Probabilistic picture for Jet evolution in Heavy-Ion Collisions

Yacine Mehtar-Tani IPhT CEA/Saclay

Twelfth Workshop on Non-Perturbative Quantum
Chromodynamics
IAP, PARIS
June 11, 2013

In collaboration with

J. -P. Blaizot, E. lancu and F. Dominguez
arXiv: I209.4585 [hep-ph] JHEP I30| (20|3) I43 arXiv: I301.6I02 [hep-ph]
work in progress...

OUTLINE

- Motivation: in-medium jet modification at the LHC
- Probabilistic picture for in-medium jet evolution:
factorization of multiple-branchings:
I - incoherent branchings: resum. large $\alpha_{s} L$
2 - coherent branchings: resum. Double Logs $\alpha_{s} \log ^{2}\left(\frac{k^{2}}{m_{D}^{2}}\right)$ in a renormalization of the
quenching parameter \hat{q}

Jets in HIC at the LHC

- JET QUENCHING:
a tool to probe the Quark-Gluon-Plasma and QCD dynamics at high parton density

- in-medium jet modification: departures from p-p baseline

Jets in HIC at the LHC

$$
R_{A A} \equiv \frac{1}{N_{\text {coll }}} \frac{d N_{P b P b}^{j e t}}{d N_{p p}^{j e t}}\left(p_{T}\right)
$$

$\begin{aligned} & \text { Fragmentation } \frac{D_{P b P b}}{D_{p p}}\left(\xi=\ln \frac{p_{h}}{p_{j e t}}\right) \\ & \text { fct. }\end{aligned}$
dijet asymmetry $\quad A_{J}=\frac{p_{\mathrm{T}, 1}-p_{\mathrm{T}, 2}}{p_{\mathrm{T}, 1}+p_{\mathrm{T}, 2}}$
(I) Significant dijet energy asymmetry
(II) Soft particles at large angles (III) medium-modified fragmentation

JETS IN VACUUM

- Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes
- LPHD: Hadronization does not affect inclusive observables (jet shape, energy distribution etc..)
$M_{\perp} \equiv E \theta_{j e t}$

Large time domain for $\mathrm{pQCD}: \quad \frac{1}{E}<t<\frac{E}{\Lambda_{\mathrm{QCD}}^{2}}$

JETS IN VACUUM

- The differential branching probability

$$
d P \simeq \frac{\alpha_{s} C_{R}}{\pi} \frac{d \omega}{\omega} \frac{d^{2} k_{\perp}}{k_{\perp}^{2}}
$$

Hard Scat.
E, p_{\perp}

- soft and collinear divergences
- Phase-space enhancement (Double Logs)

$$
Q_{0}<k_{\perp}<M_{\perp}
$$

$$
\alpha_{s} \rightarrow \alpha_{s} \ln ^{2} \frac{M_{\perp}}{Q_{0}}
$$

- Multiple branchings are not independent and obeys Angular Ordering (for inclusive observables): Due to color coherence (interferences) large-angle gluon emissions are strongly suppressed.

$$
\theta_{j e t}>\theta_{1}>\ldots>\theta_{n}
$$

JETS IN VACUUM

Fragmentation function

OPAL Collaboration, Phys. Lett. B 247 (1990) 617

IN-MEDIUM JET EVOLUTION

-What is the space-time structure of in-medium jets?

- probabilistic picture? resummation scheme?
ordering variable?

MEDIUM-INDUCED GLUON RADIATION

Baier, Dokshitzer, Mueller, Peigné, Schiff (I995-2000) Zakharov (I996)

