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Motivation: phase transition in RHIC at finite T and density

Confinement and asymptotic freedom are difficult questions analytically ; can be studied in simulation

(Lattice QCD). Besides finite density increases the difficulty (no lattice result at large density).

• QCD at high density in the non-perturbative sector⇒ effective model.

• Phase transition study: need chiral symmetry + confinement (associated to Z3 symmetry)⇒ we use

the PNJL model (relation between chiral restoration and deconfinement accessible).

• Only with two flavors: indeed we want to shed light on internal mecanisms occuring at high density

(driven by the Fermi momentum) so we do not want to add other effects yet (strangeness, vector,

etc.) that could hide those.

• We will study mean field predictions and then use mesonic correlations as a probe of the phase

diagram.

The PNJL model is surprinsingly good considering it is “easy” to treat and to understand ; it gives a

good phenomenological picture where it can be compared with LQCD, even if it only implements a

statistical confinement.

⇒ Understand physically some mechanisms by varying parameters one by one (e.g. changing the

coupling between the chiral sector and the deconfinement one ; changing the pure gauge deconfinement

temperature, study the influence of the ’t Hooft coupling constant on the CEP, etc.).
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Pure gauge sector: the effective potential U(Φ, Φ̄; T )

Z3 (“confinement symmetry”) spontaneously broken with temperature. To reproduce this

phenomenologically, one can choose a potential (' static gluon pressure term) with this form:

T < T0, Color “confinement”,

〈Φ〉 = 0 −→ no Z3 breaking
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T > T0, Color “deconfinement”,

〈Φ〉 6= 0 −→ Z3 broken
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The PNJL model (Polyakov – Nambu – Jona-Lasinio) in a nutshell

LPNJL = q̄ (iγµD
µ − m̂0) q +G1

[
(q̄q)

2
+ (q̄iγ5~τq)

2
](

'
)

−U
(
Φ[A], Φ̄[A]; T

) (
+

)
+µq̄γ0q

NJL parameters choosen to fit hadronic input in vaccuum

Polyakov loop in imaginary time and Polyakov gauge: L (~x) = P exp

[
i

∫ β

0
dx4A4 (~x, x4)

]
⇒

Effective field Φ = 1
Nc
TrC L ; L transports the field Aµ from the point in space-time (~x, 0) to (~x, β)⇒ Φ = 0:

confinement ; Φ = 1: free propagation (deconfinement)

Effective potential U(Φ, Φ̄; T ) (gluon pressure):

U
(
Φ, Φ̄;T

)
T 4

= −
b2 (T )

2
Φ̄Φ−

b3

6

(
Φ

3
+ Φ̄

3
)

+
b4

4

(
Φ̄Φ
)2

and

b2 (T ) = a0 + a1

(
T0
T

)
+ a2

(
T0
T

)2
+ a3

(
T0
T

)3

(T0 = 270 MeV)

In the following U
(
Φ[A], Φ̄[A]; T

)
can also be choosen in its

logarithmic form.
C. Ratti, M. Thaler, W.Weise, hep-ph/0604025 :

lattice: O. Kaczmarek, F. Karsch, P. Petreczky,

F. Zantow, Phys. Lett. B 543, 41 (2002).
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Mean field grand potential

Grand potential at finite temperature and density: with Ep =
√
~p 2 +m2

Ω = U
(
Φ, Φ̄, T

)
+

(m−m0)
2

2G1

− 6Nf

∫
Λ

d3p

(2π)
3
Ep −

2Nf T

∫
ΛT

d3p

(2π)
3

{
Trc ln

[
1 + Le

−(Ep−µ)/T
]

+ Trc ln
[
1 + L

†
e
−(Ep+µ)/T

]}
The propagation of the quarks into the medium filled with (background) gluon fields with pressure U
leads to statistical suppression of 1- and 2-quarks propagation (statistical confinement) :

Trc ln
[
1 + Le

−(Ep−µ)/T
]

= ln
[
1 + 3Φe

−β(Ep−µ) + 3Φ̄e
−2β(Ep−µ) + e

−3β(Ep−µ)
]
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Cutoff of the model:

The model needs a cutoff in vaccuum:

∫ Λ

0

with Λ a

typical hadronic scale (Λ ' 600 MeV).

