The Quantum Seasurement Profilem in Gusmolngy

GR\&CO

J. Martin, V. Vennin and P. P., Phys. Rev. D86, 103524 (2012) [arXiv:1207.2086]

+ collaborations with N. Pinto-Neto \& A. Valentini (2001...)

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathcal{N}^{2} \mathrm{~d} t^{2}+h_{i j}\left(\mathrm{~d} x^{i}+\mathcal{N}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\mathcal{N}^{j} \mathrm{~d} t\right)
$$

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathcal{N}^{2} \mathrm{~d} t^{2}+h_{i j}\left(\mathrm{~d} x^{i}+\mathcal{N}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\mathcal{N}^{j} \mathrm{~d} t\right)
$$

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathcal{N}^{2} \mathrm{~d} t^{2}+h_{i j}\left(\mathrm{~d} x^{i}+\mathcal{N}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\mathcal{N}^{j} \mathrm{~d} t\right)
$$

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathcal{N}^{2} \mathrm{~d} t^{2}+h_{i j}\left(\mathrm{~d} x^{i}+\mathcal{N}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\mathcal{N}^{j} \mathrm{~d} t\right)
$$

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathcal{N}^{2} \mathrm{~d} t^{2}+h_{i j}\left(\mathrm{~d} x^{i}+\mathcal{N}^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\mathcal{N}^{j} \mathrm{~d} t\right)
$$

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

The Universe as a closed quantum system: Quantum cosmology

- Hamiltonian GR

Action: $\quad \mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}\left({ }^{4} R-2 \Lambda\right)+2 \int_{\partial \mathcal{M}} \mathrm{d}^{3} x \sqrt{h} K_{i}^{i}\right]+\mathcal{S}_{\text {mater }}$
$\left.\begin{array}{rl}\text { Canonical momenta } & \pi^{i j} \\ \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right) \\ \pi_{\Phi} & \equiv \frac{\delta L}{\delta \dot{\Phi}}=\frac{\sqrt{h}}{\mathcal{N}}\left(\dot{\Phi}-\mathcal{N}^{i} \frac{\partial \Phi}{\partial x^{i}}\right) \\ \pi^{0} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}}=0 \\ \pi^{i} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}_{i}}=0\end{array}\right\}$ Primary constraints

$$
\left.\begin{array}{rl}
\text { Canonical momenta } & \pi^{i j} \\
\equiv \pi_{\Phi} & \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{\delta \dot{\Phi}}=\frac{\sqrt{h}}{\mathcal{N}}\left(\dot{\Phi}_{\mathrm{N}}-\mathcal{N}^{i} \frac{\partial \Phi}{\partial x^{i}}\right) \\
\pi^{0} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}}=0 \\
\pi^{i} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}_{i}}=0
\end{array}\right\} \text { Primary constraints }
$$

Hamiltonian $H \equiv \int \mathrm{~d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\pi^{i j} \dot{h}_{i j}+\pi_{\Phi} \dot{\Phi}\right)-L=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\mathcal{N} \mathcal{H}+\mathcal{N}_{i} \mathcal{H}^{i}\right)$

Canonical momenta $\quad \pi^{i j} \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right)$

$$
\pi_{\Phi} \equiv \frac{\delta L}{\delta \dot{\Phi}}=\frac{\sqrt{h}}{\mathcal{N}}\left(\dot{\Phi}-\mathcal{N}^{i} \frac{\partial \Phi}{\partial x^{i}}\right)
$$

$$
\left.\begin{array}{rl}
\pi^{0} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}}=0 \\
\pi^{i} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}_{i}}=0
\end{array}\right\} \text { Primary constraints }
$$

Hamiltonian $H \equiv \int \mathrm{~d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\pi^{i j} \dot{h}_{i j}+\pi_{\Phi} \dot{\Phi}\right)-L=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\mathcal{N} \mathcal{H}+\mathcal{N}_{i} \mathcal{H}^{i}\right)$

Variation wrt lapse $\mathcal{H}=0$ Hamiltonian constraint Variation wrt shift $\mathcal{H}^{i}=0$ momentum constraint

Secondary constraints

\Longrightarrow Classical description

- Superspace \& canonical quantisation

Relevant configuration space?

$$
\operatorname{Riem}(\Sigma) \equiv\left\{h_{i j}\left(x^{\mu}\right), \stackrel{\downarrow}{\left.\Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}}\right. \text { matter fields }
$$

GR \Longrightarrow invariance $/$ diffeomorphisms $\Longrightarrow \operatorname{Conf}=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}_{0}(\Sigma)}$
superspace

Wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]$
Dirac canonical quantisation
$\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}}$
$\pi_{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi}$
$\pi^{0} \rightarrow-i \frac{\delta}{\delta \mathcal{N}}$

$$
\pi^{i} \rightarrow-i \frac{\delta}{\delta \mathcal{N}_{i}}
$$

$$
\hat{\pi} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}}=0
$$

Primary constraints

$$
\hat{\pi}^{i} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}_{i}}=0
$$

Momentum constraint $\quad \hat{\mathcal{N}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{\mathrm{T}}^{0 i} \Psi$

$$
\hat{\pi} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}}=0
$$

Primary constraints

$$
\hat{\pi}^{i} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}_{i}}=0
$$

Momentum constraint $\quad \hat{\mathcal{N}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$

Hamiltonian constraint

$$
\begin{aligned}
& \hat{\mathcal{H} \Psi}=\left[-16 \pi G_{\mathrm{N}} \mathcal{G}_{i j k l} \frac{\delta^{2}}{\delta h_{i j} \delta h_{k l}}+\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(-{ }^{3} R+2 \Lambda+16 \pi G_{\mathrm{N}} \hat{T}^{00}\right)\right] \Psi=0 \\
& \text { Wheeler - De Witt equation } \\
& \mathcal{G}_{i j k l}=\frac{1}{2} h^{-1 / 2}\left(h_{i k} h_{j l}+h_{i l} h_{j k}-h_{i j} h_{k l}\right)
\end{aligned}
$$

DeWitt metric...

