製
 NUCLEAR PHYSICS FROM LATTICE QCD Kostas Orginos

Hadron Interactions

Goals:

* Challenge: Compute properties of nuclei from QCD
* Spectrum and structure
* Confirm well known experimental observation for two nucleon systems
* Explore the largely unknown territory of hyper-nuclear physics
* Provide input for the equation of state for nuclear matter in neutron stars
* Provide input for understanding the properties of multi-baryon systems

Jefferson Lab

FAIR

*)
(อ) KEK

Scales of the problem

- Hadronic Scale: $1 \mathrm{fm} \sim 1 \times 10^{-13} \mathrm{~cm}$
- Lattice spacing $\ll 1$ fm
- take $\mathrm{a}=0.1 \mathrm{fm}$
- Lattice size $\mathrm{La} \gg 1 \mathrm{fm}$

- take $\mathrm{La}=3 \mathrm{fm}$
- Lattice 32^{4}
- Gauge degrees of freedom: $8 \times 4 \times 32^{4}=3.4 \times 10^{7}$

The pion mass is an
additional small scale
$\sim 1 / \mathrm{m}_{\boldsymbol{\pi}} \sim 1.4 \mathrm{fm}$
Single hadron volume corrections

$$
\sim e^{-m_{\pi} L}
$$

$\sim 6 \mathrm{fm}$ boxes are needed
Two hadron bound state volume corrections $\sim e^{-\kappa L}$

Binding momentum κ of the deuteron $\sim 45 \mathrm{MeV}$
Nuclear energy level splittings are a few MeV

$$
\text { Box sizes of about } 10 \mathrm{fm} \text { will be needed }
$$

Bound States

Luscher Comm. Math. Phys 104, 177 '86

$$
\begin{array}{rlr}
E_{b} & =\sqrt{p^{2}+m_{1}^{2}}+\sqrt{p^{2}+m_{2}^{2}}-m_{1}-m_{2} & p^{2}<0 \\
E_{b} & \approx \frac{p^{2}}{2 \mu}=-\frac{\kappa^{2}}{2 \mu} & \kappa=|p|
\end{array}
$$

κ is the "binding momentum" and μ the reduced mass

Finite volume corrections:

$$
\Delta E_{b}=-3|A|^{2} \frac{e^{-\kappa L}}{\mu L}+\mathcal{O}\left(e^{-\sqrt{2} \kappa L}\right)
$$

cubic group irrep: A_{1}^{+}

Scattering on the Lattice

Luscher Comm. Math. Phys 105, 153 ' 86

Elastic scattering amplitude (s-wave):

$$
\begin{array}{r}
A(p)= \\
\qquad A(p)=\frac{4 \pi}{m} \frac{1}{p \cot \delta-i p}
\end{array}
$$

At finite volume one can show:

$$
E_{n}=2 \sqrt{p_{n}^{2}+m^{2}}
$$

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) \quad \mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{\mid \mathrm{j}<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda
$$

Small p:

$$
p \cot \delta(p)=\frac{1}{a}+\frac{1}{2} r p^{2}+\ldots
$$

a is the scattering length

Two Nucleon spectrum

free nucleons

Signal to Noise ratio for correlation functions

$$
\begin{gathered}
C(t)=\langle N(t) \bar{N}(0)\rangle \sim E e^{-M_{N} t} \\
\operatorname{var}(C(t))=\langle N \bar{N}(t) N \bar{N}(0)\rangle \sim A e^{-2 M_{N} t}+B e^{-3 m_{\pi} t} \\
S t o N=\frac{C(t)}{\sqrt{\operatorname{var}(C(t))}}=\sim A e^{-\left(M_{N}-3 / 2 m_{\pi}\right) t}
\end{gathered}
$$

* The signal to noise ratio drops exponentially with time
* The signal to noise ratio drops exponentially with decreasing pion mass
* For two nucleons: $\operatorname{StoN}(2 N)=\operatorname{StoN}(1 N)^{2}$

Signal to Noise

$$
\begin{gathered}
323 \times 256 \\
M_{\pi}=390 \mathrm{MeV} \quad \text { anisotropy factor } 3.5
\end{gathered}
$$