- Scatterings with the medium can induce gluon radiation
- The radiation mechanism is linked to transverse momentum broadening
$\Delta k_{\perp}^{2} \simeq \hat{q} \Delta t$
- where the quenching parameter

$$
\hat{q} \equiv \int_{\boldsymbol{q}} \boldsymbol{q}^{2} \mathcal{C}(\boldsymbol{q}) \simeq \frac{m_{D}^{2}}{\lambda}=\frac{(\text { Debye mass })^{2}}{\text { mean free path }}
$$

is related to the collision rate in a thermal bath

$$
\begin{aligned}
& \mathcal{C}(\boldsymbol{q}, t)=4 \pi \alpha_{s} C_{R} n(t) \gamma(\boldsymbol{q}) \equiv\left|\underset{\underset{\sim}{\dot{x}} q_{\perp}}{ }\right|^{2} \\
& \left\langle A_{a}^{-}(\boldsymbol{q}, t) A_{b}^{*-}\left(\boldsymbol{q}^{\prime}, t^{\prime}\right)\right\rangle=\delta_{a b} n(t) \delta\left(t-t^{\prime}\right)(2 \pi)^{2} \delta^{(2)}\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \gamma(\boldsymbol{q}),
\end{aligned}
$$

$$
\gamma(\boldsymbol{q})=\frac{g^{2}}{\boldsymbol{q}^{2}\left(\boldsymbol{q}^{2}+m_{D}^{2}\right)}
$$

P. Aurenche, F. Gelis and H.

MEDIUM-INDUCED GLUON RADIATION

- How does it happen? After a certain number of scatterings coherence between the parent quark and gluon fluctuation is broken and the gluon is formed (decoherence is faster for soft gluons)

$$
t_{f} \equiv \frac{\omega}{\left\langle q_{\perp}^{2}\right\rangle} \simeq \frac{\omega}{\hat{q} t_{f}} \quad \Rightarrow \quad t_{f}=t_{\mathrm{br}} \equiv \sqrt{\frac{\omega}{\hat{q}}}
$$

- The BDMPS spectrum

$$
\omega \frac{d N}{d \omega}=\frac{\alpha_{s} C_{R}}{\pi} \sqrt{\frac{2 \omega_{c}}{\omega}} \propto \alpha_{s} \frac{L}{t_{\mathrm{br}}}
$$

with $\quad \omega_{c}=\frac{1}{2} \hat{q} L^{2}$ is the maximum frequency at which the medium acts fully coherently on the (maximum suppression). Typically, $\omega_{c} \simeq 50 \mathrm{GeV}$

- Soft gluon emissions $\omega \ll \omega_{c}$
\Rightarrow Short branching times $t_{\mathrm{br}} \ll L$ and large phase-space: When $\alpha_{s} \frac{L}{t_{\mathrm{br}}} \gtrsim 1$ Multiple branchings are no longer negligible

BUILDING IN-MEDIUM JET EVOLUTION: Some necessary steps

\Rightarrow Going beyond the eikonal (soft gluon) approximation
Fully differential in momentum space
Factorization of multiple branchings in the
decoherence regime

DECOHERENCE OF MULTI-GLUON EMISSIONS

- The branching can occur anywhere along the medium with a constant rate
- Time scale separation: compared to the time scale of the jet evolution in the medium L the branching process is quasi-local $t_{\text {br }} \ll L$
- Off-spring gluons are independent after they are formed as they are separated over a distance that is larger then the in-medium correlation length

DECOHERENCE OF MULTI-GLUON EMISSIONS

incoherent emissions

- For large media two subsequent emissions are independent and therefore factorize
- Interferences are suppressed by a factor
$t_{\mathrm{br}} / L \ll 1$

Note that this is not the case in a vacuum shower where color coherence is responsible for Angular-Ordering
coherent emissions
(suppressed!) ।

Y. M.-T, K. Tywoniuk, C.A. Salgado (20IO-2012)
J. Casalderray-Solana, E. lancu (201I)

DECOHERENCE OF MULTI-GLUON EMISSIONS

Successive branchings are then independent and quasi-local.
Time-scale separation: $t_{\text {br }} \ll t \sim L$
Markovian Process
\Rightarrow Probabilistic Scheme $\quad \sigma=\sum_{n} a_{n}\left(\alpha_{s} \frac{L}{t_{\mathrm{br}}}\right)^{n}$

Building blocks of medium-induced cascade

I - The rate of elastic scatterings reads
$\mathcal{C}(l, t)=4 \pi \alpha_{s} C_{A} n(t)\left[\gamma(\boldsymbol{l})-\delta^{(2)}(\boldsymbol{l}) \int \mathrm{d}^{2} \boldsymbol{q} \gamma(\boldsymbol{q})\right]$