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:
Infinite number of dof \longrightarrow a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
$\mathrm{QM}=$ minisuperspace of QFT

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini - superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
\begin{aligned}
& p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}} \\
&(\varphi, \theta, s)=\text { Velocity potentials }
\end{aligned}
$$

Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}
$$

$(\varphi, \theta, s)=$ Velocity potentials
canonical transformation: $\quad T=-p_{s} \mathrm{e}^{-s / s_{0}} p_{\varphi}^{-(1+\omega)} s_{0} \rho_{0}^{-\omega} \quad \ldots$

+ rescaling (volume...) + units... : simple Hamiltonian:

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

Wheeler-De Witt $\quad H \Psi=0$

Wheeler-De Witt

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\quad \chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$
Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

What do we do with the wave function of the Universe???

Measurement problem... worst in a cosmological setup!

Quantum mechanics of closed systems

Physical system $=$ Hilbert space of configurations State vectors
Observables $=$ self-adjoint operators
Measurement $=$ eigenvalue $\quad A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle$
Evolution = Schrödinger equation (time translation invariance) $\begin{gathered}i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\ \text { Hamiltonian }\end{gathered}$
Born rule $\operatorname{Prob}\left[a_{n} ; t\right]=\left|\left\langle a_{n} \mid \psi(t)\right\rangle\right|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $\left|a_{n}\right\rangle$ after

Schrödinger equation $=$ linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Quantum mechanics of closed systems

Physical system $=$ Hilbert space of configurations

State vectors

Observables $=$ self-adjoint operators
Measurement $=$ eigenvalue $\quad A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle$
Evolution = Schrödinger equation (time translation invariance) $\begin{gathered}i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\ \text { Hamiltonian }\end{gathered}$
Born rule $\operatorname{Prob}\left[a_{n} ; t\right]=\left|\left\langle a_{n} \mid \psi(t)\right\rangle\right|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $\left|a_{n}\right\rangle$ after

Schrödinger equation $=$ linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Quantum mechanics of closed systems

Physical system $=$ Hilbert space of configurations

State vectors

Observables $=$ self-adjoint operators
Measurement $=$ eigenvalue $\quad A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle$
Evolution = Schrödinger equation (time translation invariance) $\begin{aligned} i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\ \text { Hamiltonian }\end{aligned}$
Born rule $\operatorname{Prob}\left[a_{n} ; t\right]=\left|\left\langle a_{n} \mid \psi(t)\right\rangle\right|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $\left|a_{n}\right\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Mutually
incompatible

The measurement problem in quantum mechanics

Preferred basis: no unique definition of measured observables
Definite outcome: we don't measure superpositions
collapse of the wave function

The measurement problem in quantum mechanics

$$
\left|\Psi_{\text {in }}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \otimes|\overbrace{\text { in }}\rangle
$$

Unitary, deterministic Schödinger evolution

$$
\begin{aligned}
\left|\Psi_{\mathrm{f}}\right\rangle & =\exp \left[\int_{t_{\mathrm{in}}}^{t_{\mathrm{f}}} \hat{H}(\tau) \mathrm{d} \tau\right]\left|\Psi_{\text {in }}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle \otimes\left|\mathrm{SG}_{\uparrow}\right\rangle+|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle\right)
\end{aligned}
$$

Stern-Gerlach

Problem: how to reach the actual measurement $|\uparrow\rangle \otimes\left|S G_{\uparrow}\right\rangle$ or $|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle \quad$?

The measurement problem in quantum mechanics

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

$$
\left\{|\uparrow\rangle \otimes\left|\mathrm{SG}_{\uparrow}\right\rangle\right\} \cup\left\{|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle\right\}
$$

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

Stern-Gerlach

The measurement problem in quantum mechanics
Statistical mixture

The measurement problem in quantum mechanics
Statistical mixture

The measurement problem in quantum mechanics
Statistical mixture
 one has only one realization?

The measurement problem in quantum mechanics

Stern-Gerlach

What about the Universe itself?

What about situations in which one has only one realization?

- Possible solutions and a criterion: the Born rule
- Superselection rules
- Modal interpretation
- Decoherent histories
- Many worlds / many minds

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
- Hidden variables
- Modified Schrödinger dynamics

Born rule not put by hand!

Hidden Variable Theories

Schrödinger $\quad i \frac{\partial \Psi}{\partial t}=\left[-\frac{\nabla^{2}}{2 m}+V(\boldsymbol{r})\right] \Psi$

Polar form of the wave function $\quad \Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$

Hamilton-Jacobi

$$
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0
$$

$$
\underset{\text { potential }}{\underset{p u a n t u m}{ }} \underset{1}{2 m} \frac{\nabla^{2} A}{A}
$$

Ontological interpretation (dBB)

Louis de Broglie

1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Ontological interpretation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological interpretation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Ontological formulation (dBB)

Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

Hidden Variable Theories

Schrödinger $\quad i \frac{\partial \Psi}{\partial t}=\left[-\frac{\nabla^{2}}{2 m}+V(\boldsymbol{r})\right] \Psi$

Polar form of the wave function $\quad \Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$

Hamilton-Jacobi

$$
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0
$$

$$
\underset{\text { potential }}{\underset{p u a n t u m}{ }} \underset{1}{2 m} \frac{\nabla^{2} A}{A}
$$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im m \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$

Ontological formulation (BdB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

$$
m \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}=-\boldsymbol{\nabla}(V+Q) \quad Q \equiv-\frac{1}{2 m} \frac{\boldsymbol{\nabla}^{2}|\Psi|}{|\Psi|}
$$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im m \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$
(2) strictly equivalent to Copenhagen QM

- probability distribution (attractor)

$$
\text { Properties: } \quad \exists t_{0} ; \rho\left(x, t_{0}\right)=\left|\Psi\left(x, t_{0}\right)\right|^{2}
$$

© classical limit well defined
© state dependent
© \exists intrinsic reality non local ...
© no need for external classical domain/observer!

The two-slit experiment:

The two-slit experiment:

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(V+Q)
$$

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...
$m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\underset{\boldsymbol{X}}{ }+Q)$

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\stackrel{\downarrow}{\boldsymbol{X}}+\stackrel{\downarrow}{Q})
$$

Back to the QC wave function

Back to the QC wave function

Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

Back to the QC wave function

Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4} \\
\text { Bohmian trajectory } \quad a=a_{0}\left[1+\left(\frac{T}{T_{0}}\right)^{2}\right]^{\frac{1}{3(1-\omega)}}
\end{gathered}
$$

What about perturbations?

