Supergravity from 2 and 3-Algebra Gauge Theory

Henrik Johansson CERN
June 10, 2013
Twelfth Workshop on Non-Perturbative
Quantum Chromodynamics,
I'Institut d'Astrophysique de Paris
Work with: Zvi Bern, John Joseph Carrasco;
Yu-tin Huang, Sangmin Lee

Text-Book: perturbative gravity is complicated !

de Donder gauge:

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

~ 100 terms !
higher order vertices...

H. Johansson

On-shell simplifications

Gravity scattering amplitude:

$$
\left.\begin{array}{r}
M_{\text {tree }}^{\mathrm{GR}}(1,2,3,4)=\frac{s t}{u} A_{\mathrm{tree}}^{\stackrel{\text { YM }}{\mathrm{YM}}(1,2,3,4) \otimes A_{\text {tree }}^{\mathrm{YM}}(1,2,3,4)} \xrightarrow{\substack{\text { Yang-Mills amplitude }}} A_{\text {tree }}^{\mathrm{CSm}}(1,2,3,4) \otimes A_{\text {tree }}^{\mathrm{CSm}}(1,2,3,4) \\
\text { Chern-Simons-matter theory }
\end{array}\right)
$$

Gravity processes $=$ squares of gauge theory ones - entire S-matrix

Outline

- Motivation $D=3$ amplitudes
- Duality between Color and Kinematics
- Kinematical Lie 2-Algebra (Yang-Mills theory)
- Kinematical Lie 3-Algebra (Chern-Simons-matter theory)
- Gravity as a Double Copy of YM and CSm theories
- Amplitudes in BLG, ABJM and $D=2$ SUGRA
- Tree-Amplitude relations
- Dimensional reduction: $D=2$ ABJM
- Integrability of $D=2$ SUGRA?
- Conclusions

Why Amplitudes in $D=3$ (or $D=2$)

\rightarrow Travaglini's talk

- $N=8$ Bagger-Lambert-Gustavsson (BLG) theory
- $N=6$ Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
- Chern-Simons-matter (CSM) theories - enticing gauge theories
- The celebrated $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
- In $D=2$: supergravity integrability Nicolai, Warner

Comparing CSM $\leftrightarrow \rightarrow$ SYM"Same but different"

- Similar phenomena as in $D=4$ SYM
- Yangian/Dual conformal sym. (ABJM) $\begin{aligned} & \text { Bargheer, Loebbing, Lipstein }\end{aligned}$
- Grassmannian formulation (ABJM) Lee; Huang, Lee
- Color-kinematics duality (BLG, ABJM,...) Bargheer, He, McLoughlin; Huang, HJ.

2-algebra Color-Kinematics Duality

D-dim. Yang-Mills theories are controlled by a kinematic Lie algebra

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \text { cubic }} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Duality: color \leftrightarrow kinematics Bern, Carrasco, HJ
H. Johansson

Some details of color-kinematics duality

can be checked for 4 pt on-shell ampl. using Feynman rules

Example with two quarks:

$$
f^{c b a} T_{i k}^{c}=T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}
$$

1. $\left(A^{\mu}\right)^{4}$ contact interactions absorbed into cubic graphs

- by hand $1=s / s$
- or by auxiliary field $B \sim\left(A^{\mu}\right)^{2}$

2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove
4. Enforces (BCJ) relations on partial amplitudes \rightarrow ($n-3$)! Basis also in string theory:

Gravity is a double copy

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{align*}
& \mathcal{A}_{m}^{(L)}=\sum_{i \in \text { cubic }} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
& \mathcal{M}_{m}^{(L)}=\sum_{i \in \text { cubic }} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar } t \\
\text { Lewellen } \\
\text { works at }
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity + axion+ dilaton } \\
& & \text { H. Johansson } &
\end{array}
$$

3-algebra Color-Kinematics Duality

D=3 Chern-Simons matter theories Bargheer, He, McLoughlin; obey color-kinematics duality

3-algebra Fundamental identity (Jacobi identity):

$$
f^{a b c[d} f^{e g h] a}=0
$$

$c_{s}=c_{t}+c_{u}+c_{v} \Leftrightarrow n_{s}=n_{t}+n_{u}+n_{v}$
4 and 6 point checks shows that the double copy of BLG Is $N=16 E_{8(8)} S G$ of Marcus and Schwarz
$\mathrm{BLG}=$ ='square root' of $N=16 \mathrm{SG} \quad A_{4}^{\mathrm{BLG}}=\sqrt{M_{4}^{\mathcal{N}=16}}=\sqrt{\frac{\delta^{16}(Q)}{s t u}}$

