ANOMALOUS DIMENSIONS, POMERON INTERCEPT AND ADS/CFT

Chung-I Tan, Brown University Non-Perturbative QCD Workshop
Paris, June I0-I3, 2013

Brower, Polchinski, Strassler,Tan (BPST)The Pomeron and Gauge/String Duality (2006)

Richard Brower, Marko Djurić, Ina Sarcević and Chung-I Tan: String-Gauge
Dual Description of DIS and Small-x, 10.1007/JHEP 11(2010)051, arXiv:1007.2259
R. Brower, M. Costa, M. Djuric, T. Raben, and C-I Tan: "Conformal Pomeron and Odderon Intercepts at Strong Coupling" (to appear.)

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc., and DIS
- Summary and Outlook

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook

Executive Summary:

Gauge/String Duality $($ AdS $/ C F T) \longrightarrow$-GLUONS \simeq GRAVITON

- Establishing "Pomeron" in QCD non-perturbatively,
- Unification of Soft and Hard Physics in High Energy Collision
- New phenomenology based on "Large Pomeron intercept", e.g., DIS at small-x: (DGLAP vs Pomeron), DVCS, Central Diffractive Higgs Production. etc.

ADS BUILDING BLOCKS BLOCKS

For 2-to-2

$$
A(s, t)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
$$

$$
A(s, t)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q} \perp \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right)
$$

$$
d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad \text { where } g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
$$

For 2-to-3
$A\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V * \widetilde{\mathcal{K}}_{P} * \Phi_{24}$

BASIC BUILDING BLOCK

-Elastic Vertex:

- Pomeron/Graviton Propagator:

conformal:

$$
G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp}\right)=\frac{1}{4 \pi z z^{\prime}} \frac{e^{(2-\Delta(j)) \xi}}{\sinh \xi},
$$

$$
\Delta(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}\right)}
$$

confinement:

$$
G_{j}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp} ; j\right) \longrightarrow \text { discrete sum }
$$

HERA vs LHeC region: dots are HI-ZEUS small-x data points

I. Gauge-String Duality: AdS/CFT

Weak Coupling:

Gluons and Quarks:

$$
\begin{aligned}
& A_{\mu}^{a b}(x), \psi_{f}^{a}(x) \\
& \bar{\psi}(x) \psi(x), \bar{\psi}(x) D_{\mu} \psi(x) \\
& S(x)=\operatorname{Tr} F_{\mu \nu}^{2}(x), \quad O(x)=\operatorname{Tr} F^{3}(x) \\
& T_{\mu \nu}(x)=\operatorname{Tr} F_{\mu \lambda}(x) F_{\lambda \nu}(x), \quad \text { etc. }
\end{aligned}
$$

Gauge Invariant Operators:

$$
\mathcal{L}(x)=-\operatorname{Tr} F^{2}+\bar{\psi} D \psi+\cdots
$$

Strong Coupling:

Metric tensor:

$$
G_{m n}(x)=g_{m n}^{(0)}(x)+h_{m n}(x)
$$

Anti-symmetric tensor (Kalb-Ramond fields):
Dilaton, Axion, etc.
$b_{m n}(x)$
$\phi(x), a(x)$, etc.
Other differential forms:

$$
\mathcal{L}(x)=\mathcal{L}(G(x), b(x), C(x), \cdots)
$$

$\mathcal{N}=4$ SYM Scattering at High Energy

$$
\left\langle e^{\int d^{4} x \phi_{i}(x) \mathcal{O}_{i}(x)}\right\rangle_{C F T}=\mathcal{Z}_{\text {string }}\left[\left.\phi_{i}(x, z)\right|_{z \sim 0} \rightarrow \phi_{i}(x)\right]
$$

Bulk Degrees of Freedom from typeIIB Supergravity on AdS_{5} :

- metric tensor: $G_{M N}$
- Kalb-Ramond 2 Forms: $B_{M N}, C_{M N}$
- Dilaton and zero form: ϕ and C_{0}

$$
\lambda=g^{2} N_{c} \rightarrow \infty
$$

Supergravity limit

Strong coupling
Conformal
Pomeron as Graviton in AdS

Conformal Invariance and Pomeron Interaction from AdS/CFT

$+\quad$.