Challenges for Nuclear physics

* New scales that are much smaller than characteristic QCD scale appear
* The spectrum is complex and more difficult to extract from euclidean correlators
* Construction of multi-quark correlations functions may be computationally expensive
* Monte-Carlo evaluation of correlation functions converges slowly

Challenges for Nuclear physics

* New scales that are much smaller than characteristic QCD scale appear
* The spectrum is complex and more difficult to extract from euclidean correlators
* Construction of multi-quark correlations functions may be computationally expensive
* Monte-Carlo evaluation of correlation functions converges slowly

[^0]
Interpolating fields

Most general multi-baryon interpolating field

$$
\overline{\mathcal{N}}^{h}=\sum_{\mathbf{a}} w_{h}^{a_{1}, a_{2} \cdots a_{n_{q}}} \bar{q}\left(a_{1}\right) \bar{q}\left(a_{2}\right) \cdots \bar{q}\left(a_{n_{q}}\right)
$$

The indices \boldsymbol{a} are composite including space, spin, color and flavor that can take N possible values

* The goal is to calculate the tensors w
* The tensors \mathcal{w} are completely antisymmetric
* Number of terms in the sum are

$$
\frac{N!}{\left(N-n_{q}\right)!}
$$

Imposing the anti-symmetry:

$\overline{\mathcal{N}}^{h}=\sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right)$
Totally anti-symmetric tensor

$$
\epsilon^{1,2,3,4, \cdots, n_{q}}=1
$$

* Total number of reduced weights:

$$
\frac{N!}{n_{q}!\left(N-n_{q}\right)!}
$$

Hadronic Interpolating field

$$
\begin{aligned}
& \overline{\mathcal{N}}^{h}=\sum_{k=1}^{M_{w}} \frac{\tilde{W}_{h}^{\left(b_{1}, b_{2} \cdots b_{A}\right)}}{l} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, \cdots, i_{A}} \bar{B}\left(b_{i_{1}}\right) \bar{B}\left(b_{i_{2}}\right) \cdots \bar{B}\left(b_{i_{A}}\right) \\
& \text { nadronic reduced weights }
\end{aligned}
$$

baryon composite interpolating field

$$
\bar{B}(b)=\sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{\left(a_{1}, a_{2}, a_{3}\right), k} \sum_{\text {i }} \epsilon^{i_{1}, i_{2}, i_{3}} \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \bar{q}\left(a_{i_{3}}\right) .
$$

Calculation of weights

* Compute the hadronic weights
* Replace baryons by quark interpolating fields
* Perform Grassmann reductions
* Read off the reduced weights for the quark interpolating fields
* Computations done in: algebra (C++)

$$
\begin{gathered}
\overline{\mathcal{N}}^{h}=\sum_{k=1}^{M_{w}} \tilde{W}_{h}^{\left(b_{1}, b_{2} \cdots b_{A}\right)} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, \cdots, i_{A}} \bar{B}\left(b_{i_{1}}\right) \bar{B}\left(b_{i_{2}}\right) \cdots \bar{B}\left(b_{i_{A}}\right) \\
\overline{\mathcal{N}}^{h}=\sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right)
\end{gathered}
$$

