Nonperturbative QCD Workshop, Paris, June 2013

Planckian scattering and high-dimensional gravity fixed points

F. Hautmann Oxford U. & Sussex U.

• Collaboration with D. Litim, R. Old and J. Schroeder

Motivation

• TeV-scale gravity scenarios \Rightarrow transplanckian scattering at high-energy colliders

 S-matrix computable by semiclassical methods (eikonal) for large √s and large impact parameters
 ↓
 insensitive to UV completion of gravity?

 \Rightarrow explore physical effects of UV fixed point on eikonal S matrix in Weinberg's asymptotic safety hypothesis

OUTLINE

I. Introduction: low scale gravity and high energy scattering

II. Eikonal S matrix in fixed point gravity

III. Towards phenomenological applications

I. Introduction: Transplanckian Scattering

Scattering at center-of-mass energy > quantum gravity scale ['t Hooft 1987; Muzinich, Soldate 1988; Amati, Ciafaloni, Veneziano 1987; Gross, Mende 1988]

> elastic small-angle scattering for b ≫ R_{Schwarzs.} by (semiclassical) eikonal interactions
> strong inelastic corrections for b ~ R_{Schwarzs.} ⇒ black hole formation and evaporation?

♠ Large extra dimension scenarios of TeV-scale gravity
 [Antoniadis, Arkani-Hamed, Dimopoulos, Dvali 1998]
 ⇒ transplanckian scattering at colliders?
 [Giddings, Thomas 2002; Giudice, Rattazzi, Wells 2002]

LOW-SCALE QUANTUM GRAVITY

• SM in 4 dimensions; gravity in (compactified) n extra dimensions of size R_C

$M_P^2 \sim (R_C M_D)^n M_D^2$

• effective theory couples massive KK gravitons to SM fields

[Giudice, Rattazzi, Wells 1999; Han, Lykken, Zhang 1999]

• Bounds on n and M_D from collider searches

e.g. $pp \rightarrow dijets @ LHC$

[Franceschini, Giardino, Giudice, Lodone & Strumia, arXiv:1101.4919 [hep-ph]]

 $\Rightarrow M_D \sim \text{multi-TeV}$

EIKONAL S-MATRIX FOR $|t|/s \ll 1$, $\sqrt{s} \gg M_D$

$$S(b,s) = \exp(i\chi) \quad , \quad \chi(b,s) = \frac{1}{s} \int d^2q \ e^{iq \cdot b} \ A_{\text{Born}}$$

- A_{Born} UV-divergent for n ≥ 2 ⇒ UV regulator (DR or EFT)
 amplitude rises with t (after regularization)
- \Rightarrow eikonal phase $\chi(b,s) = (b_c/b)^n$, $b_c \sim M_D^{-1} (s/M_D^2)^{1/n}$
- arguably, still insensitive to UV gravity completion as long as eikonal integral = $\int d^2b \ e^{-iq \cdot b} \left(e^{i\chi} - 1\right)$

is dominated by long-distance saddle point b_s

JET PRODUCTION BY GRAVITATIONAL INTERACTIONS

- large dijet invariant masses
- factorization scale $\mu \sim b_s^{-1}$

• rising parton densities at $x \to 0$ probe lower end of \sqrt{s} spectrum in $d\sigma_{eik}$

HIGH-ENERGY GRAVITATIONAL SCATTERING

See "phase diagram" in S. Giddings, Erice lectures, arXiv:1105.2036.

strong gravity effects with decreasing b at fixed √s
growth of parton density at x → 0 ⇒ "slide-down" in √s → onset of b ~ M_D effects in planckian region?

II. Asymptotic safety scenario

[Weinberg 1979]

 $S = G_N^{-1} \int \sqrt{g} (-R + 2\Lambda)$ perturbatively nonrenormalizable $[G_N] = 2 - D$

$$G_N \to G(\mu) = G_N Z^{-1}(\mu) \quad , \ g(\mu) = G(\mu) \ \mu^{D-2}$$

• Weinberg's scenario: $G(\mu) \sim \mu^{2-D}$ at high energies $g \rightarrow \text{ fixed point } g_*$

RUNNING GRAVITATIONAL COUPLING

 \clubsuit cross-over scale Λ_T between classical scaling and fixed-point scaling

RUNNING COUPLINGS

 $L \sim \text{compactification radius}$ $M_* \sim D$ -dimensional gravity scale

[Fischer, Litim 2005] [Alkofer, Litim, Schaefer 2013]

III. Eikonal scattering in fixed-point gravity

- Born amplitude falls off with t• eikonal phase finite at small b \Rightarrow cross-over scale for $b \propto \Lambda_T^{-1}$ $\chi(b,s) = (b_c/b)^n$ at large b (semiclassical) $\chi(b,s) = \chi(0,s) + \mathcal{O}(b^2 \ln b)$ for $b \leq b_T$
 - $b_T = b_c[\chi(0)]^{-1/n}$ new length scale

THE PHASE $\chi(b,s)$

 \diamondsuit finite for $b \rightarrow 0$ in the fixed-point case (solid lines)

• Finite brane width would also soften the small-b behavior but would still leave a logarithmic divergence

EIKONAL INTEGRAL BY STATIONARY PHASE

$$\mathcal{M}_{eik}(s,q) = 2is \int d^2b \ e^{-iq \cdot b} \ [1 - S(b,s)] \ , \quad S(b,s) = \exp(i\chi)$$

• saturation of eikonal phase to finite $\chi(0)$ at small b \Rightarrow saddle point arises at short distances

 \diamond onset of fixed-point scaling affects the eikonal through the low-b saddle point

MOMENTUM TRANSFER DEPENDENCE

 $\mathcal{M}_{eik}(s,q) = 4\pi b_c^2 s F(y,z)$

where
$$y = qb_c$$
, $b_c = \frac{\sqrt{4\pi}}{M_D} \left(\frac{\Gamma(n/2)s}{16\pi M_D^2}\right)^{1/n}$
 $z = k_n \Lambda_T b_c \equiv [\chi(0)]^{1/n}$

•
$$F_{semicl.} = F(y, z \rightarrow \infty)$$

• faster fall-off with increasing momentum transfer q from fixed-point coupling

FIXED-POINT CORRECTIONS TO EIKONAL AMPLITUDE

$$\mathcal{M}_{eik}(s,q) = 4\pi b_c^2 s F(y,z)$$

$$y = qb_c$$
, $z = k_n \Lambda_T b_c$

• for any given y, corrections to semiclassical $z \to \infty$ amplitude • $k_n = k_n(g_*, s/M_D^2) \Rightarrow$ effects on energy spectrum

TOWARDS PHENOMENOLOGICAL APPLICATIONS

• Dijets at large invariant masses and large rapidity separations

Effective theory:

[Stirling, Vryonidou, Wells 2011]

DIJET PRODUCTION

Fixed-point gravity:

(left) dijet rapidity distribution; (right) ratio of the distribution to effective theory result

- fixed-point graviton coupling modifies jet signal in central region compared to effective theory
 - semiclassical result is recovered as rapidity increases

Conclusion

• Transplanckian scattering provides collider signatures for low-scale quantum gravity

 In asymptotically safe scenarios
 UV fixed-point scaling leads to finite eikonal phase at small b for any extra dimension n

 \Rightarrow eikonal integral no longer dominated by long-distance stationary point

• Is fixed-point "phenomenology" necessary in collider searches for TeV-scale gravity?