Technigue: Summing generalized Witten Diagrams

Freedman et al., hep-th/9903196
Brower, Polchinski, Strassler, and Tan, hep-th/ 0003115

One Graviton Exchange at High Energy

- Draw all "Witten-Feynman" Diagrams in AdS_{5},
- High Energy Dominated by Spin-2 Exchanges:

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
$$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

WHAT IS THE BARE POMERON? LEADING I/NTERM CYLINDER EXCHANGE

WEAK:TWO GLUON <=> STRONG:ADS GRAVITON

$$
J_{c u t}=1+1-1=1
$$

$$
S=\frac{1}{2 \kappa^{2}} \int d^{4} x d z \sqrt{-g(z)}\left(-\mathcal{R}+\frac{12}{R^{2}}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi\right)
$$

F.E. Low. Phys. Rev. D 12 (I975), p. I63. S. Nussinov. Phys. Rev. Lett. 34 (1975), p. 1286.

AdS Witten Diagram: Adv.
Theor. Math. Physics 2 (1998)253

Holographic Approach to QCD

- Spin-2 leads to too fast a rise for cross sections
- Need to consider $\lambda \equiv g^{2} N_{c}$ finite
- Graviton (Pomeron) becomes j-Plane singularity at

$$
j_{0}: 2 \rightarrow 2-2 / \sqrt{\lambda}
$$

-Comfinement: Particles and Regge trajectories
Brower, Polchinski, Strassler, and Tan: "The Pomeron and Gauge/String Duality," hep-th/063 I I5
$\mathcal{N}=4$ Strong vs Weak $g^{2} N_{c}$

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook

II: Pomeron in the conformal Limit, OPE, and Anomalous Dimensions

$$
G_{m n}=g_{m n}^{0}+h_{m n}
$$

Massless modes of a closed string theory:
Need to keep higher string modes

As CFT, equivalence to OPE in strong coupling: using AdS

CFT correlate function - coordinate representation

$$
\begin{aligned}
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \sim \cdots \cdots \mathcal{A}(u, v) \\
& \mathrm{OPE}: \mathcal{A}(u, v)=\sum_{\Delta, J} a(\Delta, J) G_{(\Delta, J)}(u, v) \\
& \qquad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

Minkowski Limit: $\quad u \rightarrow 0, \quad v \rightarrow 1+O(\sqrt{u})$

Dynamics

$$
\Delta(J, \lambda), \quad J=0,1,2, \cdots \quad \lambda=g^{2} N_{c}
$$

"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

b_{1}

5 kinematical Parameters:
2-d Longitudinal
2-d Transverse space:
$\mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right]$
1-d Resolution: $\mathrm{x}_{\perp^{\prime}} \mathrm{x}_{\perp}=\mathrm{b}_{\perp}$
$z=1 / Q\left(\right.$ or $\left.z^{\prime}=1 / Q^{\prime}\right)$

Full $O(4,2)$ Conformal Group

15 generators: $P_{\mu}, M_{\mu \nu}, D, K_{\mu}$

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

Longitudinal Boost: $S O(1,1)$
Maximal commuting subgroup: $S O(3,1)$
6 generators $\quad i D \pm M_{12}, P_{1} \pm i P_{2}, K_{1} \mp i K_{2}$

CFT correlate function - coordinate representation

$$
\begin{aligned}
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \sim \cdots \cdots \mathcal{A}(u, v) \\
& \mathrm{OPE}: \quad \mathcal{A}(u, v)=\sum_{\Delta, J} a(\Delta, J) G_{(\Delta, J)}(u, v)
\end{aligned}
$$

Amplitude - in mixed representation

$$
\begin{aligned}
& S O(4,2)=S O(1,1) \times S O(3,1) \\
& A(s, b)=\int_{-i \infty}^{i \infty} \frac{d \Delta}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{d j}{2 \pi i} \mathcal{A}(\Delta, j) \widetilde{s}^{j} \mathcal{Y}_{(\Delta, j)}(\vec{b})
\end{aligned}
$$

Dynamics

$$
\mathcal{A}(\Delta, j) \sim \frac{1}{\Delta-\Delta(j, \lambda)}
$$

$A d S / C F T===>\quad$ Symmetry \leftrightarrow Isometry

Full $O(4,2)$ Conformal Group as Isometries of $A d S_{5}$ Space

$$
d s^{2}=\frac{-d x^{+} d x^{-}+\left(d x_{\perp}\right)^{2}+d z^{2}}{z^{2}}
$$

