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Conformal Integrals

- Relevant for CFT computations, Witten diagrams, and dual conformal
invariant loop integrals.

- Definition: integrals which lead to expressions depending only on cross-ratios.

- E.g. at four points 2 9 2 .2
 — L1934 o — L4093
o2 27 2 2
1324 1324
- Examples:
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Embedding Space

ldea: AdS,.1 and its boundary as hypersurfaces in d + 2 Minkowski
space. Conformal group SO(d + 1,1) is simply Lorentz group.

~XTXT 4+ XX, =—1  (Ras=1) P’ =0, P ~ \P, A0
XAz = i(1,x3+x2,x“), PM () = (1,42, y")
o

Pij —2P; - R7 = (y2 — yj)2 — > Massless

I o 2
—2P. X = x—o(xo+(x—y) ). —>  Massive



-
Hyperbolic Simplices

- The 4d box integral is given by the volume of a hyperbolic tetrahedron in

AdSs Mason, Skinner;
Davydychev, Delbourgo;
Schnetz

[5 1
) 2 (P-Q) (P2 Q) (Ps- Q) (Py- Q)

oA S for Simplex

-~ VO]H(S;;)
N \'FOIE(S;;)




-
Hyperbolic Simplices

- The 4d box integral is given by the volume of a hyperbolic tetrahedron in
AdSs

- One-loop MHV amplitudes: hyperbolic tetrahedra glue up to form a closed
polytope.

Something like this...




Hyperbolic Simplices

- The 4d box integral is given by the volume of a hyperbolic tetrahedron in
AdSs

- One-loop MHV amplitudes: hyperbolic tetrahedra glue up to form a closed
polytope.

Something like this...

Coincidence?!

Wolfram Mathematica 8



-
Hyperbolic Simplices

- How much of this story generalizes? (other dimensions, propagator
weights, masses, AdS/CFT integrals...)

- Is there a geometric interpretation of higher loop integrals?

- ... Ultimately, can this lead to a better understanding of the geometry of
integrated N=4 amplitudes?



Detour: counting points in polytopes

A

d{q } Q) {{nz}l Z niq; = } o

» Set of linear equations define surface in 'n’ space.

(o] ) () (o) .

* In the continuum limit, get volume of
polytope in ‘t’ space.

+oo T

dg3(Q) = T(Q.{ai}) = /O [[atio@—=> tia) SPLINE!
1=1



Generating function

- To compute degeneracy, introduce generating function

o T 1
ZQ: diq,3(Q)e Ot = H 1 — o—aint

e Continuum limit;

B /d4Q 1
o2 (P Q) (P2 Q) (P3- Q) (Py- Q)



Spline as Laplace transform

[[pqs =, Paecd®em = [ ax@mis,0x: (py

z:l

+oo n
Teay (X {P3}) = /0 DRt 6(X =3 1Py
= nt o= [, dt et

* The spline captures the geometry associated to the integrand.

* Rational function identities map onto geometrical identities



I
Computing the Spline

« The computation depends . B teo n |
crucially on the number of 7iAz'}(X’ {P}) = /0 DXt o(X — Z_: t; P;)

nodes vs dimension

t1
W) e
B ti=W;,-X
W; - P =6;;

[12,(W; - X)A~1e(W; - X)

T{Ai}(X; {Xi}) = \/det e
i L

(n=D=d+2)




Geometric picture
T(X:{P}) = / Lt x-S 6py
0 =1 i=1

» Worldsheet: the spline computes the volume of a polytope in t space.

« Target space: The spline is a distribution in X, with support on the
polyhedral cone spanned by the vectors Pi.

* n=D — worldsheet polytope is a point — “volume” is a constant. Target space
gives the characteristic function of the cone.

» Characteristic function: it is the intersection of several halfspaces defined by
hyperplanes — the Wi vectors.

ooy L2000 X)
’T(X,{Pz})_ \/detP-i'Pj




General Geometric picture

- n<D: spline is a distribution in X.

- n>D: worldsheet polytope is non
trivial, with a volume that scales
homogeneously with X.

- Spline is a sum of local
homogeneous forms in X of degree n-
D. One form per simplicial cone
decomposing the full polyhedral cone.

- Spline continuous with discontinuous
(n-D) derivative across simplicial
cells. At the cell walls, worldsheet
volume vanishes.