Interpolating fields

Label	A	s	I	J^{π}	Local SU(3) irreps	int. field size
N	1	0	$1 / 2$	$1 / 2^{+}$	$\mathbf{8}$	9
Λ	1	-1	0	$1 / 2^{+}$	8	12
Σ	1	-1	1	$1 / 2^{+}$	8	9
Ξ	1	-2	$1 / 2$	$1 / 2^{+}$	$\mathbf{8}$	9
d	2	0	0	1^{+}	$\overline{\mathbf{1 0}}$	21
$n n$	2	0	1	0^{+}	$\mathbf{2 7}$	21
$n \Lambda$	2	-1	$1 / 2$	0^{+}	$\mathbf{2 7}$	96
$n \Lambda$	2	-1	$1 / 2$	1^{+}	$\mathbf{8}_{A}, \overline{\mathbf{1 0}}$	48,75
$n \Sigma$	2	-1	$3 / 2$	0^{+}	$\mathbf{2 7}$	42
$n \Sigma$	2	-1	$3 / 2$	1^{+}	$\mathbf{1 0}$	27
$n \Xi$	2	-2	0	1^{+}	$\mathbf{8} A$	96
$n \Xi$	2	-2	1	1^{+}	$\mathbf{8}_{A}, \mathbf{1 0}, \overline{\mathbf{1 0}}$	$52,66,75$
H	2	-2	0	0^{+}	$\mathbf{1 , \mathbf { 2 7 }}$	90,132
${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$	3	0	$1 / 2$	$1 / 2^{+}$	$\mathbf{\overline { \mathbf { 3 5 } }}$	9
${ }_{\Lambda}^{3} \mathrm{H}\left(1 / 2^{+}\right)$	3	-1	0	$1 / 2^{+}$	$\overline{\mathbf{3 5}}$	66
${ }_{\Lambda}^{3} \mathrm{H}\left(3 / 2^{+}\right)$	3	-1	0	$3 / 2^{+}$	$\overline{\mathbf{1 0}}$	30
${ }_{\Lambda}^{3} \mathrm{He},{ }_{\Lambda}^{3} \tilde{\mathrm{H}}, n n \Lambda$	3	-1	1	$1 / 2^{+}$	$\mathbf{2 7}, \overline{\mathbf{3 5}}$	30,45
$\sum_{\Sigma}^{3} \mathrm{He}$	3	-1	1	$3 / 2^{+}$	$\mathbf{2 7}$	21
${ }^{4} \mathrm{He}$	4	0	0	0^{+}	$\overline{\mathbf{2 8}}$	1
${ }_{\Lambda}^{4} \mathrm{He},{ }_{\Lambda}^{4} \mathrm{H}$	4	-1	$1 / 2$	0^{+}	$\overline{\mathbf{2 8}}$	6
${ }^{4}{ }_{\Lambda}^{4} \mathrm{He}$	4	-2	1	0^{+}	$\mathbf{2 7}, \overline{\mathbf{2 8}}$	15,18
$\Lambda \Xi^{0} p n n$	5	-3	0	$3 / 2^{+}$	$\overline{\mathbf{1 0}}+\ldots$	1

Interpolating fields

Label	A	s	I	J^{π}	Local SU(3) irreps	int. field size
N	1	0	$1 / 2$	$1 / 2^{+}$	$\mathbf{8}$	9
Λ	1	-1	0	$1 / 2^{+}$	8	12
Σ	1	-1	1	$1 / 2^{+}$	8	9
Ξ	1	-2	$1 / 2$	$1 / 2^{+}$	$\mathbf{8}$	9
d	2	0	0	1^{+}	$\overline{\mathbf{1 0}}$	21
$n n$	2	0	1	0^{+}	$\mathbf{2 7}$	21
$n \Lambda$	2	-1	$1 / 2$	0^{+}	$\mathbf{2 7}$	96
$n \Lambda$	2	-1	$1 / 2$	1^{+}	$\mathbf{8}_{A}, \overline{\mathbf{1 0}}$	48,75
$n \Sigma$	2	-1	$3 / 2$	0^{+}	$\mathbf{2 7}$	42
$n \Sigma$	2	-1	$3 / 2$	1^{+}	$\mathbf{1 0}$	27
$n \Xi$	2	-2	0	1^{+}	$\mathbf{8} A$	96
$n \Xi$	2	-2	1	1^{+}	$\mathbf{8}_{A}, \mathbf{1 0}, \overline{\mathbf{1 0}}$	$52,66,75$
H	2	-2	0	0^{+}	$\mathbf{1 , \mathbf { 2 7 }}$	90,132
${ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$	3	0	$1 / 2$	$1 / 2^{+}$	$\mathbf{\overline { \mathbf { 3 5 } }}$	9
${ }_{\Lambda}^{3} \mathrm{H}\left(1 / 2^{+}\right)$	3	-1	0	$1 / 2^{+}$	$\overline{\mathbf{3 5}}$	66
${ }_{\Lambda}^{3} \mathrm{H}\left(3 / 2^{+}\right)$	3	-1	0	$3 / 2^{+}$	$\overline{\mathbf{1 0}}$	30
${ }_{\Lambda}^{3} \mathrm{He},{ }_{\Lambda}^{3} \tilde{\mathrm{H}}, n n \Lambda$	3	-1	1	$1 / 2^{+}$	$\mathbf{2 7}, \overline{\mathbf{3 5}}$	30,45
$\sum_{\Sigma}^{3} \mathrm{He}$	3	-1	1	$3 / 2^{+}$	$\mathbf{2 7}$	21
${ }^{4} \mathrm{He}$	4	0	0	0^{+}	$\overline{\mathbf{2 8}}$	1
${ }_{\Lambda}^{4} \mathrm{He},{ }_{\Lambda}^{4} \mathrm{H}$	4	-1	$1 / 2$	0^{+}	$\overline{\mathbf{2 8}}$	6
${ }^{4}{ }_{\Lambda}^{4} \mathrm{He}$	4	-2	1	0^{+}	$\mathbf{2 7}, \overline{\mathbf{2 8}}$	15,18
$\Lambda \Xi^{0} p n n$	5	-3	0	$3 / 2^{+}$	$\overline{\mathbf{1 0}}+\ldots$	1