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

$$
S(3,1) \simeq S L(2, C): \text { "Mobius group" - }
$$

$$
\text { as Isometries of the Euclidean (transverse) } A d S_{3} \text { Space }
$$

$A d S / C F T===>\quad$ Symmetry \leftrightarrow Isometry

Full $O(4,2)$ Conformal Group as Isometries of $A d S_{5}$ Space

$$
d s^{2}=\frac{-d x^{+} d x^{-}+\left(d x_{\perp}\right)^{2}+d z^{2}}{z^{2}}
$$

$$
S O(4,2)=S O(1,1) \times S O(3,1)
$$

$$
S(3,1) \simeq S L(2, C): \text { "Mobius group" - }
$$

$$
\text { as Isometries of the Euclidean (transverse) } A d S_{3} \text { Space }
$$

$$
A(s, b)=\int d z \int d z^{\prime} \int_{-i \infty}^{i \infty} \frac{d \Delta}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{d j}{2 \pi} \mathcal{A}\left(\Delta, j, z, z^{\prime}\right) \widetilde{s}^{j} \mathcal{Y}_{\Delta}\left(L_{\left(b, z, z^{\prime}\right)}\right)
$$

$$
A(s, b)=\int d z \int d z^{\prime} \int_{-i \infty}^{i \infty} \frac{d \Delta}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{d j}{2 \pi} \mathcal{A}\left(\Delta, j, z, z^{\prime}\right) \widetilde{s}^{j} \mathcal{Y}_{\Delta}\left(L_{\left(b, z, z^{\prime}\right)}\right)
$$

AdS/CFT:

$$
\mathcal{A}\left(\Delta, j, z, z^{\prime}\right)=\Phi_{1}(z) \Phi_{2}(z) \Phi_{3}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right) \times \frac{1+e^{-i \pi j}}{\sin \pi j} \times \mathcal{A}(\Delta, j)
$$

$$
\text { Dynamics: } \quad \mathcal{A}(\Delta, j) \sim \frac{1}{\Delta-\Delta(j, \lambda)}
$$

$$
A(s, b)=\int d z d z^{\prime} \Pi \Phi_{i} \sum_{j=0,2, \cdots} \beta(j) \widetilde{s}^{j} \mathcal{Y}_{\Delta(j)}\left(L_{\left(z, z^{\prime}, b\right)}\right)
$$

Anomalous Dimension:

$$
\gamma(j, \lambda) \equiv \Delta(j, \lambda)-j-2
$$

In the limit $\lambda \rightarrow \infty$, only $j=2$ survives.

$$
\mathcal{A}(\Delta, j) \sim \frac{1}{\Delta-\Delta(j, \lambda)}
$$

String Theoretic Approach (BPST):

$$
O P E==>\text { Pomeron Vertex Operator }
$$

$$
\left(L_{0}-1\right) V_{P}=\left(\bar{L}_{0}-1\right) V_{P}=0
$$

- Brower, Polchinski, Strassler, and Tan: "The Pomeron and Gauge/String Duality," hep-th/063II5

Strong Coupling Pomeron Propagator--Conformal Limit

- Use J-dependent Dimension

$$
\Delta: \quad 4 \rightarrow \Delta(J)=2+\left[2 \sqrt{\lambda}\left(J-J_{0}\right)\right]^{1 / 2}=2+\sqrt{\bar{j}}
$$

- BFKL-cut:

$$
J_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

-Double-Mellin representation:

$$
A\left(s, b-b^{\prime}, z, z^{\prime}\right)=\int \frac{d j}{2 \pi i} \int \frac{d \Delta}{2 \pi i} \cdots \frac{s^{j} e^{\xi \Delta}}{j-j_{0}-\mathcal{D}(\Delta-2)^{2}}
$$

$\mathcal{N}=4$ SYM Leading Twist $\Delta(J)$ vs $J:$
Anomalous Dimensions

$\lambda=0$ DGLAP (DIS moments)

$$
\operatorname{Tr}\left[F_{+\mu} D_{+}^{j-2} F_{+}^{\mu}\right]
$$

$$
\longleftarrow(0,2) \mathrm{T}_{\mu \nu} \quad \gamma=0
$$

$$
\lambda=0, \mathrm{BFKL}
$$

$$
\lambda=g^{2} N=0
$$

ANOMALOUS DIMENSIONS:

$$
\gamma(j, \lambda)=\Delta(j, \lambda)-j-2
$$

$$
\begin{gathered}
\gamma_{2}=0 \\
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \\
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
\end{gathered}
$$

Energy-Momentum Conservation built-in automatically.

