...

it is not difficult to write the generating functional at the leading
order in a Gaussian form

Z0[j]=exp[ i
2

∫
d4x′d4x′′j(x′)G(x′−x′′)j(x′′)].

This conclusion is really important: It says that the scalar field theory
in d=3+1 is trivial in the infrared limit!

This functional describes a set of free particles with a mass spectrum

mn=(2n+1) π
2K(i) (λ2 )

1
4 µ

that are the poles of the propagator, the same of the classical theory.



Quantum field theory

Yang-Mills field

We can now take the form of the propagator given above, e.g. in the
Landau gauge, as

Dab
µν(p)=δab

(
ηµν−

pµpν

p2

)∑∞
n=0

Bn
p2−m2

n+iε
+O

(
1√
Ng

)
to do a formulation of Yang-Mills theory in the infrared limit.

Then, the next step is to use the approximation that holds in a strong
coupling limit

Aa
µ=Λ

∫
d4x ′Dab

µν(x−x ′)jbν(x ′)+O
(

1√
Ng

)
+O(j3)

and we note that, in this approximation, the ghost field just decouples
and becomes free and one finally has at the leading order

Z0[j]=N exp[ i
2

∫
d4x ′d4x ′′jaµ(x ′)Dab

µν(x ′−x ′′)jbν(x ′′)].

Yang-Mills theory has an infrared trivial fixed point in the limit of the
coupling going to infinity and we expect the running coupling to go to
zero lowering energies. So, the leading order propagator cannot
confine.



Quantum field theory

Yang-Mills field

Now, we can take a look at the ghost part of the action. We just
note that, for this particular form of the propagator, inserting our
approximation into the action produces an action for a free ghost field.

Indeed, we will have

Sg=−
∫
d4x

[
c̄a∂µ∂µca+O

(
1√
Ng

)
+O(j3)

]
A ghost propagator can be written down as

Gab(p)=− δab
p2+iε

+O
(

1√
Ng

)
.

Our conclusion is that, in a strong coupling expansion 1/
√
Ng, we get

the so called decoupling solution.



Quantum field theory

Yang-Mills field

A direct comparison of our results with numerical Dyson-Schwinger
equations gives the following:

that is strikingly good (ref. A. Aguilar, A. Natale, JHEP 0408, 057
(2004)).



Quantum field theory

QCD at infrared limit

When use is made of the trivial infrared fixed point, QCD action can
be written down quite easily.

Indeed, we will have for the gluon field

Sgf = 1
2

∫
d4x ′d4x ′′

[
jµa(x ′)Dab

µν(x ′−x ′′)jνb(x ′′)+O
(

1√
Ng

)
+O(j3)

]
and for the quark fields

Sq=
∑

q

∫
d4xq̄(x)

[
i /∂−mq−gγµ λ

a

2

∫
d4x ′Dab

µν(x−x ′)jνb(x ′)

−g2γµ λ
a

2

∫
d4x ′Dab

µν(x−x ′)
∑

q′ q̄
′(x ′)λ

b

2
γνq′(x ′)+O

(
1√
Ng

)
+O(j3)

]
q(x)

We recognize here an explicit Yukawa interaction and a
Nambu-Jona-Lasinio non-local term. Already at this stage we are able
to recognize that NJL is the proper low-energy limit for QCD.



Quantum field theory

QCD at infrared limit

Now we operate the Smilga’s choice ηaµη
b
ν = δab(ηµν − pµpν/p2) for

the Landau gauge.

We are left with the infrared limit QCD using conservation of currents

Sgf = 1
2

∫
d4x ′d4x ′′

[
jaµ(x ′)∆(x ′−x ′′)jµa(x ′′)+O

(
1√
Ng

)
+O(j3)

]
and for the quark fields

Sq=
∑

q

∫
d4xq̄(x)

[
i /∂−mq−gγµ λ

a

2

∫
d4x ′∆(x−x ′)jaµ(x ′)

−g2γµ λ
a

2

∫
d4x ′∆(x−x ′)

∑
q′ q̄
′(x ′)λ

a

2
γµq′(x ′)+O

(
1√
Ng

)
+O(j3)

]
q(x)

We want to give explicitly the contributions from gluon resonances.
In order to do this, we introduce the bosonic currents jaµ(x) = ηaµj(x)
with the current j(x) that of the gluonic excitations.



