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Hadron Interactions

Challenge: Compute properties of nuclei from 
QCD

Spectrum and structure

Confirm well known experimental observation 
for two nucleon systems

Explore the largely unknown territory of 
hyper-nuclear physics

Provide input for the equation of state for 
nuclear matter in neutron stars

Provide input for understanding the  
properties of multi-baryon systems

Goals:
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Scales of  the problem
Hadronic Scale: 1fm ~ 1x10-13 cm

Lattice spacing << 1fm

take a=0.1fm

Lattice size  La >> 1fm 

take La = 3fm

Lattice 324

Gauge degrees of freedom: 8x4x324 = 3.4x107 

color
dimensions

sites
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~1/mπ~1.4fm
The pion mass is an 

additional small scale

Binding momentum κ of the deuteron ~ 45MeV

Single hadron volume corrections

~ 6  fm boxes are needed 

Nuclear energy level splittings are a few MeV

Box sizes of  about 10 fm will be needed

� e�m�L

Two hadron bound state volume 
corrections ⇠ e�L
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p2 < 0

Bound States

Eb =
�

p2 + m2
1 +

�
p2 + m2

2 �m1 �m2

� = |p|

κ is the “binding momentum” and µ the reduced mass

Eb �
p2

2µ
= ��2

2µ

Luscher Comm. Math. Phys 104, 177 ’86

Finite volume corrections:

�Eb = �3|A|2 e��L

µL
+ O

�
e�
�

2�L
�

A+
1

cubic group  irrep:
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Scattering on the Lattice 

Elastic scattering amplitude (s-wave):

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.

3

At finite volume one can show:

Luscher Comm. Math. Phys 105, 153 ’86

p cot δ(p) =
1

a
+

1

2
rp2 + ....

En = 2
�

p2
n + m2

Small p:  

a is the scattering length 
Monday, June 10, 13



Two Nucleon spectrum

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Mn

free 2 particle spectrum

}

243 lattice Mπ=390MeVanisotropy factor 3.5

free nucleons

3fm box 

Monday, June 10, 13



Signal to Noise ratio for correlation functions

The signal to noise ratio drops exponentially with time

The signal to noise ratio drops exponentially with decreasing pion mass

For two nucleons: StoN(2N) = StoN(1N)2

var(C(t)) = ⇥NN̄(t)NN̄(0)⇤ � Ae�2MN t + Be�3m�t

C(t) = ⇥N(t)N̄(0)⇤ � Ee�MN t

StoN =
C(t)�

var(C(t))
=� Ae�(MN�3/2m�)t
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Challenges for Nuclear 
physics

New  scales that are much smaller than characteristic 
QCD scale appear

The spectrum is complex and more difficult to extract 
from euclidean correlators

Construction of multi-quark correlations functions 
may be computationally expensive

Monte-Carlo evaluation of correlation functions 
converges slowly
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Challenges for Nuclear 
physics

New  scales that are much smaller than characteristic 
QCD scale appear

The spectrum is complex and more difficult to extract 
from euclidean correlators

Construction of multi-quark correlations functions 
may be computationally expensive

Monte-Carlo evaluation of correlation functions 
converges slowly

We really need better algorithms to deal with an exponentially hard problem
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Interpolating fields

N̄ h =
X

a

w
a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq )

Most general multi-baryon interpolating field

The indices a  are composite including space, spin, color and flavor
that can take N possible values

The goal is to calculate the tensors w 

The tensors w are completely antisymmetric 

Number of terms in the sum are

N !

(N � nq)!
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Total number of reduced weights: N !

nq!(N � nq)!

N̄ h =
NwX

k=1

w̃
(a1,a2···anq ),k

h

X

i

✏i1,i2,··· ,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
)

Imposing the anti-symmetry:

✏1,2,3,4,··· ,nq = 1

Totally anti-symmetric tensor

Reduced weights

Monday, June 10, 13



Hadronic Interpolating field

N̄ h =
MwX

k=1

W̃ (b1,b2···bA)
h

X

i

✏i1,i2,··· ,iAB̄(bi1)B̄(bi2) · · · B̄(biA)

hadronic reduced weights
baryon composite interpolating field

B̄(b) =

NB(b)X

k=1

w̃(a1,a2,a3),k
b

X

i

✏i1,i2,i3 q̄(ai1)q̄(ai2)q̄(ai3)

Basak et.al. PhysRevD.72.074501 (2005)
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Calculation of  weights
Compute the hadronic weights