- when there are no branchings partons scatter off the color charges of the medium and acquire a transverse momentum k_{\perp} after a time
$\Delta t=t_{L}-t_{0}$ with a probability \mathcal{P}
- The broadening a probability obeys the evolution equation

$$
\frac{\partial}{\partial t_{0}} \mathcal{P}\left(\boldsymbol{k} ; t_{L}, t_{0}\right)=-\int \frac{\mathrm{d}^{2} \boldsymbol{l}}{(2 \pi)^{2}} \mathcal{C}\left(\boldsymbol{l}, t_{0}\right) \mathcal{P}\left(\boldsymbol{k}-l ; t_{L}, t_{0}\right)
$$

Building blocks of medium-induced cascade

I - The rate of inelastic scatterings

 the dipole crosssection is related to the collision rate$$
\sigma(\boldsymbol{r})=\int_{\boldsymbol{q}} C(\boldsymbol{q}) e^{-i \boldsymbol{q} \cdot \boldsymbol{r}}
$$

- The 3-point function correlator account for multiple scatterings of a 3 dipole syst.

$$
\begin{aligned}
& S^{(3)}\left(\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{l}, z, p^{+} ; t_{2}, t_{1}\right)=\int \mathrm{d} \boldsymbol{u}_{1} \mathrm{~d} \boldsymbol{u}_{2} \mathrm{~d} \boldsymbol{v} e^{i \boldsymbol{u}_{1} \cdot \boldsymbol{P}-i \boldsymbol{u}_{2} \cdot \boldsymbol{Q}+i \boldsymbol{v} \cdot \boldsymbol{l}} \\
& \times \int_{\boldsymbol{u}_{1}}^{\boldsymbol{u}_{2}} \mathcal{D} \boldsymbol{u} \exp \left\{\frac{i z(1-z) p^{+}}{2} \int_{t_{1}}^{t_{2}} \mathrm{~d} t \dot{\boldsymbol{u}}^{2}-\frac{N_{c}}{4} \int_{t_{1}}^{t_{2}} \mathrm{~d} t n(t)[\sigma(\boldsymbol{u})+\sigma(\boldsymbol{v}-z \boldsymbol{u})+\sigma(\boldsymbol{v}+(1-z) \boldsymbol{u})]\right\}
\end{aligned}
$$

Transverse momenta generated in the splitting (in the amp. and comlex. conj.)

$$
\boldsymbol{P} \equiv \boldsymbol{q}^{\prime}-z \boldsymbol{p} \quad \boldsymbol{Q} \equiv \boldsymbol{q}-z \boldsymbol{p}^{\prime} \quad \text { are conjugate to the dipole size } \quad \boldsymbol{u} \equiv \boldsymbol{r}_{2}-\boldsymbol{r}_{1}
$$

Transverse momentum acquired by collisions

$$
\boldsymbol{p}^{\prime}-\boldsymbol{p} \equiv \boldsymbol{l}
$$ conjugate to the diff. of centers of mass

$$
\boldsymbol{v} \equiv z \boldsymbol{r}_{2}+(1-z) \boldsymbol{r}_{1}-\boldsymbol{r}_{0}
$$

Building blocks of medium-induced cascade

 I - The rate of inelastic scatteringsWe work in the approximation of small branching times:

$$
\Delta t \equiv t_{2}-t_{1} \sim t_{\mathrm{br}} \ll t_{1}, t_{2}
$$

Hence, one can neglect the difference Δt everywhere except in the 3-point function,

$$
\int_{0}^{L} d t_{1} \int_{t_{1}}^{L} d t_{2} \approx \int_{0}^{L} d t \int_{0}^{\infty} d \Delta t
$$

Hence, independent branchings are described by the quasi-local branching rate K and t is the ordering variable

$$
\mathcal{K}\left(\boldsymbol{Q}, \boldsymbol{l}, z, p^{+} ; t\right) \equiv \frac{P_{g g}(z)}{\left[z(1-z) p^{+}\right]^{2}} \operatorname{Re} \int_{0}^{\infty} \mathrm{d} \Delta t \int_{\boldsymbol{P}}(\boldsymbol{P} \cdot \boldsymbol{Q}) S^{(3)}\left(\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{l}, z, p^{+} ; t+\Delta t, t\right)
$$