Superposition

Collapse in 1992 ???

Superposition
Collapse in 1992 ???
Further collapse in 2003 on smaller scales???

Superposition
Collapse in 1992 ???
Final (ultimate!) collapse in 2012?

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}+\delta^{(2)} R\right]
$$

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t
$$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\left.\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}\right\rangle+\delta^{(2)} R\right]
$$

Classical
Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

- Both background and perturbations are quantum

Usual treatment of the perturbations?
Einstein-Hilbert action up to $2^{\text {nd }}$ order

$$
\left.\mathcal{S}_{\mathrm{E}-\mathrm{H}}=\int \mathrm{d}^{4} x\left[R^{(0)}\right\rangle+\delta^{(2)} R\right]
$$

Classical Quantum
Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time

$$
\mathrm{d} \eta=a(t)^{-1} \mathrm{~d} t \quad \Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}
$$

$$
\int \mathrm{d}^{4} x \delta^{(2)} \mathcal{L}=\frac{1}{2} \int \sqrt{\gamma} \mathrm{~d}^{3} \boldsymbol{x} \mathrm{~d} \eta\left[\left(\partial_{\eta} v\right)^{2}-\gamma^{i j} \partial_{i} v \partial_{j} v+\frac{z^{\prime \prime}}{z} v^{2}\right]
$$

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!!

$$
z=z[a(\eta)]
$$

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$ comes from $0^{\text {th }}$ order

Self-consistent treatment of the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

factorization of the wave function

$$
\begin{aligned}
& \Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)] \\
& \text { comes from } 0^{\text {th }} \text { order } \\
& \text { Use dBB or... }
\end{aligned}
$$

The GRW dynamical collapse model

Ghirardi - Rimini - Weber

Schrödinger equation

The GRW dynamical collapse model

Ghirardi - Rimini - Weber

Schrödinger equation $\quad \mathrm{d}|\Psi\rangle=-i \hat{H}|\Psi\rangle \mathrm{d} t$

The GRW dynamical collapse model

Ghirardi - Rimini - Weber

Schrödinger equation

The GRW dynamical collapse model
Ghirardi - Rimini - Weber

The GRW dynamical collapse model
Ghirardi - Rimini - Weber

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle \text { non linear }
$$

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle=\langle\Psi| \hat{C}|\Psi\rangle \text { non linear }
$$

break superposition principle

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian
$\qquad\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle\rangle$
break superposition principle linear stochastic
$\mathbb{E}\left(\mathrm{d} W_{t}\right)=0$
$\mathbb{E}\left(\mathrm{~d} W_{t} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)$

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian
$\qquad\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle\rangle$
break superposition principle linear stochastic
$\mathbb{E}\left(\mathrm{d} W_{t}\right)=0$
$\mathbb{E}\left(\mathrm{~d} W_{t} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)$

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle=\langle\Psi| \hat{C}|\Psi\rangle \text { non linear stochastic }
$$

break superposition principle

$$
\mathrm{c} \longrightarrow \text { random outcomes }
$$

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle / \mathbb{E}\left(\mathrm{d} W_{t}\right)=0 \quad \text { non linear stochastic } \longrightarrow \text { random outcomes }
$$

break superposition principle
$\mathbb{E}\left(\mathrm{d} W_{t} \mathrm{~d} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)$
Born rule
Wiener process

BONUS: Amplification mechanism

Big objects are classical small objects are quantum!

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle \quad \text { non linear stochastic } \quad \mathbb{E}\left(\mathrm{d} W_{t}\right)=0 \quad \text { random outcomes }
$$

break superposition principle
$\mathbb{E}\left(\mathrm{d} W_{t} \mathrm{~d} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)$
Born rule
Wiener process

BONUS: Amplification mechanism

The GRW dynamical collapse model
Ghirardi - Rimini - Weber
Modified Schrödinger equation with collapse towards \hat{C} eigenstates

Hamiltonian

$$
\langle\hat{C}\rangle \equiv\langle\Psi| \hat{C}|\Psi\rangle \quad \underset{\mathbb{E}\left(\mathrm{d} W_{t}\right)=0}{\text { non linear stochastic }} \longrightarrow \text { random outcomes }
$$

break superposition principle

$$
\mathbb{E}\left(\mathrm{d} W_{t} \mathrm{~d} W_{t^{\prime}}\right)=\mathrm{d} t \mathrm{~d} t^{\prime} \delta\left(t-t^{\prime}\right)
$$