Replace baryons by quark interpolating fields

Perform Grassmann reductions

Read off the reduced weights for the quark interpolating fields 

Computations done in: algebra (C++)

N̄ h =
MwX

k=1

W̃ (b1,b2···bA)
h

X

i

✏i1,i2,··· ,iAB̄(bi1)B̄(bi2) · · · B̄(biA)

N̄ h =
NwX

k=1

w̃
(a1,a2···anq ),k

h

X

i

✏i1,i2,··· ,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
)
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Interpolating fields

Label A s I J⇡ Local SU(3) irreps int. field size
N 1 0 1/2 1/2+ 8 9
⇤ 1 -1 0 1/2+ 8 12
⌃ 1 -1 1 1/2+ 8 9
⌅ 1 -2 1/2 1/2+ 8 9
d 2 0 0 1+ 10 21
nn 2 0 1 0+ 27 21
n⇤ 2 -1 1/2 0+ 27 96
n⇤ 2 -1 1/2 1+ 8A, 10 48, 75
n⌃ 2 -1 3/2 0+ 27 42
n⌃ 2 -1 3/2 1+ 10 27
n⌅ 2 -2 0 1+ 8A 96
n⌅ 2 -2 1 1+ 8A, 10, 10 52,66,75
H 2 -2 0 0+ 1, 27 90,132

3H, 3He 3 0 1/2 1/2+ 35 9
3
⇤H(1/2

+) 3 -1 0 1/2+ 35 66
3
⇤H(3/2

+) 3 -1 0 3/2+ 10 30
3
⇤He,

3
⇤H̃, nn⇤ 3 -1 1 1/2+ 27, 35 30,45
3
⌃He 3 -1 1 3/2+ 27 21
4He 4 0 0 0+ 28 1

4
⇤He,

4
⇤H 4 -1 1/2 0+ 28 6

4
⇤⇤He 4 -2 1 0+ 27, 28 15, 18

⇤⌅0pnn 5 -3 0 3/2+ 10 + ... 1

NPLQCD arXiv:1206.5219

Monday, June 10, 13



Interpolating fields
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Contraction methods

quark to hadronic interpolating fields

quark to quark interpolating fields
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[N h
1 (t)N̄ h

2 (0)] =

Z
DqDq̄ e�SQCD

N 0
wX

k0=1

NwX

k=1

w̃
0(a0

1,a
0
2···a

0
nq

),k0

h w̃
(a1,a2···anq ),k

h ⇥

⇥
X

j

X

i

✏j1,j2,··· ,jnq ✏i1,i2,··· ,inq q(a0jnq
) · · · q(a0j2)q(a

0
j1)⇥ q̄(ai1)q̄(ai2) · · · q̄(ainq

)

Quarks to Quarks

= e�Seff

N 0
wX

k0=1

NwX

k=1

w̃
0(a0

1,a
0
2···a

0
nq

),k0

h w̃
(a1,a2···anq ),k

h ⇥

⇥
X

j

X

i

✏j1,j2,··· ,jnq ✏i1,i2,··· ,inqS(a0j1 ; ai1)S(a
0
j2 ; ai2) · · ·S(a

0
jnq

; ainq
)

G(j, i)(a
0
1,a

0
2···a

0
nq

);(a1,a2···anq ) = S(a0j ; ai)

Define the matrix: 
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Quarks to Quarks

G(j, i)(a
0
1,a

0
2···a

0
nq

);(a1,a2···anq ) = S(a0j ; ai)

The matrix: 

[N h
1 (t)N̄ h

2 (0)] =

N 0
wX

k0=1

NwX

k=1

w̃
0(a0

1,a
0
2···a

0
nq

),k0

h w̃
(a1,a2···anq ),k

h ⇥
���G(a0

1,a
0
2···a

0
nq

);(a1,a2···anq )
���

The Correlation function:

Total momentum projection is implicit in the above
Monday, June 10, 13



~P

sin
gl

e 
po

in
t s

ou
rc

e 

M terms N terms

Quarks to Quarks

Loop over all source and sink terms

Compute the determinant for each flavor

Cost is polynomial in quark number

n3
un

3
dn

3
s ⇥MNActual Cost:

Naive Cost: nu!nd!ns!⇥NM
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H-dibaryon 