Differential gluon distribution

The distribution of gluons with momentum k inside a parton with momentum p is defined as (with $x \equiv k^{+} / p^{+}$):

$$
k^{+} \frac{\mathrm{d} N}{\mathrm{~d} k^{+} \mathrm{d}^{2} \boldsymbol{k}}\left(k^{+}, \boldsymbol{k}, p^{+}, \boldsymbol{p} ; t_{L}, t_{0}\right) \equiv D\left(x, \boldsymbol{k}-x \boldsymbol{p}, p^{+} ; t_{L}, t_{0}\right),
$$

Given the branching and elastic rates $\mathrm{K}(\mathrm{t})$ and $\mathrm{C}(\mathrm{t})$ respectively, with t being the ordering variable, it is then straightforward to write the evolution equation for D

$$
\begin{aligned}
\frac{\partial}{\partial t_{L}} D\left(x, \boldsymbol{k}, t_{L}\right) & =\alpha_{s} \int_{0}^{1} \mathrm{~d} z \int_{\boldsymbol{Q}, \boldsymbol{l}}\left[2 \mathcal{K}\left(\boldsymbol{Q}, \boldsymbol{l}, z, \frac{x}{z} p_{0}^{+}, t_{L}\right) D\left(\frac{x}{z},(\boldsymbol{k}-\boldsymbol{Q}-\boldsymbol{\boldsymbol { l }}) / z, t_{L}\right)\right. \\
& \left.-\mathcal{K}\left(\boldsymbol{Q}, \boldsymbol{l}, z, x p_{0}^{+}, t_{L}\right) D\left(x, \boldsymbol{k}-\boldsymbol{l}, t_{L}\right)\right]-\int_{\boldsymbol{l}} \mathcal{C}\left(\boldsymbol{l}, t_{L}\right) D\left(x, \boldsymbol{k}-l, t_{L}\right) .
\end{aligned}
$$

collision

Renormalization of the quenching parameter

 Diffusion approximationLet us consider a highly energetic particle passing through the medium :
$x \sim I$.The broadening acquired during a single scattering or a branching is small compared to the total broadening. This allows us to expand the distribution D for small transverse momentum exchange $\quad l_{\perp} \ll k_{\perp}$

$$
D(x, \boldsymbol{k}-\boldsymbol{l})=D(x, \boldsymbol{k})-\boldsymbol{l} \cdot \frac{\partial}{\partial \boldsymbol{k}} D(x, \boldsymbol{k})+\frac{1}{2!} l^{i} l^{j} \frac{\partial}{\partial k_{i}} \frac{\partial}{\partial k_{j}} D(x, \boldsymbol{k})+\cdots
$$

Hence, the elastic term, where the quenching parameter appears naturally as a diffusion coefficient, yields

$$
\int \frac{\mathrm{d}^{2} \boldsymbol{l}}{(2 \pi)^{2}} \mathcal{C}\left(\boldsymbol{l}, t_{L}\right) D\left(x, \boldsymbol{k}-\boldsymbol{l}, t_{L}\right) \approx \frac{1}{4} \hat{q}_{0}\left(t_{L}\right)\left(\frac{\partial}{\partial \boldsymbol{k}}\right)^{2} D\left(x, \boldsymbol{k}, t_{L}\right)
$$

Renormalization of the quenching parameter

 In the diffusion approximation the equation for D reduces to$$
\begin{aligned}
& \frac{\partial}{\partial t_{L}} D\left(x, \boldsymbol{k}, t_{L}\right)=\alpha_{s} \int_{0}^{1} \mathrm{~d} z\left[2 \mathcal{K}\left(z, \frac{x}{z} p^{+}, t_{L}\right) D\left(\frac{x}{z}, \frac{\boldsymbol{k}}{z}, t_{L}\right)-\mathcal{K}\left(z, x p^{+}, t_{L}\right) D\left(x, \boldsymbol{k}, t_{L}\right)\right] \\
&-\frac{1}{4}\left[\hat{q}_{0}\left(t_{L}\right)+\hat{q}_{1}\left(t_{L}\right)\right]\left(\frac{\partial}{\partial \boldsymbol{k}}\right)^{2} D\left(x, \boldsymbol{k}, t_{L}\right) .
\end{aligned}
$$