Contraction methods

* quark to hadronic interpolating fields
* quark to quark interpolating fields

Quarks to Quarks

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-\mathcal{S}_{Q C D}} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
\times & \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \times \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

Define the matrix:

$$
G(j, i)^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right) ;\left(a_{1}, a_{2} \cdots a_{n_{q}}\right)}=S\left(a_{j}^{\prime} ; a_{i}\right)
$$

Quarks to Quarks

The matrix:

$$
G(j, i)^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right) ;\left(a_{1}, a_{2} \cdots a_{n_{q}}\right)}=S\left(a_{j}^{\prime} ; a_{i}\right)
$$

The Correlation function:
$\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}_{2}^{h}}(0)\right]=\sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times\left|G^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right) ;\left(a_{1}, a_{2} \cdots a_{n_{q}}\right)}\right|$

Total momentum projection is implicit in the above

Quarks to Quarks

Naive Cost: $\quad n_{u}!n_{d}!n_{s}!\times N M$
Actual Cost: $n_{u}^{3} n_{d}^{3} n_{s}^{3} \times M N$

* Loop over all source and sink terms
* Compute the determinant for each flavor
* Cost is polynomial in quark number

H-dibaryon

R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

* Proposed by R. Jaffe 1977
* Perturbative color-spin interactions are attractive for $S=-2$, (uuddss)
$\mathcal{B}=2$,
* Diquark picture of scalar diquarks (ud)(ds)(su)
* Experimental searches of the H have not found it
* BNL RHIC (+model): Excludes the region [-95, o] MeV
A. L. Trattner, PhD Thesis, LBL, UMI-32-54109 (2006).
* KEK: Resonance near threshold

$$
\text { C. J. Yoon et al., Phys. Rev. C 75, } 022201 \text { (2007). }
$$

* Several Lattice QCD calculations have been addressing the existence of a bound H

NPLQCD: lattice set up

* Anisotropic $2+1$ clover fermion lattices
* $\mathrm{a} \sim 0.125 \mathrm{fm}$ (anisotropy of ~ 3.5)

Hadron Spectrum/JLAB

* pion mass $\sim 390 \mathrm{MeV}$
* Volumes $16^{3} \times 128,20^{3} \times 128,24^{3} \times 128,32^{3} \times 256$
* Smeared source - 3 sink interpolating fields
* Interpolating fields have the structure of s-wave $\Lambda-\Lambda$ system
* $\mathrm{I}=0, \mathrm{~S}=-2, \mathrm{~A}_{1}$, positive parity

H-dibaryon: Towards the physical point

H-dibaryon:

Is bound at heavy quark masses.
May be unbound at the physical point
[S. Beane et.al. arXiv:1103.2821 Mod. Phys. Lett. A26: 2587, 2011]
Is bound at heavy
quark masses.
May be unbound at
the physical point