Target space picture



General Geometric picture

- More generally, the Pi vectors fit into
some (D x n ) matrix M

- The “shape” of the spline (cell
structure) only depends on the class
of M in the matroid stratification of the
Grassmannian Gr(D,n).

- The spline itself depends on M as an
element of

- GL(n,D)/SO(d+1,1)

Target space picture



-
Computing the spline

- How to determine the spline?
- Use Laplace transform+partial fractions:
- Ex: n=4in D=3

P, = (1/1/213.1%1)131 + (W3, Py) Py + (W}, Py) Py

1 Wl - Py .
1} T (R-Q)(P3-Q)(Py- Q)
ng Py . Wi, - Py
(PL-Q)(P3- Q)P Q)2 (Pr- Q)P Q)(Py - Q)> n=D we already

know this case!

Wl - P, e 1
B Q- QP qp % @Ps P

= [aX e X Wy X) T (X, (Pa, Po, PiY)
Y

A piece of the new spline, which is
now linear in X



Computing integrals

F .
H (P; - Q / DnteQ(ZtP)_/]IWDdXeQXT{Ai}(X;{Pi})

z=1

ddQ i F(Az) N 9 . -
/ 2rd/2 E (P, - Q)2 > - dXe* Tiay (X {P:})

* One-loop integrals are Gaussian integrals over cones.
« But! Spline is homogeneous in |X|; integral can be performed.

e Result:

dX Tay (X, {F:})

AA.de-*.l




dX Tiay (X, {Fi})

AdSg4

Analog:

Intersecting a
cone with a
sphere, gives
spherical angle




Hyperbolic simplices

- Applications:
- The conformal "“star integrals™:

I )=/md/2H($ — )2 /zvrd/QH( 2P - Q)

Xo(X) Vi (Sh)
AdSyy T B AdS \/ det Pz - P 9 VE (Sn)

« Generalization of the star-triangle relation: stars get glued up into
AdS hyperbolic simplices!



Hyperbolic simplices

yn=1) _ V| det P 7(n)
21 (3

(L)’
n=3 - triangle 73 — (5) V(2) —
vV Pia Pr3 Po3

 Lig(es /a-) = Lip (125) + Lip ({512 ) — (04 © 2-)

n=4 - box =
\ /det a:?j

n=5 - pentagon

277

n=6 - hexagon



Schlafli’'s formula and pentagon

Wi Wy /(W T))2 = W22
> Vil (=1 dlog —
Wi W)=\ J(V; - T))2 = W22

dVy =

2z(k —1)

1<J

« For n=5, lower dimensional volume is constant! Easy to compute:

3
O =™ 14g+g+g8+ Y r—V-AB ) s —-AB)
= g+9°+g°+g°)< log
2v/ —A5) —ABG) s+ vV —-ABG)
A(5) o det .sz
2 P13 P1y Poy Pos Pss

=1- [u1(1 —ug(l 4+ uyg) + UQUZ) + cyclic] — UL UQUI UL U

(1 —uo)(1 —ug) — ug(2 — ug — ug — uguy — uguy + ujuzuy)
2 ?
(T —u5)(1 —ugus) — uy (1 + us — 2ugus + uyg + ugugus + uguy)

2/ uquy

T =




What about hexagon?

- Hexagon interesting since it's related to double box.
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Hyperbolic
volume

« Schlafli’'s formula translates into a formula for the hexagon symbol.
« Unfortunately, seems hard to integrate it...



Simplices in 2d kinematics

- Atractable case is when kinematics are 2d.

- For n>4, (n-1) hyperbolic simplex cannot fit into an AdS3 - >VH =0

- However, star integrals are ratios of volumes, both going to zero — leads to
finite answer.

- (n-1) simplex ““shatters” into several hyperbolic tetrahedra.

- 1d kinematics analog: tetrahedron going to triangles




Spline computation

- We are in a situation where effectively, n>D=d+2 (d=2)
- Spline is computed as before: via partial fractions.
- For vectors in general position, the final result is

(W" - X)? X (b)
T(X§{Pi})=§: B ~(b b) (b
o W PYW - By VdetbTb

- The sum runs over the set of unbroken basis b; the corresponding simplicial
cones pave the full polyhedral cone.












o=
s

Four cells, four local homogeneous
forms, but not all independent —
smaller set suffices to encode the full
spline. Such a set labelled by unbroken
basis.



The integrals

- The integral becomes sum of terms of the form

b
/ dxeX? (W;” - X)? X(b)
(W PPy - By Vet b

- Integrate by parts! Two type of terms, boxes and lower dim simplices

- Experimentally, coefficients of lower dim simplices vanish (implies constant
transcendentality!)