Inelastic correction: to Double-Log Accuracy

$$
z \sim 1 \quad \text { and } \quad Q^{2} \gg k_{\mathrm{br}}^{2}=\sqrt{\omega_{0} \hat{q}_{0}} \equiv \hat{q} t_{\mathrm{br}}
$$

elastic quenching parameter

$$
\hat{q}_{0}(t) \equiv \int_{\boldsymbol{q}} \boldsymbol{q}^{2} \mathcal{C}(\boldsymbol{q}, t)
$$

$$
\begin{aligned}
\hat{q}_{1}\left(t, \boldsymbol{k}^{2}\right) & \equiv 2 \alpha_{s} \int \mathrm{~d} z \int_{\boldsymbol{q}, l}^{\boldsymbol{k}^{2}}\left[(\boldsymbol{q}+\boldsymbol{l})^{2}-\boldsymbol{l}^{2}\right] \mathcal{K}\left(\boldsymbol{q}, \boldsymbol{l}, z, p^{+}, t\right) \\
& \approx \frac{\alpha_{s} C_{A}}{\pi} \int_{\hat{q}_{0} \lambda^{2}}^{\boldsymbol{k}^{4} / \hat{q}_{0}} \frac{d \omega_{0}}{\omega_{0}} \int_{k_{\mathrm{br}}^{2}}^{\boldsymbol{k}^{2}} \frac{d \boldsymbol{q}^{2}}{\boldsymbol{q}^{2}} \hat{q}_{0}(t)
\end{aligned}
$$

In agreement with a recent result on radiative corrections to pt-broadening. A. H. Mueller, B.Wu, T. Liou arXiv: I 304.7677

$$
\hat{q}\left(t, \boldsymbol{k}^{2}\right) \approx \hat{q}_{1}\left(t, \boldsymbol{k}^{2}\right)+\hat{q}_{0}(t) \equiv \hat{q}_{0}(t)\left[1+\frac{\alpha_{s} C_{A}}{2 \pi} \log ^{2}\left(\frac{\boldsymbol{k}^{2}}{m_{D}^{2}}\right)\right]
$$

Renormalization of the quenching parameter

$$
\hat{q}_{1}\left(t, \boldsymbol{k}^{2}\right) \approx \frac{\alpha_{s} C_{A}}{\pi} \int_{\hat{q}_{0} \lambda^{2}}^{\boldsymbol{k}^{4} / \hat{q}_{0}} \frac{d \omega_{0}}{\omega_{0}} \int_{k_{\mathrm{br}}^{2}}^{\boldsymbol{k}^{2}} \frac{d \boldsymbol{q}^{2}}{\boldsymbol{q}^{2}} \hat{q}_{0}(t)
$$

The double logs correspond to gluons that are formed before the medium resolves the system «gluon-emitter»

$$
\frac{\omega}{k_{\perp}^{2}} \ll \frac{\omega}{q_{\perp}^{2}} \ll t_{\mathrm{br}} \equiv \sqrt{\frac{\omega}{\hat{q}_{0}}} \quad \text { or } \quad k_{\mathrm{br}}^{2} \ll q_{\perp}^{2} \ll k_{\perp}^{2}
$$

In other words, the gluon is transparent to the medium and can be freed only by a single hard scattering

Radiative Energy Loss

I-To complete the proof that the DL's can be fully absorbed in a renormalization of the quenching parameter we have computed the radiative correction to the 3 -point function, i.e., to the radiation rate K .

$$
\mathcal{K}\left[\hat{q}_{0}\right] \rightarrow \mathcal{K}\left[\hat{q}_{0}+\hat{q}_{1}\right]
$$

2 - As a consequence, the DL's not only affects the pt-broadening but also the radiative energy loss expectation:

$$
\Delta E \equiv \int d \omega \omega d N / d \omega
$$

$\Delta E \simeq \alpha_{s} \hat{q}_{0} L^{2} \rightarrow \Delta E \simeq \alpha_{s} \hat{q}_{0} L^{2}\left[1+\frac{\alpha_{s} C_{A}}{2 \pi} \log ^{2}\left(\hat{q}_{0} L / m_{D}^{2}\right)\right]$

Renormalization of the quenching parameter

\Rightarrow The DL's are resummed assuming strong ordering in formation time (or qT) and energy of overlapping successive gluon emissions (coherent branchings!)