Holographic Approach to QCD

- Need to consider $\lambda \equiv g^{2} N_{c}$ finite
- Graviton (Pomeron) becomes j-Plane singularity at

$$
j_{0}: 2 \rightarrow 2-2 / \sqrt{\lambda}
$$

- Confinement: Particles and Regge trajectories

Brower, Polchinski, Strassler, and Tan: "The Pomeron and Gauge/String Duality," hep-th/063II5

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
-DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook
III. Deep Inelastic Scattering (DIS) at small-x

Deep Inelastic Scattering (DIS)

$$
\begin{aligned}
& F_{2}(x, Q 2)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left[\sigma_{T}\left(\gamma^{*} p\right)+{ }_{L}\left(\gamma^{*} p\right)\right] \\
& x \equiv \frac{Q^{2}}{s}
\end{aligned}
$$

Small $x: \frac{Q^{2}}{s} \rightarrow 0$
Optical Theorem

$$
\sigma_{t o t a l}\left(s, Q^{2}\right)=(1 / s) \operatorname{Im} A\left(s, t=0 ; Q^{2}\right)
$$

HERA vs LHeC region: dots are HI-ZEUS small-x data points

ELASTICVS DIS ADS BUILDING BLOCKS

$$
\begin{aligned}
& A\left(s, x_{\perp}-x_{\perp}^{\prime}\right)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} \Phi_{12}(z) G\left(s, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) \Phi_{34}\left(z^{\prime}\right) \\
& \sigma_{T}(s)=\frac{1}{s} \operatorname{Im} A(s, 0)
\end{aligned}
$$

$$
\text { for } \quad F_{2}(x, Q)
$$

$$
\Phi_{13}(z) \rightarrow \Phi_{\gamma^{*} \gamma^{*}}(z, Q)=\frac{1}{z}[Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right]
$$

$d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad$ where $\quad g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}$

DIS in String Theory

continued
$F_{2}\left(x, Q^{2}\right)$ from AdS/CFT

$$
F_{2}=c \frac{Q}{Q^{\prime}} \frac{\left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)^{1-\rho}}{\sqrt{\log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}} \exp \left(-\frac{\log ^{2}\left(\frac{Q}{Q^{\prime}}\right)}{\rho \log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}\right)
$$

- This is the expression we will use later for comparing to data. Let's make a few comments about this function.
- c is a dimensionless normalization constant. I have grouped here all the constants the multiply F_{2}, including the coupling constant that comes from χ, and only appears as product together with normalization.
- At any Q^{2} fixed, we see that at small x the term $\left(\frac{1}{x}\right)^{(1-\rho)}$ dominates. This leads to a violation of the Froissart bound.

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

$$
\gamma_{2}=0
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation

MOMENTS AND ANOMALOUS DIMENSION

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \rightarrow Q^{-\gamma_{n}}
$$

$$
\gamma_{2}=0
$$

$$
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)}
$$

$$
\gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n
$$

Simultaneous compatible large Q^{2} and small x evolutions!
Energy-Momentum Conservation built-in automatically.

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook

IV: More on Pomeron and Odderon in the conformal Limit

Massless modes of a closed string theory: metric tensor, $\quad G_{m n}=g_{m n}^{0}+h_{m n}$ Kolb-Ramond anti-sym. tensor, dilaton, etc.