In medium (thermal) part of the model: Boltzmann

factors are enough to regularize the integral but ...

pressure with finite and infinite Λ: lack of high

momentum quarks to saturate the pressure (Stephan-

Boltzmann limit) if ΛT = Λ.
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Determination of the first order transition

After solving the mean field equations (minimizing Ω):
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We suppose the first order transition happens when the grand potentials are equal in the high and low

mass (meta)stable phase.
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different chemical potential
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Mean field mass for
different chemical potential

At low µ
there is a crossover chiral restoration

At higher chemical potential
there is stable, metastable and unstable solutions (1st order phase transition).

NPQCD 2013 High density phase of the PNJL model



8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.05  0.1  0.15  0.2  0.25  0.3

Φ

T (GeV)

ΛT = ∞, Log1 : Courbe iso-µ (GeV), T (GeV) variable (MFEHRmufix)

µ (GeV) = 0
µ (GeV) = 0.06
µ (GeV) = 0.12
µ (GeV) = 0.18

µ (GeV) = 0.24
µ (GeV) = 0.3

µ (GeV) = 0.31
µ (GeV) = 0.32

µ (GeV) = 0.33
µ (GeV) = 0.34
µ (GeV) = 0.35
µ (GeV) = 0.36

µ (GeV) = 0.37
µ (GeV) = 0.38
µ (GeV) = 0.39
µ (GeV) = 0.4

Critical line
Metastable line

8

8

Mean field Polyakov loop for
different chemical potential
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Mean field Polyakov loop for
different chemical potential

For the deconfinement transition (described by the Polyakov loop)
only a crossover transition
Not very much affected by the first order chiral transition.

Small influence of m on Φ
Indeed as we know from theory, the kinetic term breaks explicitly Z3 and large mass
(< mq̄q >�< i∂/q >) restore it.
⇒ Φ ' independant of m if small (� ΛQCD) ; the pattern of the Z3 breaking is
unchanged.

The transition is considerably weakened (less and less sharp)
when density increases ; it becomes difficult to even “define” a crossover:
it is due to the Fermi momentum that induces a strong explicit breaking of Z3.
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Susceptibilities at different chemical potential
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Left: Chiral susceptibilities χm =
∂m

∂T
; Right: Deconfinement susceptibilities χΦ =

∂Φ

∂T

Crossover region (where most of the transition occurs) ' delimitated by the inflexion points of χ ;

depending on the parameters (µ here) a rich structure appears (e.g. a maximum in χm, two max in χϕ)

⇒ modification of the cross section.
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Mean field phase diagram: chiral restoration
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Mean field phase diagram:
deconfinement

NPQCD 2013 High density phase of the PNJL model



1313

13

Phase diagram
Color map: pressure difference

∆P ≡
P (T, µ)− P (T = 0, µ)

PSB(T, µ)− PSB(T = 0, µ)

NPQCD 2013 High density phase of the PNJL model



14

14

Chiral and deconfinement crossover entanglement
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Left: Black: order parameters < q̄q > (chiral symmetry) and Φ (deconfinement) ; Red: deconfinement

thermal susceptibility χΦ = ∂Φ
∂T ; green: susceptibility with mfix (i.e. solving the mean field equations

with m fixed to a given value)⇒ allow to remove the deconfinement and chiral transition entanglement.

Right: Φ-susceptibility for different values of µ. The solid lines represent χΦ calculated with the Hartree

mass, the dashed lines χΦ calculated with the constant mass (mean value between the mass at

(T = 0, µ) and m0). From the green line, we cannot see the dashed lines because χΦ is the same if

we take a constant mass or the Hartree mass.

The small influence of the mass on Φ allows to desentangle chiral and deconfinement transition.

High density: does not look like a crossover.
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Full phase diagram
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⇒ decoupling of deconfinement and chiral restoration at the Critical End Point (CEP).