SUMMARY

\checkmark In the limit of a dense medium, parton branchings decohere due to rapid color randomization except for strongly collimated partons (unresolved by the medium)
$\sqrt{ }$ In the decoherent limit: factorization of multiple gluon emissions
\Rightarrow Probabilistic picture \Rightarrow Monte-Carlo Implementation
\checkmark Coherent radiations with formation times much shorter then the branching time lead to potentially large Double Log enhancement that can be resummed and absorbed in a renormalization of the quenching

MULTISCALE PROBLEM

In-medium color correlation length
$M_{\perp} \equiv E \theta_{j e t}$

Color transparency for $r_{\perp}<Q_{s}^{-1}$ or $\theta_{j e t}<\theta_{c} \sim \frac{1}{\sqrt{\hat{q} L^{3}}}$
Decoherence $r_{\perp}>Q_{s}^{-1}$
Y. M.-T, K. Tywoniuk, C.A. Salgado (20I0-20I2)
J. Casalderray-Solana, E. lancu (20II)

ANTENNA INVACUUM (BUILDING BLOCK OF QCD EVOLUTION)

$$
d N_{q, \gamma^{*}}^{\mathrm{vac}}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{\sin \theta d \theta}{1-\cos \theta} \Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right),
$$

Angular ordering in vacuum

- Radiation confined inside the cone
-Why?
gluons emitted at angles larger than the pair opening angle cannot resolve its internal structure:
Emission by the total charge (suppressed for a white antenna)

$$
\lambda_{\perp}>r_{\perp} \quad \Rightarrow \quad \theta>\theta_{q \bar{q}}
$$

gluon transverse wave length

$$
\lambda_{\perp} \sim \frac{1}{k_{\perp}}
$$

antenna size at formation time

$$
r_{\perp} \sim t_{f} \theta_{q \bar{q}} \sim \frac{\omega}{k_{\perp}^{2}} \theta_{q \bar{q}}
$$

Modified-Leading-Log-Approximation (MLLA)

Fragmentation functions

Color coherence is taken into account in single-inclusive parton distribution via «strict» angular ordering of successive branchings in MLLA equation

$$
\theta_{j e t}>\theta_{1}>\ldots>\theta_{n}
$$

$$
\frac{d}{d \ln M_{\perp}} D_{A}^{B}\left(x, M_{\perp}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z} P_{A}^{C}(z) D_{C}^{B}\left(x / z, z M_{\perp}\right)
$$

$$
\theta^{\prime} \sim \theta_{j e t} \rightarrow M_{\perp}^{\prime}=\omega^{\prime} \theta^{\prime} \sim \omega^{\prime} \theta_{j e t}=z M_{\perp}
$$

COLOR COHERENCE IN A FEW WORDS

Consider the radiation of a gluon off a system of two color charges a and b .
large angle gluon radiation does not resolve the inner structure of the emitting system

Incoherent emissions at small angles

$$
\omega \frac{d N_{\mathrm{a}}}{d \omega d^{2} k_{\perp}} \propto \frac{\alpha_{s} C_{\mathrm{b}}}{k_{\perp}^{2}}+(\mathrm{b} \rightarrow \mathrm{c}) \quad \theta \ll \theta_{b c} \quad\left(k_{\perp} \ll \omega \theta_{b c}\right)
$$

large angle emission by the total charge (destructive interferences)

$$
\omega \frac{d N_{\mathrm{a}}}{d \omega d^{2} k_{\perp}} \propto \frac{\alpha_{s} C_{\mathrm{a}}}{k_{\perp}^{2}}
$$

$$
\theta \gg \theta_{b c} \quad\left(k_{\perp} \gg \omega \theta_{b c}\right)
$$