DS3 supergravity is a double copy of CSM

- Gravity amplitudes obtained by replacing color with kinematics

BCJ

$$
\begin{aligned}
& \mathcal{A}_{m}^{(L)}=\sum_{i \in \text { quartic }} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \quad \begin{array}{l}
\text { Bargheer, He, } \\
\text { McLoughlin; } \\
\text { Huang, HJ. }
\end{array} \\
& \mathcal{M}_{m}^{(L)}=\sum_{i \in \text { quartic }} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- No string understanding (cf. Kawai-Lewellen-Tye)
- Details more subtle than in SYM \otimes SYM
- BLG \otimes BLG works in $D=3$ (verified: tree level $\leq 10 \mathrm{pts}$)
- ABJM \otimes ABJM works in $D=3$ at 4,6 pts, but not ≥ 8 pts
- ABJM \otimes ABJM works in $D=2$ (verified: tree level ≤ 10 pts)

BLG, ABJM and D=2 SUGRA

H. Johansson

ABJM and BLG theory

ABJM: $\quad N=6 \mathrm{CSm}$ theory with $\mathrm{U}(N) \times \mathrm{U}(N)$ gauge group $\quad \rightarrow$ Travaglini's talk
Matter are the only propagating d.o.f.: bi-fundamental representation
Chiral (N, \bar{N}) multiplet:

$$
\Phi=\phi_{1}^{4}+\eta^{A} \psi_{A}+\frac{1}{2} \epsilon_{A B C} \eta^{A} \eta^{B} \phi^{C}+\frac{1}{3!} \epsilon_{A B C} \eta^{A} \eta^{B} \eta^{C} \psi_{4}
$$

In total 16 states (same spectrum as N=4 SYM, but chiral)
BLG: $N=8 \mathrm{CSm}$ theory with $\mathrm{SU}(2) \times \mathrm{SU}(2)=\mathrm{SO}(4)$ gauge group
Matter is non-chiral $N=\bar{N}$

$$
\Phi=\phi+\eta^{A} \psi_{A}+\frac{1}{2} \eta^{A} \eta^{B} \phi_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\psi}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} \bar{\phi}
$$

1
4
6
4
1
In total 16 states

ABJM and BLG are three-algebras

Bi-fundamental matter theories are three-algebra theories
Bagger, Lambert; Bagger, Bruhn
Triple product of $N \times M$ matrices;

$$
\left[M^{a}, M^{b} ; M^{\bar{c}}\right] \equiv\left(M^{a} M^{\bar{c}} M^{b}-M^{b} M^{\bar{c}} M^{a}\right)_{\beta}^{\alpha^{\prime}} \equiv f_{d}^{a b \bar{c}}\left(M^{d}\right)^{\alpha^{\prime}}
$$

Structure constants satisfy fundamental identity (Jacob identity)

$$
f_{g}^{a b \bar{f}} f^{g c \bar{d} \bar{e}}-f_{g}^{a c \bar{d}} f^{g b \bar{f} \bar{e}}-f_{g}^{b c \bar{d}} f^{a g \bar{f} \bar{e}}+f^{g c \bar{d} \bar{f}} f_{g}^{a b \bar{e}}=0
$$

Obtained from Feynman diag.

$$
f^{a b \bar{c} \bar{d}}=g\left(T_{A}\right)^{a \bar{c}}\left(T^{A}\right)^{b \bar{d}}+g^{\prime}\left(T_{B}\right)^{a \bar{d}}\left(T^{B}\right)^{b \bar{c}}
$$

Interesting choices: $g=-g^{\prime}$ or $g=g^{\prime}$

Symmetries of structure constants

- ABJM theory $f^{a b \bar{c} \bar{d}}=-f^{a b \bar{d} \bar{c}} \quad$ complex, antisymmetric in pairs
- BLG theory $\quad f^{a b c d}$ real and totally antisymmetric
- $N=5$ CSM theory $f^{a b \bar{c} \bar{d}}=-f^{a b \bar{d} \bar{c}} \quad$ or $\quad f^{a b \bar{c} \bar{d}}=f^{a b \bar{d} \bar{c}}$ real, (anti)symmetric in pairs Bagger, Bruhn

Consider amplitudes: $\quad \mathcal{A}_{m}=i\left(\frac{2 \pi}{k}\right)^{\frac{m-2}{2}} \sum_{i \in \text { quartic }} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} s_{\alpha_{i}}}$

$$
c_{i}=f^{a b \bar{c} \bar{d}} f^{d e \bar{f} \bar{g}} \ldots f^{w x \bar{y} \bar{z}}
$$

What are their properties?