Quantum field theory

QCD at infrared limit

Using the relation ηaµη
µa=3(N2

c−1) we get in the end

Sgf = 3
2

(N2
c−1)

∫
d4x ′d4x ′′

[
j(x ′)∆(x ′−x ′′)j(x ′′)+O

(
1√
Ng

)
+O(j3)

]
and for the quark fields

Sq=
∑

q

∫
d4xq̄(x)

[
i /∂−mq−gηaµγµ λ

a

2

∫
d4x ′∆(x−x ′)j(x ′)

−g2γµ λ
a

2

∫
d4x ′∆(x−x ′)

∑
q′ q̄
′(x ′)λ

a

2
γµq′(x ′)+O

(
1√
Ng

)
+O(j3)

]
q(x)

Now, we recognize that the propagator is just a sum of Yukawa
propagators weighted by exponential damping terms. So, we introduce
the σ field and truncate at the first excitation. This is a somewhat
rough approximation but will be helpful in the following analysis.

This means the we can write the bosonic currents contribution as
coming from a boson field and written down as
σ(x)=

√
3(N2

c−1)/B0

∫
d4x ′∆(x−x ′)j(x ′).



Quantum field theory

QCD at infrared limit

So, low-energy QCD yields a NJL model as given in [M. Frasca, PRC
84, 055208 (2011)]

Sσ=
∫
d4x[ 1

2
(∂σ)2− 1

2
m2

0σ
2]

and for the quark fields

Sq=
∑

q

∫
d4xq̄(x)

[
i /∂−mq−g

√
B0

3(N2
c−1)

ηaµγ
µ λa

2
σ(x)

−g2γµ λ
a

2

∫
d4x ′∆(x−x ′)

∑
q′ q̄
′(x ′)λ

a

2
γµq′(x ′)+O

(
1√
Ng

)
+O(j3)

]
q(x)

Now, we obtain directly from QCD (2G(0) = G is the standard NJL
coupling)

G(p)=− 1
2
g2
∑∞

n=0
Bn

p2−(2n+1)2(π/2K(i))2σ+iε
=G

2
C(p)

with C(0) = 1 fixing in this way the value of G using the gluon
propagator. This yields an almost perfect agreement with the case of
an instanton liquid (see Ref. in this page).



Quantum field theory

Wilson loop

Low-energy QCD, being at infrared fixed point, is not confining (NJL
model is not confining). This agrees with the analysis given in [P.
González, V. Mathieu, and V. Vento, PRD 84, 114008 (2011)] for the
decoupling solution of the propagators in the Landau gauge. Indeed,
one has

W [C]=exp

[
− g2

2
C2(R)

∫ d4p

(2π)4 ∆(p2)
(
ηµν−

pµpν

p2

) ∮
C dx

µ
∮
C dy

νe−ip(x−y)

]
.

For the decoupling solution (at infrared fixed point) one has

W [C]≈exp

[
−T g2

2
C2(R)

∫ d3p

(2π)3 ∆(p,0)e−ip·x
]

=exp[−TVYM(r)]

The potential is (assuming a fixed point value for g in QCD)

VYM(r)=−C2(R) g2

2

∑∞
n=0(2n+1) π2

K2(i)

(−1)ne
−(n+ 1

2 )π

1+e−(2n+1)π
e−mnr

r

and due to massive excitations one gets a screened but not confining
potential. This agrees very well with González&al.