In this model, 3 phases: chirally broken and “confined” ; chirally broken and “deconfined” ; chirally

restored and “deconfined” (QGP)

⇒ tendancy to deconfinement at high density (even at vanishing temperature !), an effect driven by the

Fermi motion of quarks that broke Z3.

Note that the model is push above its limit (because of the lack of dynamical gluonic degrees of

freedom): we take this results as an indication that it may be the same in QCD.

Relevance for phenomenology of heavy ion experimental program at high density ?

As a first step, we will take a look on a particular QGP probe, the mesonic correlations.
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The Casher argument a µ = 0

Casher: deconfinement induces a

breaking of the chiral symmetry.

At zero density the only parameter of

the PNJL model with some freedom is

T0. Changing it changes the order of the

occurence of deconfinement and chiral

restoration as T increases:

⇒ it does not seem to be a very strong

coupling between the two ; the almost

perfect coincidence seen in some model

calculation is probably not related to

a microscopic mechanism, even if as

seen before (or here) when chiral and

deconfinement transition are close, the

deconfinement is somehow hidden by the

chiral one but after a few MeV the two

gets desantangled.
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On this picture, one sees that the entanglement does not survive long when one forces with T0 the two

transitions to be at different temperature.
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Spectral function Meson→ qq̄ as a probe of the phase diagram

Calculation of the mesonic polarisation with the ring approximation (the spectral function describes only

M → qq̄): we choose to remove high momentum quarks (ΛT = Λ) from the quark loops as a

reminder of the QCD asymptotic freedom (high momentum quarks have a weak, negligible interaction

for what concern formation of bound states or resonances). Anyway, there is only a small quantitative

difference and it is “better” for sum rules (e.g. the V-A sum rule in the vector sector).

No confinement in the PNJL model (only an effect on the thermal bath via the suppression of 1- and 2-

quarks Boltzmann factor when Φ ' 0): in PNJL “deconfinement” means Φ→ 1.
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Case I:  ® 
Consequence: the (mean field) quark density is

vanishing in the vaccuum ; saturates SB limit

in QGP ⇒ deconfinement can be read in quark

abundances.

Hence: the M → qq̄ spectral function will be a

tool to study the consequences beyond the mean

field of the deconfinement.
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Survival of resonant state after the chiral restoration ?

Qualitative picture
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Survival of resonant state after the chiral restoration ?
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The qualitative conclusions

The deconfinement crossover induces very different behavior of the spectral function depending on the

density:

• at low density (below the CEP) vanishing of the spectral functions very close to the chiral restoration

⇒ “fast” deconfinement that coincides with chiral crossover

• above CEP: vanishing of the spectral function “far” from the chiral transition⇒ “slow” deconfinement

that ends well after the 1st order transition.

In the second case: possibility of the existence of a phase where chiral symmetry is restored but the

mesons are still confined (no definite answer because of the lack of confinement of the PNJL model but

an indication that it may be possible in full QCD).
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Quantitative picture

Criterion used to quantify what we can “see” qualitatively: standard deviation of the spectral function.

It presents (at moderate density) two plateaux at low temperature (narrow resonance) and high

temperature (spectral function ' ImΠ0 and the standard deviation saturate).

Left: standard deviation as a function of T for different µ.

Right: σ spectral function for T = 50 MeV and two different µ corresponding to the crossing point of

the standard deviation: ⇒ it is not the absolute value that is used as a criterion to probe the possibility

of resonant state, but the relative value with respect to the plateaux.
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Comparison with mean field

Left: ending points of the plateaux in the (T, µ) plane.

Right: superposition of the mean field phase diagram and the behavior of the mesons.

⇒ confirms the coherence of the model: the spectral function (the strength) picture follows the order

parameter Φ, not the condensate.

NPQCD 2013 High density phase of the PNJL model



23

23

As a conclusion

Does this CCS phase really exists (a hadronic spectrum chirally symmetrical composed of true bound

state) ? Probably no (many things omitted here, diquarks for example, lack of true confinement, etc.).