1) Kleiss-Kuijf relations
2) Color-kinematics duality \rightarrow BCJ relations
3) double copy = supergravity
H. Johansson

ABJM amplitude relations

Consider ABJM at 6pts
Bargheer, He, McLoughlin; Huang, HJ.

$$
\mathcal{A}_{m}=\sum_{i \in \text { quartic }} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} s_{\alpha_{i}}} \quad \stackrel{\text { Solve Jacobi }}{ } \quad A_{(i)}=\sum_{j=1}^{p} \Theta_{i j} n_{j}
$$

At Gots (ABJM): $\operatorname{Oin}_{\text {ij }}=\left(\begin{array}{cccccc}\frac{1}{s_{1}} & \frac{1}{s_{2}}+\frac{1}{s_{9}} & \frac{1}{s_{9}} & -\frac{1}{s_{9}} & 0 \\ \frac{1}{s_{8}} & -\frac{1}{s_{8}} & \frac{1}{s_{3}} & \frac{1}{s_{4}}+\frac{1}{s_{8}} & 0 \\ \frac{1}{s_{7}} & -\frac{1}{s_{7}} & -\frac{1}{s_{6}} & -\frac{1}{s_{7}} & \frac{1}{s_{6}}+\frac{1}{s_{7}} & \frac{1}{s_{5}}+\frac{1}{s_{6}}+\frac{1}{s_{7}} \\ 0 & -\frac{1}{s_{9}} & -\frac{1}{s_{3}}-\frac{1}{s_{9}} & \frac{1}{s_{9}} & -\frac{1}{s_{5}} \\ 0 & -\frac{1}{s_{2}} & \frac{1}{s_{6}} & -\frac{1}{s_{4}}-\frac{1}{s_{6}} & -\frac{1}{s_{6}}\end{array}\right)$
5×5 matrix has rank 4 , but only in $D=3$ and on-shell!
5-term amplitude relation: $\operatorname{Ker}\left(\Theta^{T}\right) \cdot A=\sum_{i=1}^{5} C_{i k} A_{(i)}=0$

$$
\operatorname{Det}\left(\Theta_{i 1}, \Theta_{i 2}, \ldots, A_{(i)}, \ldots, \Theta_{i p}\right)=0
$$

H. Johansson

BLG amplitude relations

Consider BLG at 6pts

$$
\mathcal{A}_{m}=\sum_{i \in \text { quartic }} \frac{n_{i} c_{i}}{\prod_{\alpha_{i}} s_{\alpha_{i}}} \quad \xrightarrow{\text { Solve Jacobi }} \quad A_{(i)}=\sum_{j=1}^{p} \Theta_{i j} n_{j}
$$

At 6pts (BLG):

$$
\left(\begin{array}{ccccc}
\frac{1}{s_{123}}+\frac{1}{s_{135}} & \frac{1}{s_{126}}+\frac{1}{s_{156}} & \frac{1}{s_{156}} & \frac{1}{s_{135}}-\frac{1}{s_{156}} & \frac{1}{s_{135}} \\
\frac{1}{s_{124}}+\frac{1}{s_{135}} & -\frac{1}{s_{124}} & \frac{1}{s_{134}} & \frac{1}{s_{124}}+\frac{1}{s_{125}}+\frac{1}{s_{135}} & \frac{1}{s_{135}} \\
\frac{1}{s_{135}}+\frac{1}{s_{145}} & -\frac{1}{s_{145}} & -\frac{1}{s_{136}}-\frac{1}{s_{145}} & \frac{1}{s_{135}}+\frac{1}{s_{136}}+\frac{1}{s_{145}} & \frac{1}{s_{135}}+\frac{1}{s_{136}}+\frac{1}{s_{145}}+\frac{1}{s_{146}} \\
-\frac{1}{s_{135}} & -\frac{1}{s_{156}} & -\frac{1}{s_{134}}-\frac{1}{s_{156}} & -\frac{1}{s_{135}}+\frac{1}{s_{156}} & -\frac{1}{s_{135}}-\frac{1}{s_{146}} \\
-\frac{1}{s_{135}} & -\frac{1}{s_{126}} & \frac{1}{s_{136}} & -\frac{1}{s_{125}}-\frac{1}{s_{135}}-\frac{1}{s_{136}} & -\frac{1}{s_{135}}-\frac{1}{s_{136}}
\end{array}\right)
$$