Energy flow: democratic branching

Integrating over transverse momenta, the contribution to the classical broadening vanishes

$$
\int_{\boldsymbol{l}} \mathcal{C}\left(\boldsymbol{l}, t_{L}\right)=0
$$

We obtain the simplified equation J.-P. Blaizot, E. lancu,Y.M.-T., arXiv: 1301.6102 [hep-ph]

$$
\frac{\partial}{\partial \tau} D(x, \tau)=\int \mathrm{d} z \hat{\mathcal{K}}(z)\left[\sqrt{\frac{z}{x}} D\left(\frac{x}{z}, \tau\right)-\frac{z}{\sqrt{x}} D(x, \tau)\right],
$$

Similar eq. postulated: R. Baier, A. H. Mueller, D. Schiff, D.T. Son (200I) S. Jeon, G. D. Moore(2003)
Toy Model: Keeping the singular part at $\mathbf{z = 0}$ and $\mathrm{z}=1$

$$
\mathcal{K}=P(z) \sqrt{\frac{\hat{q}_{e f f}}{z(1-z) E}} \approx \sqrt{\frac{\hat{q}}{E}} \frac{1}{z^{3 / 2}(1-z)^{3 / 2}}
$$

The exact solution for $\mathrm{D}(\mathrm{x}, \mathrm{E}, \mathrm{L})$ reads

$$
D(x)=\frac{\bar{\alpha}}{(1-x)^{3 / 2}} \sqrt{\frac{\hat{q} L^{2}}{E x}} \exp \left[-\pi \frac{\bar{\alpha}^{2} \hat{q} L^{2}}{(1-x) E}\right]
$$

Energy flow: democratic branching

Initial condition: $D_{0}(x)=\delta(1-x)$

$$
t=\bar{\alpha} \sqrt{\frac{\hat{q} L^{2}}{E}}
$$

scaling spectrum

$$
x \ll 1
$$

$$
D(x) \sim \frac{t}{\sqrt{x}} e^{-\pi t^{2}}
$$

Partons disappear in the medium when

$$
E<\bar{\alpha}_{s}^{2} \hat{q} L^{2}
$$

Energy flows uniformly from hard to soft modes without accumulation \Rightarrow indication of wave turbulence
$\begin{aligned} & \text { Energy in the } \\ & \text { spectrum }\end{aligned} \int_{0}^{1} d x D(x)=e^{-\pi t^{2}}<1 \Rightarrow$ indication of a condensate at $\mathbf{x}=0$

Energy flow: democratic branching

Energy lost in soft modes at large angles via turbulent flow

$$
\theta(\omega) \sim\left(\frac{\hat{q}}{\omega^{3}}\right)^{1 / 4} \sim 1 \quad \Delta E \simeq \frac{v}{2} \bar{\alpha}^{2} \hat{q} L^{2}
$$

FACTORIZATION OF BRANCHINGS INVACUUM

Ladder diagrams (no interferences) resum mass singularities: Strong ordering in k_{T} (DGLAP)

$$
\frac{d}{d \ln M_{\perp}} D_{A}^{B}\left(x, M_{\perp}\right)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z} P_{A}^{C}(z) D_{c}^{B}\left(x / z, M_{\perp}\right)
$$

In the soft regime $\omega \ll E$

$$
M_{\perp} \gg k_{\perp 1} \gg k_{\perp 2} \gg \ldots \gg k_{\perp N}
$$

Radiation suppressed at $\theta_{2}>\theta_{1}$ because of coherence phenomena: Interference of I with 2 at large angles
$k_{2 \perp} \ll k_{1 \perp}$

$$
\theta_{1}<\theta_{2} \ll \frac{\omega_{1}}{\omega_{2}} \theta_{1} \quad \text { kT ordering fails! }
$$

BUILDING IN-MEDIUM JET EVOLUTION:

 parton shower in classical background field $A\left(x^{+}, x_{\perp}\right)$Oth order (no-splitting) and I st order (I-splitting)