Born rule
break superposition principle Wiener process

BONUS: Amplification mechanism

Year	first author [ref.]	interfering object	m / m_{p}	τ	d	$\begin{gathered} \text { in GRW } \\ \lambda< \end{gathered}$	$\begin{gathered} \text { in GRW } \\ \lambda / \sigma^{2}< \end{gathered}$	$\begin{gathered} \text { in CSL } \\ \lambda< \end{gathered}$	$\begin{aligned} & \text { in CSL } \\ & \lambda / \sigma^{2}< \end{aligned}$
1927	Davisson [13]	electron	5×10^{-4}	N/A	$2 \times 10^{-10} \mathrm{~m}$	$10^{14} \mathrm{~s}^{-1}$	$3 \times 10^{33} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$10^{17} \mathrm{~s}^{-1}$	$5 \times 10^{36} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$
1930	Estermann [15]	He	4	N/A	$4 \times 10^{-10} \mathrm{~m}$	$10^{11} \mathrm{~s}^{-1}$	$6 \times 10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$3 \times 10^{10} \mathrm{~s}^{-1}$	$10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1959	Möllenstedt [28]	electron	5×10^{-4}	$3 \times 10^{-9} \mathrm{~s}$	$2 \times 10^{-6} \mathrm{~m}$	$7 \times 10^{11} \mathrm{~s}^{-1}$	$10^{23} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{15} \mathrm{~s}^{-1}$	$3 \times 10^{26} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1987	Tonomura [37]	electron	5×10^{-4}	$10^{-8} \mathrm{~s}$	$10^{-4} \mathrm{~m}$	$2 \times 10^{11} \mathrm{~s}^{-1}$	$2 \times 10^{19} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$4 \times 10^{14} \mathrm{~s}^{-1}$	$4 \times 10^{22} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1988	Zeilinger [40]	neutron	1	$10^{-2} \mathrm{~s}$	$10^{-4} \mathrm{~m}$	$2 \times 10^{2} \mathrm{~s}^{-1}$	$2 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$2 \times 10^{2} \quad \mathrm{~s}^{-1}$	$2 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$
1991	Carnal [9]	He	4	$6 \times 10^{-4} \mathrm{~S}$	$10^{-5} \mathrm{~m}$	$4 \times 10^{2} \mathrm{~s}^{-1}$	$4 \times 10^{12} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$10^{2} \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$
1999	Arndt [4]	C_{60}	720	$6 \times 10^{-3} \mathrm{~S}$	$10^{-7} \mathrm{~m}$	$2 \times 10^{-1} \mathrm{~S}^{-1}$	$2 \times 10^{13} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$3 \times 10^{-4} \mathrm{~s}^{-1}$	$3 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2001	Nairz [29]	C_{70}	840	$10^{-2} \mathrm{~s}$	$3 \times 10^{-7} \mathrm{~m}$	$10^{-1} \mathrm{~S}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-4} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2004	Hackermüller [24]	C_{70}	840	$2 \times 10^{-3} \mathrm{~S}$	$10^{-6} \mathrm{~m}$	$10^{0} \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2007	Gerlich [17]	$\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$	10^{3}	$10^{-3} \mathrm{~s}$	$3 \times 10^{-7} \mathrm{~m}$	$10^{0} \mathrm{~s}^{-1}$	$10^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2011	Gerlich [18]	$\mathrm{C}_{60}\left[\mathrm{C}_{12} \mathrm{~F}_{25}\right]_{10}$	7×10^{3}	$10^{-3} \mathrm{~s}$	$3 \times 10^{-7} \mathrm{~m}$	$10^{-1} \mathrm{~S}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-5} \mathrm{~s}^{-1}$	$10^{8} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

Proposed future experiments

Romero-Isart [35]	$\left[\mathrm{SiO}_{2}\right]_{150,000}$	10^{7}	10^{-1}		$4 \times 10^{-7} \mathrm{~m}$	$10^{-6} \mathrm{~S}^{-1}$	$6 \times 10^{6} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-13} \mathrm{~s}^{-1}$	$6 \times 10^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
Nimmrichter [30]	$\mathrm{Au}_{500,000}$	10^{8}	6×10^{0}	s	$10^{-7} \mathrm{~m}$	$2 \times 10^{-9} \mathrm{~S}^{-1}$	$2 \times 10^{5} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$2 \times 10^{-17} \mathrm{~s}^{-1}$	$2 \times 10^{-3} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$

Table 1: Bounds on σ, λ obtained from different diffraction experiments. For each experiment, $m=$ mass of the interfering object, $m_{p}=$ proton mass, $\tau=$ time of flight between grating and image plane, $d=$ period of grating (or transverse coherence length in [37]), N/A = not applicable. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for Fig. 3.

Feldmann \& Tumulka (2011)

γ constrained...

Year	first author [ref.]	interfering object	m / m_{p}	τ	d	$\begin{gathered} \text { in GRW } \\ \lambda< \end{gathered}$	$\begin{aligned} & \text { in GRW } \\ & \lambda / \sigma^{2}< \end{aligned}$		$\begin{aligned} & \text { in CSL } \\ & \lambda / \sigma^{2}< \end{aligned}$
1927	Davisson [13]	electron	5×10^{-4}	N/A	$2 \times 10^{-10} \mathrm{~m}$	$10^{14} \mathrm{~s}^{-1}$	$3 \times 10^{33} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{17} \mathrm{~s}^{-1}$	$5 \times 10^{36} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1930	Estermann [15]	He	4	N/A	$4 \times 10^{-10} \mathrm{~m}$	$10^{11} \mathrm{~s}^{-1}$	$6 \times 10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \quad 3 \times 10^{10} \mathrm{~s}^{-1}$		$10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1959	Möllenstedt [28]	electron	5×10^{-4}	$3 \times 10^{-9} \mathrm{~S}$	2×10^{-6}	$7 \times 10^{11} \mathrm{~s}$	$10^{23} \mathrm{~m}^{-2 / 5} \mathrm{~s}^{-1}$	$10^{15} \mathrm{~s}^{-1}$	$3 \times 10^{26} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1987	Tonomura [37]	electron	5×10^{-4}	$10^{-8} \mathrm{~s}$	10.4 ${ }^{4}$	$2 \times 10^{1 /} \mathrm{s}^{-1}$	$2 \times 10^{19} / \mathrm{m}^{-2} \mathrm{~s}^{-1}$	$10^{14} \mathrm{~s}^{-1}$	$4 \times 10^{22} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1988	Zeilinger [40]	neutron	1	$10^{-2} \mathrm{~s}$	$10^{-4} \mathrm{~m}$	$2 \times 10^{2} \mathrm{~s}^{-1}$	$2 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}-$	$\times 10^{2} \quad \mathrm{~s}^{-1}$	$2 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1991	Carnal [9]	He	4	$6 \times 10^{-4} \mathrm{~s}$	$10^{-5} \mathrm{~m}$	$4 \times 10^{2} \mathrm{~s}^{-1}$	$4 \times 10^{12} \mathrm{nf}^{-\mathrm{s}^{-}}$	$10^{2} \quad \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
1999	Arndt [4]	C_{60}	720	6×10^{-3}	$10^{-7} / \mathrm{m}$	$2 \times 10^{-1} / \mathrm{s}^{-}$	$2 \times 1 /{ }^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$3 \times 10^{-4} \mathrm{~s}^{-1}$	$3 \times 10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2001	Nairz [29]	C_{70}	840	10/ ${ }^{2} \mathrm{~s}$	$3 \times 18^{-7} \mathrm{~m}$	$10^{-1} \mathrm{~S}^{-}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$	$10^{-4} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2004	Hackermüller [24]	C_{70}	840	$2 \times 10^{-3} \mathrm{~s}$	$10^{-6} \mathrm{~m}$	10^{0}	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{9} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2007	Gerlich [17]	$\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{~F}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$	10^{3}	10^{-3}	$3 \times 10-7 / \mathrm{m}$	S^{-}	$10^{13} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-3} \mathrm{~s}^{-1}$	$10^{10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
2011	Gerlich [18]	$\mathrm{C}_{60}\left[\mathrm{C}_{12} \mathrm{~F}_{25}\right]_{10}$	7×10^{3}	$10^{-3} \mathrm{~s}$	10^{-7}	$10^{-1} \mathrm{~s}^{-1}$	$10^{12} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-5} \mathrm{~s}^{-1}$	$10^{8} \mathrm{~m}^{-2} \mathrm{~S}^{-1}$
Proposed future experiments									
	Romero-Isart [35]	$\left[\mathrm{SiO}_{2}\right]_{150,000}$	10^{7}	$10-1 / \mathrm{s}$	$4 \times 10^{-7} \mathrm{~m}$	$10^{-6} \mathrm{~S}^{-1}$	$6 \times 10^{6} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$10^{-13} \mathrm{~s}^{-1}$	$6 \times 10^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
	Nimmrichter [30]	$\mathrm{Au}_{500,000}$	10^{8}	$5<10^{0} \mathrm{~s}$	$10^{-7} \mathrm{~m}$	$2 \times 10^{-9} \mathrm{~S}^{-1}$	$2 \times 10^{5} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$	$2 \times 10^{-17} \mathrm{~S}^{-1}$	$2 \times 10^{-3} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