$$
b_{m n}=-b_{n m}
$$

$$
\phi, \chi, \cdots
$$

Gauge/String Duality: Conformal Limit

- $\mathrm{C}=+1$: Pomeron <===> Graviton

$$
j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda) .
$$

- C=-1: Odderon <===> Kalb-Ramond Field

$$
j_{0}^{(-)}=1-m_{A d S}^{2} / 2 \sqrt{\lambda}+O(1 / \lambda) .
$$

	Weak Coupling	Strong Coupling
$C=+1$	$j_{0}^{(+)}=1+(\ln 2) \lambda / \pi^{2}+O\left(\lambda^{2}\right)$	$j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda)$
$C=-1$	$j_{0,(1)}^{(-)} \simeq 1-0.24717 \lambda / \pi+O\left(\lambda^{2}\right)$	$j_{0,(1)}^{(-)}=1-8 / \sqrt{\lambda}+O(1 / \lambda)$
	$j_{0,(2)}^{(-)}=1+O\left(\lambda^{3}\right)$	$j_{0,(2)}^{(-)}=1+O(1 / \lambda)$

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.
$\mathcal{N}=4$ SYM Leading Twist $\Delta(J)$ vs $J:$
Anomalous Dimensions

$\lambda=0$ DGLAP (DIS moments)

$$
\operatorname{Tr}\left[F_{+\mu} D_{+}^{j-2} F_{+}^{\mu}\right]
$$

$$
\longleftarrow(0,2) \mathrm{T}_{\mu \nu} \quad \gamma=0
$$

$$
\lambda=0, \mathrm{BFKL}
$$

$$
\lambda=g^{2} N=0
$$

ANOMALOUS DIMENSION:

$$
\Delta(j)=2+\sqrt{2} \sqrt{\sqrt{g^{2} N_{c}}\left(j-j_{0}\right)} \quad \gamma_{n}=2 \sqrt{1+\sqrt{g^{2} N}(n-2) / 2}-n \quad \gamma_{2}=0
$$

Energy-Momentum Conservation built-in automatically.
Connection to Spin Chain in $\mathcal{N}=4$ YM:

$$
\operatorname{tr} D^{S} Z^{\tau} \quad \widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots
$$

$$
\tau=2, \quad \widetilde{\Delta}(S)=\Delta(S+2)-2
$$

$\operatorname{tr} F_{\mu \nu} D_{\nu} \cdots D_{\nu^{\prime}} F_{\nu^{\prime} \mu^{\prime}}$
$S=0 \rightarrow \mathrm{BPS}$
$\widetilde{\Delta}(S)^{2} \simeq 4+2 \sqrt{\lambda} S$

POMERON AND ODDERON IN STRONG COUPLING:

$\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+$
B.Basso, 1109.3154v2

POMERON

$$
\alpha_{P}=2-\frac{2}{\lambda^{1 / 2}}
$$

$$
S=J-2
$$

$$
\widetilde{\Delta}=\Delta-2
$$

Brower, Polchinski, Strassler, Tan

J vs Delta Curves

$$
\Delta^{(\pm)}(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}^{(\pm)}\right)}
$$

POMERON AND ODDERON IN STRONG COUPLING:

$\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots$
B.Basso, 1109.3154v2

POMERON

$$
\alpha_{P}=2-\frac{2}{\lambda^{1 / 2}}
$$

ODDERON
Brower, Polchinski, Strassler, Tan

Solution-a:

$$
\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}
$$

Solution-b: $\int \alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}$

Brower, Djuric, Tan

POMERON AND ODDERON IN STRONG COUPLING:

$\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots$
B.Basso, 1109.3154v2

POMERON

$$
\alpha_{P}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\cdots
$$

ODDERON

 Brower, Polchinski, Strassler, TanKotikov, Lipatov, et al.
Costa, Goncalves, Penedones (1209.4355)
Kotikov, Lipatov (1301.0882)
Solution-a:

$$
\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}
$$

Brower, Djuric, Tan

POMERON AND ODDERON IN STRONG COUPLING:

$\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots$
B.Basso, 1109.3154v2

POMERON

$$
\alpha_{P}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\cdots
$$

ODDERON

 Brower, Polchinski, Strassler, Tan$\left.\begin{array}{l}\text { Costa, Goncalves, Penedones (1209.4355) } \\ \text { Kotikov, Lipatov (1301.0882) }\end{array}\right)$
Solution-a:

$$
\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-\frac{4}{\lambda}+\frac{13}{\lambda^{3 / 2}}+\cdots \cdots
$$

Solution-b: $\int \alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}$

Brower, Djuric, Tan

POMERON AND ODDERON IN STRONG COUPLING:

$\widetilde{\Delta}(S)^{2}=\tau^{2}+a_{1}(\tau, \lambda) S+a_{2}(\tau, \lambda) S^{2}+\cdots$
B.Basso, 1109.3154v2

POMERON

$$
\alpha_{P}=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\cdots
$$

ODDERON

 Brower, Polchinski, Strassler, Tan$\begin{aligned} & \text { Kotikov, Lipatov, et al. } \\ & \text { Costa, Goncalves, Penedones (1209.4355) } \\ & \text { Kotikov, Lipatov (1301.0882) }\end{aligned}$
Solution-a:

$$
\alpha_{O}=1-\frac{8}{\lambda^{1 / 2}}-\frac{4}{\lambda}+\frac{13}{\lambda^{3 / 2}}+\cdots \cdots
$$

Solution-b:

$$
\alpha_{O}=1-\frac{0}{\lambda^{1 / 2}}-\frac{0}{\lambda}-\frac{0}{\lambda^{3 / 2}}-\cdots \cdots .
$$

Outline

- QCD High Energy Scattering with AdS/CFT -- Universality
- Consequence of Conformal Invariance
- DIS at low-x -- Unification
- DGLAP (large Q) vs BFKL (small x)
- OPE (Anomalous Dimensions) and Conformal Pomeron
- Conformal Pomeron and Odderon Intercepts in strong coupling
- Saturation, Confinement, etc. and DIS
- Summary and Outlook
IV. Deep Inelastic Scattering (DIS) at small-x:

Confinement?
 Satuation?

Confinement Deformation: Glueball Spectrum

 $(\lambda=\infty)$

Four-Dimensional Mass:

$$
\mathrm{E}^{2}=\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}\right)+\mathrm{M}^{2}
$$

$$
0=\mathrm{E}^{2}-\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}+\mathrm{p}_{\mathrm{r}}^{2}\right)
$$

Unified Hard (conformal) and Soft (confining) Pomeron
At finite λ, due to Confinement in AdS, at $t>0$ aymptotical linear Regge trajectories
diffussion
t

- Universality and Holographic:

By choosing wave functions, Φ, can treat
 DIS, Higgs Production, Proton-Proton, etc., on equal footing.

ADS BUILDING BLOCKS BLOCKS

For 2-to-2

$$
A(s, t)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * \Phi_{24}
$$

$$
A(s, t)=g_{0}^{2} \int d^{3} \mathbf{b} d^{3} \mathbf{b}^{\prime} e^{i \mathbf{q} \perp \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \Phi_{13}(z) \mathcal{K}\left(s, \mathbf{x}-\mathbf{x}^{\prime}, z, z^{\prime}\right) \Phi_{24}\left(z^{\prime}\right)
$$

$$
d^{3} \mathbf{b} \equiv d z d^{2} x_{\perp} \sqrt{-g(z)} \quad \text { where } g(z)=\operatorname{det}\left[g_{n m}\right]=-e^{5 A(z)}
$$

For 2-to-3
$A\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right)=\Phi_{13} * \widetilde{\mathcal{K}}_{P} * V * \widetilde{\mathcal{K}}_{P} * \Phi_{24}$

Higher Orders Witten Diagrams:

$$
A_{4}(s, t) \simeq \int d^{2} b e^{-i \mathbf{b} \cdot \mathbf{q}_{\perp}} \int d \mu(z) \int d \mu\left(z^{\prime}\right)
$$

$$
\times \quad \phi_{1}(z, \mathbf{b}) \phi_{3}(z, \mathbf{b}) \mathcal{K}\left(s, \mathbf{b}-\mathbf{b}^{\prime}, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}, \mathbf{b}^{\prime}\right) \phi_{4}\left(z^{\prime}, \mathbf{b}^{\prime}\right)
$$