- Result: hexagon in 2d is sum of boxes with well defined coefficients,

b
(Wi")? / XXX
(WP YW Py Vdet 5T b

Box integral



-
2d Hexagon

22 (g —xa)xf +0a + ) xaxa) (= +xd +x1 (3 +1))
(q +1) (6 —x3) (0 +1)°
(4 (6 =) +x7 (03 +x =8 (6 + 1))

+_ 4 - _ 4
B=2Li2(xi Xi)+2m<%)+
X2 — X3 X3X1 TX1

log (xf (i —x3) (kg + 1)) log (_xf (i —x3) (i + 1)) .

X XxB+...,

(1 —x3) (e —x3)

tog [ 252X 1o, (x?—xf)yﬁ
xi (G +1) X2 —xs/ 3

The y variables encode the 6 independent cross-ratios for 6 pts in 2d.



Convolutions

- Remarkably, single and higher loop integrals can be written in terms of spline
convolutions.

=

Volume

Area x Length = Length x Length x Length



Convolutions

% / dXT(X,{P17P'27P37P4})

/ AXAX'Ti (X, {Py, X)) T(X'.{ Py, Pa. P3})
AdS

@ Ads dXdX1d Xy Too (X, { X1, Xo}) T (X1, {P1, P2})T (Xo. {P3. P1})



From convolutions to multi-loops

1 3

<—>

- 4

/ dXdX1dXs Too(X, {X1, Xo}) T(X1, {P1, P})T(Xo, {Ps, P1})
AdS

1 3
< >
2

4

/ dXXmdX2 7—1,3(X ) {X19X2})T(X17 {Pla P2})T(X27 {P37 P4})
AdS



Double Box




Conclusions and Outlook

- Splines — geometrization of loop integrals and rational function identities.
- Interesting links to matroid theory and hyperplane arrangements

- Most of the work done for one-loop; how do interesting 2-loop calculations
(e.g. 4 pt stress-tensor) look like geometrically?

- Connections to Grassmannian story ?
- Splines are continuum limit of what? (Spoiler: non-local field theories)



Thank you!



Beyond polylogs

WHE e
47% ——/ d @ (...

f( )_/+°°dugLig(...)+...
N Ju 4 VA

A6) — [4 u1u2u5u6uwgu§ + lower-order terms in u8]

du8
/ ug\/(us — a)(ug — b)(ug — ) Elliptic functions




Embedding space formalism

- Integrals with numerators can also be addressed — though no
Feynman rules for those.

- Picture is clearer in embedding space: go to d+2 dimensions to
linearize action of the conformal group, SO(d+1,1)

PPy =—P"P 4+ PP, =0, P=\P
pM
—P-1

_P,. P,
v2(1,2%, o) Pi= 5 -n(—zﬁi 7y = = m)

“I” H

is a fixed reference vector which set the mass scale. It breaks

SO(d+1,1) conformal symmetry. In conformal expressions it must
always drop out!



Dealing with numerators

- One-loop integral with two numerators (chiral hexagon)

2 1 / Q(Q-Y)(—Q-Y’) Y-Pp=0. i=1,....4,
6 =52 [T (~P;- Q) Y. P,=0. i=3.....6.

- After a little work,

/ AB PAPB A pB & —&,
— Y.V} Z p 0+ L PAPPS }{dé,]HF( ) P
1

<]
}

|

M=1, star integral!



Dealing with numerators

- One-loop integral with two numerators (chiral hexagon)

~ on2

12 L/d4Q(—Q'Y)(—Q'Y') Y- =0, i=1....4

- In terms of cross-ratios:

3 1

2 5 = (u2(1—ul—U3)+U2(1_“1)uléu1

1 6
+ug(1—uz) uzOu, —(1—u2)(1—u1—us3) uz@w) @

- (Result first obtained in ...)

H?:l(_Pi'Q) Y' P, =0, i=3,....6



Consequences of Feynman rules

- The factorized form of Mellin amplitudes can be put to good use:

T du

+00 .1
M'f(s):/O d—a;sf(:z:) Mg(s):/0 — 2 g(x)

xr

+00
h(x) = % — MY (s)M9(s)z~* % s / dy y® fly)yM9(s)xz—*
+00 dy
= [) = Fw)g(x/y).

- Final position space expression is convolution of simpler integrals.