Table 1: Bounds on σ, λ obtaines frpm diif rent diffraction experiments. For each experiment, $m=$ mass of the interfering object, $m_{p}=$ proton mass, $\tau=$ pre pr gight between grating and image plane, $d=$ period of grating (or transverse coherence length in [37]), N/A = not applc. 21 . For each theory (GRW or CSL), two bounds are obtained. This table is the basis for Fig. 3.

Feldmann \& Tumulka (2011)

γ constrained...

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$
and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

$$
\Psi^{*} \Psi
$$

$\Psi^{*} \Psi$
standard wave function time evolution
modified wave function time evolution with collapse

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$
and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

standard wave function time evolution

modified wave function time evolution with collapse

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$
and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

standard wave function time evolution

modified wave function time evolution with collapse

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$
and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

standard wave function time evolution

modified wave function time evolution with collapse

Example: free particle evolution $\quad \hat{H}=\frac{\hat{p}^{2}}{2 m}$ and projection on position operator $\hat{C}=\hat{x}$
initial double gaussian wave function

modified wave function time evolution with collapse

Spontaneous collapse amplification mechanism

N identical particles

collapse operator: $\hat{C}=\sum_{i=1}^{N} \hat{x}_{i}$ acting on $\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle$

Spontaneous collapse amplification mechanism
N identical particles

$$
\begin{aligned}
& \text { collapse operator: } \hat{C}=\sum_{i=1}^{N} \hat{x}_{i} \text { acting on }\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle \\
& \mathrm{d}\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{rel}}-\frac{\gamma}{2} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right)^{2}\right] \mathrm{d} t+\sqrt{\gamma} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right) \mathrm{d} W_{t}^{(i)}\right\}\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle
\end{aligned}
$$

Spontaneous collapse amplification mechanism
N identical particles

$$
\begin{gathered}
\text { collapse operator: } \hat{C}=\sum_{i=1}^{N} \hat{x}_{i} \text { acting on }\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\mathrm{d}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{rel}}-\frac{\gamma}{2} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right)^{2}\right] \mathrm{d} t+\sqrt{\gamma} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right) \mathrm{d} W_{t}^{(i)}\right\}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\underbrace{\Longrightarrow}_{\begin{array}{c}
\text { usual quantum } \\
\text { behavior }
\end{array}}
\end{gathered}
$$

Spontaneous collapse amplification mechanism

N identical particles

$$
\begin{gathered}
\text { collapse operator: } \hat{C}=\sum_{i=1}^{N} \hat{x}_{i} \text { acting on }\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\mathrm{d}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{rel}}-\frac{\gamma}{2} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right)^{2}\right] \mathrm{d} t+\sqrt{\gamma} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right) \mathrm{d} W_{t}^{(i)}\right\}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\underbrace{\Longrightarrow}_{\begin{array}{c}
\text { usual quantum } \\
\text { behavior }
\end{array}}
\end{gathered}
$$

$$
\mathrm{d}\left|\Psi_{\mathrm{CM}}(R)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{CM}}-\frac{N \gamma}{2}(\hat{R}-\langle\hat{R}\rangle)^{2}\right] \mathrm{d} t+\sqrt{N \gamma}(\hat{R}-\langle\hat{R}\rangle) \mathrm{d} W_{t}\right\}\left|\Psi_{\mathrm{CM}}(R)\right\rangle
$$

Spontaneous collapse amplification mechanism

N identical particles

$$
\begin{gathered}
\text { collapse operator: } \hat{C}=\sum_{i=1}^{N} \hat{x}_{i} \text { acting on }\left|\Psi\left(\left\{x_{i}\right\}\right)\right\rangle=\left|\Psi_{\mathrm{CM}}(R)\right\rangle \otimes\left|\Psi_{\text {rel }}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\mathrm{d}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{rel}}-\frac{\gamma}{2} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right)^{2}\right] \mathrm{d} t+\sqrt{\gamma} \sum_{i=1}^{N-1}\left(\hat{r}_{i}-\left\langle\hat{r}_{i}\right\rangle\right) \mathrm{d} W_{t}^{(i)}\right\}\left|\Psi_{\mathrm{rel}}\left(\left\{r_{i}\right\}\right)\right\rangle \\
\underbrace{\Longrightarrow}_{\begin{array}{c}
\text { usual quantum } \\
\text { behavior }
\end{array}}
\end{gathered}
$$

$$
\mathrm{d}\left|\Psi_{\mathrm{CM}}(R)\right\rangle=\left\{\left[-i \hat{H}_{\mathrm{CM}}-\frac{N \gamma}{2}(\hat{R}-\langle\hat{R}\rangle)^{2}\right] \mathrm{d} t+\sqrt{N \gamma}(\hat{R}-\langle\hat{R}\rangle) \mathrm{d} W_{t}\right\}\left|\Psi_{\mathrm{CM}}(R)\right\rangle
$$

$$
\Psi^{*} \Psi
$$

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

$$
\sigma_{x}(\infty)=\left(\frac{\hbar}{4 m \gamma}\right)^{\frac{1}{4}}
$$

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

$$
\sigma_{x}(\infty)=\left(\frac{\hbar}{4 m \gamma}\right)^{\frac{1}{4}} \longrightarrow 4.7 \mathrm{~cm} \text { for a proton }
$$