5×5 matrix has rank 3 , but only in $D=3$ and on-shell!
4-term amplitude relation: $\operatorname{Ker}\left(\Theta^{T}\right) \cdot A=\sum_{i=1}^{4} C_{i k} A_{(i)}=0$

$$
\operatorname{Det}\left(\Theta_{i 1}, \Theta_{i 2}, \ldots, A_{(i)}, \ldots, \Theta_{i p}\right)=0
$$

H. Johansson

BLG and ABJM amplitude relations

BLG: 4-term amplitude relation:

$$
0=\sum_{i=2}^{5} S_{i} A_{(i)}
$$

$S_{2}=s_{124}\left(s_{156}\left(s_{145} s_{146}-s_{135} s_{136}\right)+s_{126}\left(s_{146}\left(s_{135}+s_{156}\right)-s_{136}\left(s_{145}+s_{156}\right)\right)\right)$,
$S_{3}=s_{145}\left(s_{156}\left(s_{136}\left(s_{124}+s_{126}+s_{135}\right)+s_{146}\left(s_{136}-s_{126}\right)\right)-s_{126} s_{146}\left(s_{124}+s_{135}+s_{136}\right)\right)$,
$S_{4}=s_{156}\left(s_{136} s_{145}\left(s_{124}+s_{126}+s_{135}\right)+s_{146}\left(s_{136}\left(s_{126}+s_{135}\right)+s_{145}\left(s_{135}+s_{136}\right)+s_{124}\left(s_{126}+s_{145}\right)\right)\right)$,
$S_{5}=-s_{126}\left(s_{145} s_{146}\left(s_{124}+s_{135}+s_{156}\right)+s_{136}\left(s_{135}\left(s_{145}+s_{146}\right)+s_{124}\left(s_{145}+s_{156}\right)+s_{146}\left(s_{145}+s_{156}\right)\right)\right)$,
(plus one additional relation)

ABJM-type theory (in $D=2$): 4-term amplitude relations:
$0=\left(A_{(1)} s_{123}-A_{(2)} s_{124}\right)\left(s_{126} s_{146}-s_{136} s_{156}\right)+\left(A_{(4)} s_{146}-A_{(5)} s_{136}\right)\left(s_{126} s_{156}+s_{123} s_{126}+s_{123} s_{156}\right)$
$0=\left(A_{(2)} s_{124}-A_{(3)} s_{145}\right)\left(s_{126} s_{146}-s_{136} s_{156}\right)+\left(A_{(4)} s_{156}-A_{(5)} s_{126}\right)\left(s_{145} s_{146}+s_{136} s_{145}+s_{136} s_{146}\right)$
H. Johansson

ABJM and BLG data collection

ABJM theory counts:
Huang, HJ, Lee

external legs	4	6	8	10	$m=2 k+2$
quartic diagrams	1	9	216	9900	$\frac{(3 k)!(k+1)!}{(2 k+1)!(2)!}{ }^{k}$
planar amplitudes	1	6	72	1440	$\frac{1}{2}(k+1)!k!$
diagrams in $A^{\text {planar }}$	1	3	12	55	$\frac{(3 k)!}{k!(2 k+1)!}$
distinct fundamental id's	0	9	432	29700	$\frac{(k-1)(3 k)!(k+1)!}{(2 k+1)!(2!)^{k}}$
KK-indep. ampls.	1	5	57	1144	$*$
BCJ-indep. ampls. $D=2$	1	3	38	987	$*$

BLG theory counts:

external legs	4	6	8	10	$m=2 k+2$
quartic diagrams	1	10	280	15400	$\frac{(3 k)!}{k!\left(3!!^{k}\right.}$
distinct fundamental id's	0	15	840	69300	$\frac{3}{2}(k-1) \frac{(3 k)!}{k!(3!)^{k}}$
KK-indep. ampls.	1	5	56	1077	$*$
BCJ-indep. ampls. $D=3$	1	3	38	1029	$*$

Note: no simple combinatorial patterns for KK and BCJ counts.