Quantum field theory

Wilson loop

The leading order of the gluon propagator, as also emerging from
lattice computations, is insufficient to give reason for confinement.
We need to compute the sunrise diagram going to NLO:

∆R(p2)−∆(p2)=λ 1
µ2 ∆(p2)

∫ d4p1
(2π)4

d4p2
(2π)4

∑
n1,n2,n3

Bn1
p2

1
−m2

n1

Bn2
p2

2
−m2

n2

Bn3
(p−p1−p2)2−m2

n3

.

This integral is well-known [Caffo&al. Nuovo Cim. A 111, 365
(1998)] At small momenta will yield

Field renormalization factor

Zφ(p2)=1− 1

λ
1
2

27
π8 + 1

λ
3.3·48
π8

(
1+ 3

16
p2

µ2

)
+O

(
λ−

3
2

)
.

This implies for the gluon propagator (λ=C2(R)g2, Z0=Zφ(0))

Dab
µν(p2)=δab

(
ηµν−

pµpν

p2

)∑∞
n=0

Z−1
0

Bn

p2+ 1
λ

3.3·9
π8

p4

µ2 +m2
n(p2)

+O

(
λ−

3
2

)



Quantum field theory

Wilson loop

We note that

m2
n(p2)=m2

n(0)

[
Z0+ 1

λ
3.3·9
π8

p2

µ2 +O

(
λ−

3
2

)]

that provides very good agreement with the scenario by Dudal&al.
obtained by postulating condensates. Here we have an existence
proof. Masses run with momenta.

This correction provides the needed p4 Gribov contribution to the
propagator to get a linear term in the potential.

Now, from Wilson loop, we have to evaluate

VYM(r)=− g2

2
C2(R)

∫ d3p

(2π)3 ∆R(p,0)e−ip·x.

being
D
′ab
µν (p2)=δab

(
ηµν−

pµpν

p2

)
∆R(p2)

the renormalized propagator.



Quantum field theory

Interquark potential

So,
VYM(r)=− g2

8πr
C2(R)Z−1

0

∑∞
n=0 Bn

∫∞
−∞ dp p sin(pr)

p2+ 1
λ

3.3·9
π8

p4

µ2 +m2
n(p2)

.

We rewrite it as

VYM(r)≈− g2

8πr
C2(R)Z−1

0
π8λµ2

3.3·9
∫∞
−∞ dp p sin(pr)

(p2+κ2)2−κ4

being κ2=π8λµ2

3.3·9 , neglecting running masses that go like
√
λ.

Finally, for κr�1, this yields the well-known linear contribution:

VYM(r)≈− g2

8r
C2(R)e

− κ√
2
r

sinh
(
κ√

2
r
)
≈− g2

8π
C2(R)

[
π√

2
κ−π

2
κ2r+O((κr)2)

]
.



Quantum field theory

Interquark potential

From the given potential it is not difficult to evaluate the string
tension, similarly to what is done in d=2+1 for pure Yang-Mills
theory.

The linear rising term gives

σ=π
4

g2

4π
C2(R)κ2.

Remembering that λ=d(R)g2,

String tension for SU(N) in d=3+1:

√
σ ≈ π

9
2

11
g 2

√
C2(R)d(R)

4π
µ

that compares really well with the case in d=2+1 [D. Karabali,
V. P. Nair and A. Yelnikov, Nucl. Phys. B 824, 387 (2010)] being
√
σd=2+1≈g2

√
C2(R)d(R)

4π
.



Conclusions

Conclusions

We provided a strong coupling expansion both for classical and
quantum field theory for scalar field and QCD.

A low-energy limit of QCD is so obtained that reduces to a
non-local Nambu-Jona-Lasinio model with all the parameters and
the form factor properly fixed.

We showed how the leading order for the gluon propagator is not
confining and we need to compute Next-to-Leading Order
approximation given by a sunrise diagram.

Next-to-Leading Order correction provides the p4 Gribov
contribution granting a confining potential.

String tension can be computed and appears to be consistent with
expectations from d=2+1 case.

Helpful discussions with Marco Ruggieri are gratefully acknowl-
edged.



Conclusions

Thanks a lot for your attention!
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