But at least, this calculation indicates that the phenomenology of the phase transition at high density in

future experiment could be quite different from the one at zero density:

• obviously because of the 1st order chiral transition

• but also because of this very slow breaking of Z3 (indicating a “slow” deconfinement)

NPQCD 2013 High density phase of the PNJL model
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Backup
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The center symmetry of QCD at finite temperature

Finite temperature T : Equilibrium canonical ensemble =⇒ x0 → ix4 (imaginary time or euclidean

metric: quantum fluctuations↔ thermal bath), x4 ∈ [0, β] ; β = 1/T

The Euclidean QCD Lagrangian is invariant under a gauge transformation h:

Aµ −→ hAµ = hAµh
† − ih∂µh† and q −→ hq = hq with Aµ a gauge field, q a quark field.

From boundary condition in imaginary time:

A(~x, x4 + β) = A(~x, x4) and q(~x, x4 + β) = −q(~x, x4).

Hence the constraints:
hA(~x, x4 + β) = hA(~x, x4) and hq(~x, x4 + β) = − hq(~x, x4).

Searching a solution of the constraints equations with

h(~x, x4 + β) = fh(~x, x4)

where f ∈ center of SUc(3) ≡ Z3 = {znI, n = 1, 2, 3} (zn = e2inπ/3).

Since [f,Aµ] = 0 by definition, it follows:
hA(~x, x4 + β) = hA(~x, x4) (satisfies the constraint)

and hq(~x, x4 + β) = −z hq(~x, x4) (breaking of Z3).

Z3 is explicitly broken in the presence of light (dynamic) quarks, but remains an approximate symmetry

useful to consider the deconfinement phase transition ; when quark mass→∞ the QCD Lagrangian is

invariant under Z3 because the mass term� kinetic term.
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The Polyakov loop: an order parameter for deconfinement

Partition function of QCD in the presence of a static quark Q at position ~R:

ZQ =

∫
DAµe

−SE(pure gauge) × Trc e
ig
∫ β
0 dx4A4(~R,x4)

.

One define the Polyakov loop: L(~R) = Trc e
ig
∫ β
0 dx4A4(~R,x4)

;

it is a color singlet with a Z3 charge (L→ zL).

Its thermal expectation value is the so-called Polyakov loop:

Φ(~R) =
1

Nc

< L(~R) >β=
ZQ

Zpureglue
= e

−βFQ(~R)
.

FQ is the free energy associated to a static quark (test charge) added to the pure glue.

Two limit cases:

• F → +∞ i.e. there is a confinement of color charges: Φ→ 0

• F → 0 i.e. asymptotic freedom: Φ→ 1

As a consequence, Φ can be seen as an order parameter for the confined (Φ ' 0) - deconfined (Φ ' 1)

phase transition.

It is easy to anticipate that at high temperature, Φ→ 1 (from the definition of L(~R), T → +∞,

β → 0 hence the integral and L(~R) ' 1).
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Effect of the cutoff

Consequence on the Polyakov loop: With ΛT = +∞: “faster” (stronger) crossover ; Also at

high density, the deconfinement crossover is larger (“slower” transition) because of the Fermi motion

that acts as a large crossover field.

µ = 0 µ = 0.37 GeV (NB: small jump in Φ)
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Link between chiral restoration and deconfinement

Hence one can solve the mean field equation for Φ for any mass (between m0 and mHartree) without

significant changes ; at the contrary, it is wrong for m or the condensate. It depends strongly on Φ:

when Φ→ 1 it generates more quarks and more screening that breaks the condensate hence a faster

chiral restoration.

But it does not mean that chiral symmetry restoration cannot occurs before deconfinement at finite

density.

A simple argument (Casher) states that chiral restoration cannot happen within a confined phase. As we

have seen it is not the case at high density. At zero density the Casher argument implies that with

increasing T first there is deconfinement then chiral symmetry restoration (or at most, a coincidence).

The Fermi motion plays an important role here: if µ > 0 (µ > µCEP ) it breaks Z3 (it is no more a very

good symmetry of the system)⇒ slow increases of Φ that does not influence < q̄q > a lot anymore.

On the other hand µ < q†q > is enough to restore the chiral symmetry.

Hence the two transition seems to decouple at high density and the argument is not holding.
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