HALQCD:Phys.Rev.Lett.106:162002,2011

H-dibaryon: Towards the physical point

[S. Beane et.al. arXiv:1103.2821 Mod. Phys. Lett. A26: 2587, 2011]

H-dibaryon:

Is bound at heavy quark masses.
May be unbound at the physical point

HALQCD:Phys.Rev.Lett.106:162002,2011
ChiPT studies indicate the same trend:
P. Shanahan et.al. arXiv:IIO6.285I
J. Haidenbauer, Ulf-G. Meisner arXiv:IIO9.3590

Two baryon bound states

$\mathrm{n}_{\mathrm{f}}=0$:
Yamazaki, Kuramashi, Ukawa Phys.Rev. D84 (2011) 054506 arXiv: 1105.1418
gauge fields $2+1$ flavors (JLab) anisotropic clover $\mathrm{m}_{\pi \sim}-390 \mathrm{MeV}$

NPLQCD

Avoiding the noise

Work with heavy quarks

$$
S t o N=\frac{C(t)}{\sqrt{\operatorname{var}(C(t))}}=\sim A e^{-\left(M_{N}-3 / 2 m_{\pi}\right) t}
$$

Lattice Setup

* Isotropic Clover Wilson with LW gauge action
* Stout smeared (1-level)
* Tadpole improved
* SU(3) symmetric point
* Defined using $\mathrm{m}_{\pi} / \mathrm{m}_{\Omega}$

NPLQCD arXiv:1206.5219

* Lattice spacing 0.145 fm
* Set using Y spectroscopy

6000 configurations,
200 correlation functions per configuration

* Large volumes
* $24^{3} \times 48$
$32^{3} \times 48$
$48^{3} \times 64$
*

3.5 fm
4.5 fm
$7.0 f m$

Nuclear spectrum

Nucleon Phase shifts

Luscher Comm. Math. Phys 105, 153 ' 86

Elastic scattering amplitude (s-wave):

$$
\begin{array}{r}
A(p)=0 \\
A(p)=\frac{4 \pi}{m} \frac{1}{p \cot \delta-i p}
\end{array}
$$

At finite volume one can show:

$$
E_{n}=2 \sqrt{p_{n}^{2}+m^{2}}
$$

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) \quad \mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{\mid \mathrm{j}<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda
$$

Small p:

$$
p \cot \delta(p)=\frac{1}{a}+\frac{1}{2} r p^{2}+\ldots
$$

a is the scattering length

$$
E(p)=2 \sqrt{p^{2}+m^{2}}-2 m
$$

Two Body spectrum in a box

$$
\begin{aligned}
& p \cot \delta(p)=S\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) \\
& p \cot \delta(p)=\frac{1}{a}+r^{2} p^{2}+\cdots
\end{aligned}
$$

\bar{Z}	$\mathrm{E}(\mathrm{p})$
$\cdots \cdots \cdots \cdots$	\circ
	$\mathrm{E}_{-\mathrm{I}}$

"back to back momentum"

nucleon-nucleon phase shifts

spin triplet
$\mathrm{M}_{\pi}=8 \mathrm{ooMeV}$

spin singlet
degenerate up down and strange quarks

Correlators for large nucleii

${ }^{4} \mathrm{He}(\mathrm{SP})$

Correlators for large nucleii

Correlators for large nucleii

Correlators for large nucleii

Correlators for large nucleii

${ }^{28} \mathrm{Si}$ (SP)

Expected Carbon spectrum in the 32^{3} box

Expected Carbon spectrum in the 32^{3} box

Conclusions

* We have a systematic way of constructing all possible interpolating fields
* Using heavy quarks noise is reduced
* Special care needs to be given to the selection of interpolating fields
* Minimize number of terms in the interpolating field and optimize the signal
* NPLQCD: Presented results for the spectrum of nuclei with $A<5$ and $S>-3$

NPLQCD arXiv:

* ... and nucleon-nucleon phase shifts 1206.5219,1301.5790
* We have an algorithm for quark contractions in polynomial time for $\mathrm{A}>5$
* Future work must focus on the improved sampling methods to reduce statistical errors at light quark masses

[^0]: We really need better algorithms to deal with an exponentially hard problem

