Introduction to the heavy-ion session

Jean-Yves Ollitrault, IPhT Saclay Paris, June 11, 2013

The quest for ultra-high temperatures

Chemical reactions
T ~ 2 10³ K
v ~ 10³ m/s

Confined plasmas for nuclear fusion
T ~ 10⁸ K
v ~ 10⁶ m/s

Breaking the record with accelerators

- Use the largest accelerator in the world to achieve the highest velocities: 99.9997% speed of light
- Collide two beams of lead atomic nuclei Pb⁸²⁺ (two runs in november 2010 and 2011)

Nuclear collisions at the LHC

- Kinetic energy of nuclei = 1500 x mass energy
- Relativistic contraction of length by factor 1500: colliding thin pancakes
- The strong interaction transfers part of incoming energy into mass energy (creation of matter) and transverse kinetic energy.

Nuclear collisions at the LHC

- Something (quark-gluon plasma) is created. It is governed by strong interactions and expands into the vacuum
- The best theoretical description is a macroscopic one: a small lump of fluid
- $T \sim 2 |0|^2 \text{ K}$: relativistic fluid $v \sim c$

What we see

Trajectories of charged particles:

polar angle θ (or pseudorapidity η =-ln tan θ /2)

azimuthal angle ϕ

Counting charged particles

distribution in pseudorapidity (~polar angle)

Collisions classified from more central to less central in 5% bins

More central creates more particles

ALICE arXiv:1304.0347

A central collision typically produces 25000 particles.

Observing the small fluid: counting pairs

Number of pairs of particles versus relative azimuthal angle and pseudorapidity (~polar angle) in central Pb-Pb collisions

CMS arXiv:1105.2438

• Ripple in a pond: cleanest signature of fluid behavior

Lorentz contraction produces longitudinally-extended fluctuations

F. Gelis

- Pb nucleus=208 nucleons
- Each nucleon-nucleon collision deposits energy at the transverse location of the nucleons
- Thus the initial density profile is typically uniform longitudinally, but with a bumpy transverse profile

The fluid and its symmetries

- The fluid has the same symmetry as the initial state: longitudinally invariant, with large transverse fluctuations.
- Transverse velocity is generated by expansion into the vacuum
- The transverse velocity of the fluid depends on the azimuthal direction φ due to transverse fluctuations

Fluid to particles

- Eventually the fluid freezes and transforms into independent individual particles
- Particle velocity = fluid velocity, plus (small) thermal motion

- Some azimuthal directions φ have more/faster particles than others due to fluctuations.
 - More particles ⇒more pairs
- Explains the observed peak near $\Delta \phi = 0$, independent of longitudinal separation $\Delta \eta$ II

Understanding the ripple in a pond

- Independent particle emission from a thermal fluid
- + fluctuations in the initial state
- Correlations between outgoing particles

2012: proton-nucleus collisions

Central collisions (right) also show a ridge near $\Delta \Phi = 0$, similar to that observed in Pb-Pb collisions. Fluid?

Upcoming talks: I. Initial stage

Adrian Dumitru:

Magnetic Vortices in High-Energy Heavy-Ion Collisions

Thomas Epelbaum:

The Early Stages of Heavy Ion Collisions

Upcoming talks 2. Collective flow

Experiment

Ante Bilandzic: Anisotropic Flow in ALICE at LHC

Jiangyong Jia: Event-by-Event Flow and Initial Geometry at the LHC

Theory

Wojciech Broniowski: Collective Dynamics of the p+Pb Collisions Salvatore Plumari: Anisotropic Flows and Shear Viscosity from a Beam Energy Scan

Marco Ruggieri: Kinetic Theory Computation of Elliptic Flow in Heavy Ion Collisions

Upcoming talks 3. Other topics

Jet quenching

Yacine Mehtar-Tani: Generating Functional for Jet Observables in Heavy Ion Collisions

Quarkonium

Peter Filip: Magnetic Quenching of Quarkonium Decay

Strong coupling approaches

Ayan Mukhopadhyay: AdS/CFT Imprints on the ALICE Fireball?

Phase diagram

Hubert Hansen: A Detailed Analysis of the Phase Diagram of QCD in the High Density and Temperature Region

Thanks to all the speakers!

Backup

Mini bang versus big bang

- Nucleus-nucleus collisions at the LHC produce a small lump of strongly-coupled fluid expanding into the vacuum. Similar to early universe, t~10⁻⁶s
- Initial quantum fluctuations, followed by hydrodynamic expansion, explain the observed fluctuation spectrum.
- More and more phenomena observed at the LHC are explained by hydrodynamics
- Ongoing theoretical effort to understand early thermalization (Gelis, Epelbaum)

Quantitative calculations

- Observables: Fourier expansion in $\Delta \phi$ (spectrum of fluctuations v_n)
- Use some model for the initial density profile
- Solve relativistic hydrodynamics using this initial condition

ATLAS correlation data

Hydro versus v_n data

Ideal hydrodynamics, 0 viscosity

Gardim Grassi Luzum JYO, 1203.2882

Viscosity and fluctuations

- Local thermal equilibrium = ideal hydro
- Deviations from equilibrium = viscous corrections, prop. to density gradients
- Initial fluctuations \Rightarrow large gradients!
- Caveat : viscous hydrodynamics is not well understood in this regime.

Quantitative calculations

24