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

$$
\sigma_{x}(\infty)=\left(\frac{\hbar}{4 m \gamma}\right)^{\frac{1}{4}} \longrightarrow 4.7 \mathrm{~cm} \text { for a proton }
$$

Amplification mechanism $\Longrightarrow \quad \gamma \propto N \quad$ (number of particles)

$$
\sigma_{x}(\infty)=\left(\frac{\hbar}{4 m \gamma}\right)^{\frac{1}{4}} \longrightarrow 4.7 \mathrm{~cm} \text { for a proton } \begin{aligned}
& 4.6 \times 10^{-14} \mathrm{~m} \text { for } 1 \mathrm{~g} \text { object } \\
& 5.9 \times 10^{-28} \mathrm{~m} \text { for the Earth }
\end{aligned}
$$

- Atomic energy levels
- Nuclear energy levels
- Diffraction Experiments
- Proton Decay
- Spontaneous Xray emission
- Spontaneous IGM warming
- Dissociation of cosmic H
- Decay of supercurrents
- Latent image formation
- Thermalized spectral distorsions
- Neutrino and kaon oscillations

Constraints:

(falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!

Constraints:

(falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!

Measurement problem exacerbated

Classicalization of Cosmological Perturbations

Predictions of the theory: Calculated by quantum average $\langle\Psi| \hat{O}|\Psi\rangle$

Classicalization of Cosmological Perturbations

Predictions of the theory: Calculated by quantum average $\langle\Psi| \hat{O}|\Psi\rangle$

Usually in a lab: repeat the experiment

Classicalization of Cosmological Perturbations

Predictions of the theory:
Calculated by quantum average $\langle\Psi| \hat{O}|\Psi\rangle$

Usually in a lab: repeat the experiment

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations

$$
\frac{\Delta T}{T} \propto v
$$

From quantum to classical cosmological perturbations?

Classical temperature fluctuations

$$
\frac{\Delta T}{T} \propto v
$$

From quantum to classical cosmological perturbations?

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

From quantum to classical cosmological perturbations?

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

second order perturbed Einstein action $\quad{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$

From quantum to classical cosmological perturbations?

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

second order perturbed Einstein action $\quad{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$

From quantum to classical cosmological perturbations?

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

variable-mass scalar fields in Minkowski spacetime
second order perturbed Einstein action $\quad{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right]$
$\epsilon_{1}=1-\mathcal{H}^{\prime} / \mathcal{H}^{2}$
slow-roll parameter

From quantum to classical cosmological perturbations?

Classical temperature fluctuations promoted to quantum operators

$$
\frac{\widehat{\Delta T}}{T} \propto \hat{v}
$$

variable-mass scalar fields in Minkowski spacetime
second order perturbed Einstein action

$$
\begin{array}{r}
{ }^{(2)} \delta S=\frac{1}{2} \int \mathrm{~d}^{4} x\left[\left(v^{\prime}\right)^{2}-\delta^{i j} \partial_{i} v \partial_{j} v+\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} v^{2}\right] \\
\epsilon_{1}=1-\mathcal{H}^{\prime} / \mathcal{H}^{2}
\end{array}
$$

+ Fourier transform $v(\eta, \boldsymbol{x})=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} \mathrm{~d}^{3} \boldsymbol{k} v_{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}$
slow-roll parameter
${ }^{(2)} \delta S=\int \mathrm{d} \eta \int \mathrm{d}^{3} \boldsymbol{k}\left\{v_{\boldsymbol{k}}^{\prime} v_{\boldsymbol{k}}^{* \prime}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}\left[\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}-k^{2}\right]\right\}$

Lagrangian formulation...

Hamiltonian

$$
H=\int \mathrm{d}^{3} \boldsymbol{k}\{p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*}+v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*}[k^{2} \overbrace{-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}}}^{\mathrm{A}}]\}
$$

collection of parametric oscillators with time dependent frequency
factorization of the full wave function real and imaginary parts

$$
\Psi[v(\eta, \boldsymbol{x})]=\prod_{k} \Psi_{k}\left(v_{k}^{\mathrm{R}}, v_{k}^{\mathrm{I}}\right)=\prod_{k} \Psi_{k}^{\mathrm{R}}\left(v_{k}^{\mathrm{R}}\right) \Psi_{k}^{\mathrm{I}}\left(v_{k}^{\mathrm{I}}\right)
$$

$$
\begin{aligned}
i \frac{\Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}}{\partial \eta} & =\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \Psi_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} \\
\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}} & =-\frac{1}{2} \frac{\partial^{2}}{\partial\left(v_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}}+\frac{1}{2} \omega^{2}(\eta, \boldsymbol{k})\left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R}, \mathrm{I}}\right)^{2}
\end{aligned}
$$

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

Wigner function $W\left(v_{\boldsymbol{k}}, p_{k}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)$
large squeezing limit $\quad W \propto \delta\left(p_{\boldsymbol{k}}+k \tan \phi_{\boldsymbol{k}} v_{\boldsymbol{k}}\right)$

Stochastic distribution of classical processes

Gaussian state solution $\Psi\left(\eta, v_{k}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{k}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{k}(\eta) v_{k}^{2}}$

$$
\text { Wigner function } W\left(v_{\boldsymbol{k}}, p_{\boldsymbol{k}}\right)=\int \frac{\mathrm{d} x}{2 \pi^{2}} \Psi^{*}\left(v_{\boldsymbol{k}}-\frac{x}{2}\right) \mathrm{e}^{-i p_{k} x} \Psi\left(v_{\boldsymbol{k}}+\frac{x}{2}\right)
$$

$$
\text { large squeezing limit } \quad W \quad W \propto \delta\left(p_{\boldsymbol{k}}+k \tan \phi_{\boldsymbol{k}} v_{\boldsymbol{k}}\right)
$$

Stochastic distribution of classical processes

Animations provided by V. Vennin... thx!