- mixed representation

$$
\begin{aligned}
\left(p_{\perp}, p^{+}, x^{+} \equiv t\right) & \text { - Propagators: Brownian motion in transverse } \\
& \mathcal{G}_{a c}\left(X, Y ; k^{+}\right)=\int \mathcal{D} \boldsymbol{r}_{\perp} \mathrm{e}^{i \frac{k^{+}}{2} \int_{y^{+}}^{x^{+}} d \xi \dot{\boldsymbol{r}}_{\perp}^{2}(\xi)} \tilde{U}_{a c}\left(x^{+}, y^{+} ; \boldsymbol{r}_{\perp}\right)
\end{aligned}
$$

- For instance the 0th order amplitude reads

$$
\mathcal{M}_{0, \lambda}(\mathbf{k})=e^{i k^{-} L^{+}} \int \frac{d \boldsymbol{p}}{\left(2 \pi^{2}\right)} \mathcal{G}\left(\mathbf{k}, L^{+} ; \mathbf{p}, x_{0}^{+}\right) \boldsymbol{\epsilon}_{\lambda} \cdot \boldsymbol{J}\left(\mathbf{p}, x_{0}^{+}\right)
$$

BUILDING IN-MEDIUM JET EVOLUTION:

Oth order (no-splitting)

BUILDING IN-MEDIUM JET EVOLUTION:

Ith order (1 -splitting)

$$
\begin{aligned}
S^{(2)} & \equiv\left\langle\mathcal{G}_{0} \mathcal{G}_{0}^{\dagger}\right\rangle \\
S^{(3)} & \equiv\left\langle\mathcal{G}_{1} \mathcal{G}_{2} \mathcal{G}_{0}^{\dagger}\right\rangle \\
S^{(4)} & \equiv\left\langle\mathcal{G}_{1} \mathcal{G}_{2} \mathcal{G}_{1}^{\dagger} \mathcal{G}_{2}^{\dagger}\right\rangle
\end{aligned}
$$

BUILDING IN-MEDIUM JET EVOLUTION:

Factorization of the 4-point function

BUILDING IN-MEDIUM JET EVOLUTION:

$t_{\mathrm{br}} \quad$ Factorization of the 4-point function

Color decorrelation (decoherence)

$$
S^{(4)} \equiv\left\langle\left\langle\left\langle\mathcal{G}_{1} \mathcal{G}_{2} \mathcal{G}_{1}^{\dagger} \mathcal{G}_{2}^{\dagger}\right\rangle\right.\right.
$$

$$
\begin{aligned}
& \propto \hat{q} \int_{0}^{t_{\mathrm{br}}} d \xi\left(\boldsymbol{r}_{1 \overline{1}} \cdot \boldsymbol{r}_{2 \overline{2}}\right) \sim \frac{\hat{q} t_{\mathrm{br}}}{Q_{s}^{2}} \\
& Q_{s}^{2}=\hat{q} L
\end{aligned}
$$

\approx
$\left\langle\mathcal{G}_{1} \mathcal{G}_{1}^{\dagger}\right\rangle\left\langle\mathcal{G}_{2} \mathcal{G}_{2}^{\dagger}\right\rangle+\mathcal{O}\left(\frac{t_{\mathrm{br}}}{L}\right)$
gluons are decorrelated after they are produced

FACTORIZATION OF BRANCHINGS INVACUUM

$$
M_{\perp} \equiv E \theta_{j e t}
$$

$$
k_{\perp}>Q_{0} \quad z=\omega / E
$$

the diff-branching probability

$$
d P=\frac{\alpha_{s} C_{R}}{\pi} P(z) d z \frac{d^{2} k_{\perp}}{k_{\perp}^{2}}
$$

soft and collinear divergences phase-space enhancement

A highly virtual parton branches typically over a time (formation time)

$$
\alpha_{s} \rightarrow \alpha_{s} \ln ^{2} \frac{M_{\perp}}{Q_{0}}
$$

$$
t_{f} \equiv \frac{E}{(p+k)^{2}} \sim \frac{E}{2 p \cdot k} \sim \frac{\omega}{k_{\perp}^{2}}
$$

For arbitrary number of parton branchings the logarithmic regions are accounted for via strong ordering of formation times

$$
t_{f N} \gg \ldots \gg t_{f 2} \gg t_{f 1}
$$

