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Motivation

• TeV-scale gravity scenarios ⇒ transplanckian scattering at
high-energy colliders

• S-matrix computable by semiclassical methods (eikonal) for large
√
s

and large impact parameters

⇓
insensitive to UV completion of gravity?

⇒ explore physical effects of UV fixed point on eikonal S matrix
in Weinberg’s asymptotic safety hypothesis



OUTLINE

I. Introduction: low scale gravity and high energy scattering

II. Eikonal S matrix in fixed point gravity

III. Towards phenomenological applications



I. Introduction: Transplanckian Scattering

♠ Scattering at center-of-mass energy > quantum gravity scale
[’t Hooft 1987; Muzinich, Soldate 1988; Amati, Ciafaloni, Veneziano 1987; Gross, Mende 1988]

• elastic small-angle scattering for b ≫ RSchwarzs.

by (semiclassical) eikonal interactions

• strong inelastic corrections for b ∼ RSchwarzs.

=⇒ black hole formation and evaporation?

♠ Large extra dimension scenarios of TeV-scale gravity

[Antoniadis, Arkani-Hamed, Dimopoulos, Dvali 1998]

=⇒ transplanckian scattering at colliders?
[Giddings, Thomas 2002; Giudice, Rattazzi, Wells 2002]



LOW-SCALE QUANTUM GRAVITY

• SM in 4 dimensions; gravity in (compactified) n extra dimensions of size RC

M2
P ∼ (RCMD)nM2

D

• effective theory couples massive KK gravitons to SM fields

[Giudice, Rattazzi, Wells 1999; Han, Lykken, Zhang 1999]
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• Bounds on n and MD from collider searches

e.g. pp → dijets @ LHC

[Franceschini, Giardino, Giudice, Lodone & Strumia, arXiv:1101.4919 [hep-ph]]

⇒ MD ∼ multi-TeV



EIKONAL S-MATRIX FOR |t|/s ≪ 1,
√
s ≫ MD

exchange+  +  
multi−graviton

S(b, s) = exp(iχ) , χ(b, s) =
1

s

∫

d2q eiq·b ABorn

• ABorn UV-divergent for n ≥ 2 ⇒ UV regulator (DR or EFT)

• amplitude rises with t (after regularization)

⇒ eikonal phase χ(b, s) = (bc/b)
n

, bc ∼ M−1
D

(

s/M2
D

)1/n

• arguably, still insensitive to UV gravity completion as long as

eikonal integral =

∫

d2b e−iq·b
(

eiχ − 1
)

is dominated by long-distance saddle point bs



JET PRODUCTION BY GRAVITATIONAL INTERACTIONS
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b−1 ≫ ΛQCD ∼ 1 fm−1

dσ =
∑

a,b

∫

dx1 dx2 fa(x1, µ) dσeik fb(x2, µ) +O(1/q2)

• large dijet invariant masses

• factorization scale µ ∼ b−1
s

• rising parton densities at x → 0 probe lower end of
√
s spectrum in dσeik



HIGH-ENERGY GRAVITATIONAL SCATTERING

See “phase diagram” in S. Giddings, Erice lectures, arXiv:1105.2036.
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• strong gravity effects with decreasing b at fixed
√
s

• growth of parton density at x → 0 ⇒ “slide-down” in
√
s

−→ onset of b ∼ MD effects in planckian region?



II. Asymptotic safety scenario

[Weinberg 1979]

S = G−1
N

∫ √
g(−R + 2Λ) perturbatively nonrenormalizable [GN ] = 2−D

GN → G(µ) = GNZ−1(µ) , g(µ) = G(µ) µD−2

• Weinberg’s scenario: G(µ) ∼ µ2−D at high energies

g → fixed point g∗

µ → ∞ : G(µ) → g∗µ
2−D ≪ GN [Litim 2004; 2011]



RUNNING GRAVITATIONAL COUPLING

♣ cross-over scale ΛT between classical scaling and fixed-point scaling

[Gerwick, Litim, Plehn 2011]



RUNNING COUPLINGS

L ∼ compactification radius

M∗ ∼ D-dimensional gravity scale

[Fischer, Litim 2005]

[Alkofer, Litim, Schaefer 2013]



III. Eikonal scattering in fixed-point gravity

exchange
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• Born amplitude falls off with t

• eikonal phase finite at small b

⇒ cross-over scale for b ∝ Λ−1

T

χ(b, s) = (bc/b)
n at large b (semiclassical)

χ(b, s) = χ(0, s) +O(b2 ln b) for b ≤ bT

• bT = bc[χ(0)]
−1/n new length scale



THE PHASE χ(b, s)

♦ diverges for b → 0 in the effective theory (dashed lines)

♦ finite for b → 0 in the fixed-point case (solid lines)



THE PHASE χ(b, s)

• Finite brane width would also soften the small-b behavior

but would still leave a logarithmic divergence



EIKONAL INTEGRAL BY STATIONARY PHASE

Meik(s, q) = 2is

∫

d2b e−iq·b [1− S(b, s)] , S(b, s) = exp(iχ)

• saturation of eikonal phase to finite χ(0) at small b

⇒ saddle point arises at short distances

♦ onset of fixed-point scaling affects the eikonal through the low-b saddle point



MOMENTUM TRANSFER DEPENDENCE

Meik(s, q) = 4πb2csF (y, z)

where y = qbc , bc =

√
4π

MD

(

Γ(n/2)s

16πM2

D

)

1/n

z = knΛT bc ≡ [χ(0)]1/n

• Fsemicl. = F (y, z→∞)

• faster fall-off with increasing momentum transfer q from fixed-point coupling



FIXED-POINT CORRECTIONS TO EIKONAL AMPLITUDE

Meik(s, q) = 4πb2csF (y, z)

y = qbc , z = knΛT bc

• for any given y, corrections to semiclassical z → ∞ amplitude

• kn = kn(g∗, s/M
2
D) ⇒ effects on energy spectrum



TOWARDS PHENOMENOLOGICAL APPLICATIONS

• Dijets at large invariant masses and
large rapidity separations

Effective theory:

[Stirling, Vryonidou, Wells 2011]



DIJET PRODUCTION

Fixed-point gravity:

(left) dijet rapidity distribution; (right) ratio of the distribution to effective theory result

• fixed-point graviton coupling modifies jet signal in central region compared to

effective theory

• semiclassical result is recovered as rapidity increases



Conclusion

• Transplanckian scattering provides collider signatures
for low-scale quantum gravity

• In asymptotically safe scenarios

UV fixed-point scaling leads to finite eikonal phase
at small b for any extra dimension n

⇒ eikonal integral no longer dominated by long-distance stationary point

• Is fixed-point “phenomenology” necessary
in collider searches for TeV-scale gravity?