S=-2, 
B=2, 
Jp=0+

R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

A. L. Trattner, PhD Thesis, LBL, UMI-32-54109 (2006).

C. J. Yoon et al., Phys. Rev. C 75, 022201 (2007).

Proposed by R. Jaffe 1977

Perturbative color-spin interactions are attractive for 
(uuddss)

Diquark picture of scalar diquarks  (ud)(ds)(su)

Experimental searches of the H have not found it

BNL RHIC (+model): Excludes the region  [-95, 0] MeV 

KEK: Resonance near threshold 

Several Lattice QCD calculations have been addressing the 
existence of a bound H
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NPLQCD: lattice set up

Anisotropic 2+1 clover fermion lattices 

a ~ 0.125fm (anisotropy of ~ 3.5)

pion mass ~ 390 MeV

Volumes 163 x 128, 203 x 128,  243 x 128, 323 x 256

Smeared source - 3 sink interpolating fields

Interpolating fields have the structure of s-wave Λ-Λ system

I=0,  S=-2, A1 , positive parity 

Hadron Spectrum/JLAB

largest box 4fm
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H-dibaryon: Towards the physical point

HALQCD nf=3
NPLQCD nf=2+1
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[ S. Beane et.al. arXiv:1103.2821 Mod. Phys. Lett. A26: 2587, 2011]

 Is bound at heavy 
quark masses. 
May be unbound at 
the physical point 

H-dibaryon:

HALQCD:Phys.Rev.Lett.106:162002,2011

ChiPT studies indicate the same trend: 
P. Shanahan et.al. arXiv:1106.2851

J. Haidenbauer, Ulf-G. Meisner  arXiv:1109.3590
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quark masses. 
May be unbound at 
the physical point 

H-dibaryon:

HALQCD:Phys.Rev.Lett.106:162002,2011

ChiPT studies indicate the same trend: 
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Monday, June 10, 13



Two baryon bound states
[ S. Beane et.al. arXiv:1108.2889  submitted to Phys.Rev.D]

NPLQCD

 gauge fields  2+1 flavors (JLab)
anisotropic clover mπ~ 390MeV

G. A. Miller, 
arXiv:nucl-th/0607006

V. G. J. Stoks and T. A. Rijken
Phys. Rev. C 59, 3009 (1999)
[arXiv:nucl-th/9901028

J. Haidenbauer, Ulf-G. Meisner
Phys.Lett.B684,275-280(2010)
arXiv:0907.1395

nf=0:
Yamazaki, Kuramashi, Ukawa 
Phys.Rev. D84 (2011) 054506
arXiv: 1105.1418
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Avoiding the noise

Work with heavy quarks

StoN =
C(t)�

var(C(t))
=� Ae�(MN�3/2m�)t
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Isotropic Clover Wilson with LW gauge action

Stout smeared (1-level) 

Tadpole improved

SU(3) symmetric point 

Defined using  mπ/mΩ 

Lattice spacing 0.145fm 

Set using Υ spectroscopy

Large volumes

243 x 48  323 x 48  483 x 64

  3.5fm    4.5fm     7.0fm 

Lattice Setup

NPLQCD arXiv:1206.5219

6000 configurations, 
200 correlation functions per configuration  

  computer time: XSEDE/NERSC
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Nuclear spectrum
NPLQCD
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Nucleon Phase shifts

Elastic scattering amplitude (s-wave):

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa
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1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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At finite volume one can show:
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p cot δ(p) =
1

a
+

1

2
rp2 + ....

En = 2
�

p2
n + m2

Small p:  

a is the scattering length 
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E(p) = 2
�

p2 + m2 � 2m

Two Body spectrum in a box

0
E-1

E(p)

...
...

p cot�(p) = S(
p2L2

4�2
)

k

k
single point source

“back to back momentum”

p cot�(p) =
1
a

+ r2p2 + · · ·
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Correlators for large nucleii
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Correlators for large nucleii
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Correlators for large nucleii
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Correlators for large nucleii
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Correlators for large nucleii
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Conclusions
We have a systematic way of constructing all possible interpolating fields

Using heavy quarks noise is reduced

Special care needs to be given to the selection of interpolating fields

Minimize number of terms in the interpolating field  and optimize the 
signal

NPLQCD: Presented results for the spectrum of nuclei with A<5 and S>-3

... and nucleon-nucleon phase shifts

We have an algorithm for quark contractions in polynomial time for A>5

Future work must focus on the improved sampling methods to reduce 
statistical errors at light quark masses

NPLQCD arXiv:
1206.5219,1301.5790
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