Primordial Power Spectrum

Standard case

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle
$$

with

$$
\hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\hat{v}_{k}=v_{k}
$$

and

$$
\begin{array}{rlrl}
\omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} & & a(\eta)=\ell_{0}(-\eta)^{1+\beta} \\
& =k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} & & \text { (de Sitter: } \beta=-2)
\end{array}
$$

Parametric Oscillator System

Primordial Power Spectrum

Standard case

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { Quantization in the } \\
\text { Schrödinger picture } \\
\text { (functional representation) }
\end{array} \\
\text { with } \quad i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle \\
\text { (} \hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
\end{array} \\
& \begin{array}{cc}
\hat{v}_{\boldsymbol{k}}=v_{\boldsymbol{k}} \\
\text { and } \quad \hat{p}_{\boldsymbol{k}}=i \frac{\partial}{\partial v_{\boldsymbol{k}}} \\
\omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\left(a \sqrt{\epsilon_{1}}\right)^{\prime \prime}}{a \sqrt{\epsilon_{1}}} & a(\eta)=\ell_{0} \\
=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} & \text { (de Sitter: } \beta=-2)
\end{array}
\end{aligned}
$$

Parametric Oscillator System

Primordial Power Spectrum

Standard case

```
Quantization in the
Schrödinger picture
(functional representation)
```

$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \mathrm{e}^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^{2}}
$$

$$
i \frac{\mathrm{~d}\left|\Psi_{\boldsymbol{k}}\right\rangle}{\mathrm{d} \eta}=\hat{\mathcal{H}}_{\boldsymbol{k}}\left|\Psi_{\boldsymbol{k}}\right\rangle \quad \text { with } \quad \hat{\mathcal{H}}_{\boldsymbol{k}}=\frac{\hat{p}_{\boldsymbol{k}}^{2}}{2}+\omega^{2}(\boldsymbol{k}, \eta) \hat{v}_{\boldsymbol{k}}^{2}
$$

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})
$$

$$
\Omega_{k}=-\frac{i}{2} \frac{f_{k}^{\prime}}{f_{k}}
$$

$$
f_{k}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{\boldsymbol{k}}=0
$$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

Harmonic oscillator fundamental state
$\Psi_{k}=\left(\frac{k}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{k}{2} v_{k}^{2}}$

$$
\log \left(H^{-1}\right), \log \left(\lambda_{k}\right)
$$

Primordial Power Spectrum
 Standard case

Two physical scales Hubble radius $H^{-1}=\frac{a^{2}}{a^{\prime}} \underset{\beta \sim-2}{\simeq} \ell_{0}$
wavelength $\quad \lambda=\frac{a}{k} \underset{\beta \sim-2}{\simeq} \frac{\ell_{0}}{-k \eta}$

sets initial conditions $f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k}$

Primordial Power Spectrum

$$
\begin{array}{r}
f_{\boldsymbol{k}}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{\boldsymbol{k}}=0 \text { with } \omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} \quad \text { and } f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k} \\
\\
\\
\\
\text { Uniquely determines } f_{\boldsymbol{k}} \xrightarrow{\Omega_{\boldsymbol{k}}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}} \Re_{\mathrm{e}} \Omega_{\boldsymbol{k}}=\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}
\end{array}
$$

Evaluated at the end of inflation $\left(k \eta \rightarrow 0^{-}\right)$, this gives $P_{v}(k)=\frac{k^{3}}{2 \pi^{3}}\left(\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}\right)$

$$
\text { and eventually } P_{\zeta}(k)=\frac{1}{2 a^{2} M_{\mathrm{Pl}}^{2} \epsilon_{1}} P_{v}(k)=A_{S} k^{n_{\mathrm{S}}-1}
$$

$$
\text { with } n_{\mathrm{S}}=2 \beta+5 \underset{\beta \sim-2}{\simeq} 1
$$

$$
\text { Planck: } 1-n_{\mathrm{S}}=0.0389 \pm 0.0054
$$

Primordial Power Spectrum

$$
\begin{array}{r}
f_{\boldsymbol{k}}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{\boldsymbol{k}}=0 \text { with } \omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} \text { and } f_{\boldsymbol{k}}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k} \\
\square \text { Uniquely determines } f_{\boldsymbol{k}} \xrightarrow{\Omega_{k}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}} \Re \mathrm{Re} \Omega_{\boldsymbol{k}}=\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}
\end{array}
$$

Evaluated at the end of inflation $\left(k \eta \rightarrow 0^{-}\right)$, this gives $P_{v}(k)=\frac{k^{3}}{2 \pi^{3}}\left(\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}\right)$

$$
\text { and eventually } P_{\zeta}(k)=\frac{1}{2 a^{2} M_{\mathrm{Pl}}^{2} \epsilon_{1}} P_{v}(k)=A_{S} k^{n_{\mathrm{S}}-1}
$$

$$
\begin{aligned}
& \text { with } n_{\mathrm{S}}=2 \beta+5 \underset{\beta \sim-2}{\simeq} 1 \\
& \quad \text { Planck: } 1-n_{\mathrm{S}}=0.0389 \pm 0.0054
\end{aligned}
$$

Primordial Power Spectrum

$$
f_{k}^{\prime \prime}+\omega^{2}(\boldsymbol{k}, \eta) f_{k}=0 \quad \text { with } \quad \omega^{2}(\boldsymbol{k}, \eta)=k^{2}-\frac{\beta(\beta+1)}{\eta^{2}} \quad \text { and } \quad f_{k}(k \eta \rightarrow-\infty)=\mathrm{e}^{i k \eta} / \sqrt{2 k}
$$

Evaluated at the end of inflation $\left(k \eta \rightarrow 0^{-}\right)$, this gives $P_{v}(k)=\frac{k^{3}}{2 \pi^{3}}\left(\left\langle\hat{v}_{\boldsymbol{k}}^{2}\right\rangle-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle^{2}\right)$ and eventually $P_{\zeta}(k)=\frac{1}{2 a^{2} M_{\mathrm{Pl}}^{2} \epsilon_{1}} P_{v}(k)=A_{S} k^{n_{\mathrm{S}}-1}$

$$
\begin{aligned}
& \text { with } n_{\mathrm{S}}=2 \beta+5 \underset{\beta \sim-2}{\simeq} 1 \\
& \quad \text { Planck: } 1-n_{\mathrm{S}}=0.0389 \pm 0.0054
\end{aligned}
$$