Same D=3 Supergravity Either Way

In $D=3$, supergravity from two different double copies:

- The extra propagators in SYM \otimes SYM compensates for dimension mismatch
- SYM has even and odd matrix elements, CSM only even!
- R-symmetry constrains ensure that double copy kills odd SYM contributions

For $N=16$ SUGRA: all states are $\operatorname{SO}(16)$ spinors -> no odd S-matrix elements
Marcus and Schwarz

D=2 Supergravity and Integrability

- Easy access to $D=2$ supergravity S-matrix
- Problem: a $D=2$ massless S-matrix has severe IR divergences
- Possible to restrict to amplitudes without soft or collinear div's

Can check integrability of $D=2$ supergravity S-matrix (in restricted momenta)
Nicolai, Warner

D=2 ABJM and supergravity ampls

D=2 ABJM amplitudes:

Huang, HJ, Lee
4pts: $\quad A_{D=2}^{\mathrm{ABJM}}(\overline{1}, 2, \overline{3}, 4)=i \frac{\delta^{(3)}\left(\sum_{\text {even }} \lambda_{i} \eta_{i}\right) \delta^{(3)}\left(\sum_{\text {odd }} \bar{\lambda}_{i} \eta_{i}\right)}{\bar{\lambda}_{1} \lambda_{2} \bar{\lambda}_{3} \lambda_{4}}$
6pts:
$A_{D=2}^{\mathrm{ABJM}}(\overline{1} 2 \overline{3} 4 \overline{5} 6)=i \frac{\delta^{(3)}\left(\sum_{\text {even }} \lambda_{i} \eta_{i}\right) \delta^{(3)}\left(\sum_{\text {odd }} \bar{\lambda}_{i} \eta_{i}\right)}{\bar{\lambda}_{1} \lambda_{2} \bar{\lambda}_{3} \lambda_{4} \bar{\lambda}_{5} \lambda_{6}} \sum_{s= \pm} \delta^{(3)}\left(s \frac{\bar{\lambda}_{3} \eta_{1}-\bar{\lambda}_{1} \eta_{3}}{\bar{\lambda}_{5}}+i \frac{\lambda_{6} \eta_{4}-\lambda_{4} \eta_{6}}{\lambda_{2}}\right)$

$D=2$ supergravity:

4pts: $\quad M_{D=2}(\overline{1}, 2, \overline{3}, 4)=\left[A_{D=2}^{\mathrm{ABJM}}(1, \overline{2}, 3, \overline{4})\right]^{2} \quad$ (finite and non-zero)
6pts:

$$
\begin{gathered}
\mathcal{M}_{6}(\overline{1} 2 \overline{3} 4 \overline{5} 6)=\frac{s_{12} s_{34} s_{56}}{\left(s_{23}-s_{14}\right)\left(s_{36}-s_{12}\right)\left(s_{34}-s_{16}\right)}\left(\left(s_{34}-s_{16}\right) A_{(1)} \tilde{A}_{(1)}+\left(s_{36}-s_{12}\right) A_{(2)} \tilde{A}_{(2)}\right. \\
\left.+\left(s_{23}-s_{14}\right) A_{(3)} \tilde{A}_{(3)}\right)
\end{gathered}
$$

6pt amplitude vanishes \rightarrow consistent with integrability

Yang-Baxter Eqn

We would like to check the Yang-Baxter Eqn:

Huang, HJ, Lee

Holds in D=3 ABJM and $D=3$ sugra

Problem: one line is massive \rightarrow take massless limit

Holds in $D=2$ ABJM and $D=2$ sugra, but both sides diverge!
\rightarrow more checks are needed, as well as better understanding of IR div.
H. Johansson

Conclusions

- Yang-Mills theories are controlled by a kinematic Lie 2-algebra
- Chern-Simons-matter theories controlled by a kinematic Lie 3-algebra
- The explicit kinematic algebra is still missing for all but the simplest case of self-dual Yang-Mills.
- With duality manifest: Gravity becomes double copy. double copy of CSM theory $=$ double copy of $D \leq 3$ SYM
- BCJ relations/double copy present in D=3 for BLG theories
- BCJ relations/double copy present in $D=2$ for $A B J M$ theories
- Simple access to $D=2$ supergravity S-matrix \rightarrow checks of integrability
- C-K duality is a key tool for nonplanar gauge and gravity calculations.
- Loop amplitudes in BLG (ABJM)...
- $N=8$ supergravity UV behavior at 5 (and 7) loops...
- $N=4$ supergravity UV behavior at 3,4 loops ...