DIS in String Theory

The Hard-wall Model continued
We will take over the structure function formula we had before, and just replace the Pomeron exchange kernel with the new version.
$F_{2}\left(x, Q^{2}\right)$ from hard-wall AdS/CFT
$F_{2}=c \frac{Q}{Q^{\prime}} \frac{\left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)^{1-\rho}}{\sqrt{\log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}}\left(\exp \left(-\frac{\log ^{2}\left(\frac{Q}{Q^{\prime}}\right)}{\rho \log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}\right)+\widetilde{F} \exp \left(-\frac{\log \left(\frac{Q_{0}^{2}}{Q Q^{\prime}}\right)^{2}}{\rho \log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}\right)\right)$
we see that this part is the same as before, while this part is new. The function \mathbb{F} is given by

$$
\mathcal{F}\left(x, Q, Q^{\prime}\right) `=1-4 \sqrt{\pi \log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)} e^{\eta^{2}} \operatorname{erfc}(\eta)
$$

where

$$
\eta=\frac{\log \left(\frac{x}{Q^{2}}\left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)^{1-\rho}\right)}{\sqrt{\rho \log \left(Q_{0}^{2} \frac{Q}{Q^{\prime}} \frac{1}{x}\right)}}
$$

- Eikonal Sum:
derived both via Cheng-Wu or by Shock-wave method

$$
A_{2 \rightarrow 2}(s, t) \simeq-2 i s \int d^{2} b e^{-i b^{\perp} q_{\perp}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)\left[e^{i \chi\left(s, b^{\perp}, z, z^{\prime}\right)}-1\right]
$$

$$
P_{13}(z)=(z / R)^{2} \sqrt{g(z)} \Phi_{1}(z) \Phi_{3}(z) \quad P_{24}(z)=\left(z^{\prime} / R\right)^{2} \sqrt{g\left(z^{\prime}\right)} \Phi_{2}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right)
$$

transverse AdS_{3} space !!

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=\frac{g_{0}^{2} R^{4}}{2\left(z z^{\prime}\right)^{2} s} \mathcal{K}\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)
$$

- Saturation:

$$
\chi\left(s, x^{\perp}-x^{\prime}, z, z^{\prime}\right)=O(1)
$$

- Universality:
e.g., Choose Φ_{1} and Φ_{3} for DIS.

Effective Pomeron Intercept from HERA data:

$$
F_{2} \simeq C\left(Q^{2}\right) x^{-\epsilon_{e f f}}
$$

Questions on HERA DIS small-x data:

- Why $\alpha_{e f f}=1+\epsilon_{e f f}\left(Q^{2}\right)$?
- Confinement? (Perturbative vs. Non-perturbative?)
- Saturation? (evolution vs. non-linear evolution?)

$$
F_{2}\left(x, Q^{2}\right) \sim(1 / x)^{\epsilon_{e f f e c t i}}
$$

Scattering in Conformal Limit:

Use the condition:

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)
$$

Elastic Ring:
No Froissart

$$
b_{\mathrm{diff}} \sim \sqrt{z z^{\prime}}\left(z z^{\prime} s / N^{2}\right)^{1 / 6}
$$

$$
\sigma_{t o t a l} \sim s^{1 / 3}
$$

Inner Absorptive Disc:

$$
b_{\text {black }} \sim \sqrt{z z^{\prime}} \frac{\left(z z^{\prime} s\right)^{\left(j_{0}-1\right) / 2}}{\lambda^{1 / 4} N} \quad b_{\text {black }} \sim \sqrt{z z^{\prime}}\left(\frac{\left(z z^{\prime} s\right)^{j_{0}-1}}{\lambda^{1 / 4} N}\right)^{1 / \sqrt{2 \sqrt{\lambda}}\left(j_{0}-1\right)}
$$

Inner Core: "black hole" production ?

Saturation of Froissart Bound

Disk picture

- The Confinement deformation gives an exponential cutoff for b $>\mathrm{b}_{\text {max }} \sim \mathrm{c} \log \left(\mathrm{s} / \mathrm{s}_{0}\right)$,
- Coefficient c $\sim 1 / m_{0}, m_{0}$ being the mass of lightest tensor glueball.
- Froissart is respected and
 saturated.

$$
\Delta b \sim \log \left(s / s_{0}\right)
$$

VI. Beyond Pomeron

-Sum over all Pomeron graph (string perturbative, $1 / \mathrm{N}^{2}$)

- Eikonal summation in AdS_{3}
- Constraints from Conformal Invariance, Unitarity, Analyticity, Confinement, Universality, etc.
©roissart Bound?
-"non-perturbative" (e.g., blackhole production)

VIII. Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
-Phenomenological consequences, DIS at small-x, Diffractive Higgs production at LHC, etc.

(STRONG) RUNNING