Primordial Power Spectrum
 Modified Theory

Modified Schrödinger equation

Extended Gaussian

 wave function$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \exp \left\{-\Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)\left[v_{\boldsymbol{k}}-\bar{v}_{\boldsymbol{k}}(\eta)\right]^{2}+i \sigma_{\boldsymbol{k}}(\eta)+i \chi_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}-i \Im \mathrm{~m} \Omega_{\boldsymbol{k}}(\eta)\left(v_{\boldsymbol{k}}\right)^{2}\right\}
$$

$$
\begin{gathered}
\text { Modified equation of } \\
\text { motion }
\end{gathered}
$$

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})+\gamma \quad \Omega_{\boldsymbol{k}}=-\frac{i}{2} \frac{f_{k}^{\prime}}{f_{k}} \longrightarrow \quad f_{\boldsymbol{k}}^{\prime \prime}+\left[\omega^{2}(\eta, k)-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum
 Modified Theory

Modified Schrödinger equation

$$
\mathrm{d}\left|\Psi_{\boldsymbol{k}}\right\rangle=-i \hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi\rangle \mathrm{d} \eta+\sqrt{\gamma}\left(\hat{C}_{\boldsymbol{k}}-\left\langle\hat{C}_{\boldsymbol{k}}\right\rangle\right) \mathrm{d} W_{\eta}\left|\Psi_{\boldsymbol{k}}\right\rangle-\frac{\gamma}{2}\left(\hat{C}_{\boldsymbol{k}}-\left\langle\hat{C}_{\boldsymbol{k}}\right\rangle\right)^{2} \mathrm{~d} \eta\left|\Psi_{\boldsymbol{k}}\right\rangle
$$

Extended Gaussian wave function

$$
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \exp \left\{-\Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)\left[v_{\boldsymbol{k}}-\bar{v}_{\boldsymbol{k}}(\eta)\right]^{2}+i \sigma_{\boldsymbol{k}}(\eta)+i \chi_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}-i \Im \mathrm{~m} \Omega_{\boldsymbol{k}}(\eta)\left(v_{\boldsymbol{k}}\right)^{2}\right\}
$$

Modified equation of motion

$$
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})+\gamma \quad \stackrel{\Omega_{\boldsymbol{k}}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}}{\square} f_{\boldsymbol{k}}^{\prime \prime}+\left[\omega^{2}(\eta, k)-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum
 Modified Theory

Modified Schrödinger equation

$$
\begin{gathered}
\mathrm{d}\left|\Psi_{\boldsymbol{k}}\right\rangle=-i \hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi\rangle \mathrm{d} \eta+\sqrt{\gamma}\left(\hat{v}_{\boldsymbol{k}}-\left\langle\hat{v}_{\boldsymbol{k}}\right\rangle\right) \mathrm{d} W_{\eta}\left|\Psi_{k}\right\rangle-\frac{\gamma}{2}\left(\hat{v}_{k}-\left\langle\hat{v}_{k}\right\rangle\right)^{2} \mathrm{~d} \eta\left|\Psi_{k}\right\rangle \\
\Psi_{\boldsymbol{k}}\left(\eta, v_{\boldsymbol{k}}\right)=\left[\frac{2 \Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1 / 4} \operatorname{extended\text {Gaussian}} \begin{array}{c}
\text { wave function }
\end{array} \\
\exp \left\{-\Re \mathrm{e} \Omega_{\boldsymbol{k}}(\eta)\left[v_{k}-\bar{v}_{k}(\eta)\right]^{2}+i \sigma_{\boldsymbol{k}}(\eta)+i \chi_{k}(\eta) v_{\boldsymbol{k}}-i \Im m \Omega_{\boldsymbol{k}}(\eta)\left(v_{\boldsymbol{k}}\right)^{2}\right\} \\
\\
\begin{array}{c}
\begin{array}{c}
\text { Modified equation of } \\
\text { motion }
\end{array} \\
\Omega_{\boldsymbol{k}}^{\prime}=-2 i \Omega_{\boldsymbol{k}}^{2}+\frac{i}{2} \omega^{2}(\eta, \boldsymbol{k})+\gamma \xrightarrow[\Omega_{\boldsymbol{k}}=-\frac{i}{2} \frac{f_{\boldsymbol{k}}^{\prime}}{f_{k}}]{ } f_{\boldsymbol{k}}^{\prime \prime}+\left[\omega^{2}(\eta, k)-2 i \gamma\right] f_{\boldsymbol{k}}=0
\end{array}
\end{gathered}
$$

Primordial Power Spectrum

$$
f_{\boldsymbol{k}}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

$$
\omega^{2}(\eta, k)
$$

Primordial Power Spectrum

$$
f_{\boldsymbol{k}}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum

$$
f_{\boldsymbol{k}}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum

$$
f_{\boldsymbol{k}}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum

$$
f_{\boldsymbol{k}}^{\prime \prime}+\left[k^{2}-\frac{\beta(\beta+1)}{\eta^{2}}-2 i \gamma\right] f_{\boldsymbol{k}}=0
$$

Primordial Power Spectrum

Modified Theory

$k<k_{\text {break }}: n_{\mathrm{S}}=4$
$k>k_{\text {break }}: n_{\mathrm{S}}=2 \beta+5 \simeq 1$

Primordial Power Spectrum

Modified Theory

Primordial Power Spectrum

Primordial Power Spectrum

comoving Hubble wavenumber now

Primordial Power Spectrum

comoving Hubble wavenumber now

$$
k<k_{\text {br }}
$$

Conclusions

Conclusions

Quantum measurement problem very severe in cosmology

Conclusions

Quantum measurement problem very severe in cosmology

Two possible extensions of QM can be used
(Born rule not set by hand)

Conclusions

Quantum measurement problem very severe in cosmology

(Born rule not set by hand)

Conclusions

Quantum measurement problem very severe in cosmology

Conclusions

Quantum measurement problem very severe in cosmology

Conclusions

Quantum measurement problem very severe in cosmology
Test?
(non equilibrium...)

Constraint on γ

- collapse time
- final spread

Conclusions

Quantum measurement problem very severe in cosmology
Two possible extensions of QM can be used
(Born rule not set by hand)
(non equilibrium...)

Conclusions

Quantum measurement problem very severe in cosmology

Conclusions

Quantum measurement problem very severe in cosmology

