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‣ N=6 superconformal Chern-Simons matter theory         
(known as ABJM)  (Aharony, Bergman, Jafferis, Maldacena)

- original motivation: find the dual field theory to M-theory on  AdS4 x S7 
(Schwarz)

‣ ABJM amplitudes have surprising similarities to                                
N=4 super Yang-Mills amplitudes

‣ One-loop amplitudes

- explain certain intriguing regularities in one-loop amplitudes

‣ Two-loop Sudakov form factor 

- very interesting properties of integral functions, peculiar to 3d

Plan



• Gauge fields 

‣ Chern-Simons levels k and -k respectively 

- gluons appear only as internal states! 

- peculiar role of gluon zero-momentum mode

ABJM in a nutshell                                  
(Aharony, Bergman, Jafferis, Maldacena)
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• Matter fields:

‣ 4 complex bosons & 4 complex fermions 

- particles / anti-particles transform in the bi-fundamental                       
of U(N) × U(N)       I , 

- A =1, ..., 4   SU(4)  R-symmetry index,     α = 1, 2 spin index           

- all particles transform in the (anti)-fundamental of R-symmetry group 
(unlike N=4 SYM)  

‣ N=6 supersymmetry in 3d (for appropriately tuned 6-scalar and   
2-fermion/2-scalar couplings)

‣ superconformal OSp(6 | 4)
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• New example of AdS/CFT duality in 3d

‣ at large N and k << N 

- dual to M-theory on AdS4 x S7/Zk  , weakly curved for N >> k5

- dual to type IIA string theory on AdS4 x CP3  for N << k5 << N5 : 

‣ at large k , there is a weakly-coupled Lagrangian description 

- ’t Hooft limit:  large N and k with  λ ≡ N / k    fixed

- weak coupling for λ << 1 

- 1/N expansion at fixed λ

‣ this talk: amplitudes and form factors at small λ



Amplitudes



• crucial to expose the simplicity of amplitudes (as in 4d)

‣ Lorentz group isomorphic to SL(2, R):

‣ For null vectors:                             with  α,β =1, 2

- automatically enforces      p2 = det (p) = 0

- similar to                        in 4d

‣ little group is  λ→ - λ   hence no helicity  (unlike in 4d!)

‣ Lorentz invariant products:   

- only one kind of invariant product (no [ ... ] brackets !)

Spinor helicity formalism 

p↵�̇ = �↵�̃�̇

pµ ! p↵� := pµ�µ,↵�

hi ji := ⇥i�⇥j⇥ �
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pαβ  =  λα λβ



• Four-point (super)amplitude at tree level                                     
(Agarwal, Beisert, McLoughlin)

‣ all amplitudes with a fixed number of legs packaged into a single 
superamplitude

- ηA  fermionic variables,  A =1, 2, 3 is an SU(3) index (⊂ SU(4) )

- N=6 supersymmetric delta functions: 

‣ Because of gauge invariance, particles and antiparticles must alternate, 
hence only amplitudes with an even number of legs are nonvanishing

• The only amplitude reminiscent of 4d MHV amplitudes

Simplest amplitude
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• in 3d

• in 4d: 
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‣ At four points in ABJM: 

- One-loop amplitude vanishes  (Agarwal, Beisert, McLoughlin)

- Two-loop amplitude matches the one-loop amplitude in N=4 SYM          
(Chen & Huang; Bianchi, Leoni, Mauri, Penati, Santambrogio)

- Two-loop Wilson loop matches the one-loop Wilson loop in N=4 SYM  
(Henn, Plefka, Wiegandt; Wiegandt)

‣ Conjectured scattering amplitude-Wilson loop duality                             
(at four points)  

‣ Conjectured correlation function-Wilson loop duality                      
(at four points) (Bianchi, Leoni, Mauri, Penati, Ratti, Santambrogio)

Facts & similarities with N=4 SYM



‣ Dual (super)conformal symmetry   

- for the Wilson loop  (Henn, Plefka, Wiegandt)

- for the amplitudes   (Gang, Huang, Koh, Lee, Lipstein; Bargheer, Beisert, Loebbert, 

McLoughlin)     

‣ Yangian symmetry  (Bargheer, Loebbert, Meneghelli)

- by commuting dual conformal with conformal generators

‣ Amplitudes represented as a Grassmannian integral (Lee)   

‣ Spectrum of (planar) anomalous dimensions in terms of 
integrable spin chain (Minahan & Zarembo; Bak & Rey)                                          



‣ n-point amplitudes have Grassmann degree 3n / 2

- no MHV amplitudes, no helicity

- no amplitudes with odd number of particles

‣ n-point amplitudes at one loop are non-vanishing for n ≥ 6  
(Bargheer, Beisert, Loebbert, McLoughlin; Bianchi, Leoni, Mauri, Penati, Santambrogio; Brandhuber, GT,  Wen)

‣ Wilson loop with odd number of edges is non-vanishing, 
but there is no corresponding amplitude!

Differences with N=4 SYM



One-loop amplitudes



‣ Only scalar triangles because of dual conformal symmetry  

- one-mass and two-mass triangles vanish in d=3 hence

- three-mass triangles are finite       (Ki2 ≠ 0)

‣ All one-loop amplitudes are finite!

- we provide later a recursion relation for their coefficients

One-loop ABJM amplitudes

ory [14] – see the Introduction for alternative explanations. Indeed, because of the sym-
metry only scalar triangle functions will appear in the expansion of a one-loop amplitude.
One-mass and two-mass triangles in dimensional regularisation are zero when evaluated
in D = 3, and we are left with three-mass triangles, which are dual conformal invariant
if multiplied with an appropriate normalisation factor. However, lacking enough inde-
pendent region momenta, the only way this normalised integral function can be dual
conformal invariant is by being a constant (see Appendix B for details).

In the following we will write general one-loop amplitudes as a linear combination of
unnormalised, scalar triangle functions,
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i "= 0 for all i. The expression for these triangles was obtained in [39–41], and we

provide an independent derivation using Mellin Barnes representations in Appendix B.

3.1 Supercoefficients from triple cuts

The supercoefficients can be calculated by applying generalised unitarity [43,44] or, specif-
ically in three-dimensions, three-particle cuts. This strategy was pursued in [15] where
the four-point amplitude at one and two loops were calculated, and very recently in [16],
where three-particle cuts were performed in order to calculate the six-point amplitude at
one loop. This amplitude was concurrently derived in [17] using supergraphs.
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Figure 2: A generic three-mass triangle function. In three dimensions, one-mass and
two-mass triangles vanish.
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‣ Tree-level: 

- Y-functions:  

‣ one-loop: 

- S

- sgn  

‣ Determined with maximal cuts (Bargheer, Beisert, Loebbert, McLoughlin) and 
supergraphs (Bianchi, Leoni, Mauri, Penati, Santambrogio)
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(⇥2|P34|5⇤+ i⇥3 4⇤⇥6 1⇤)(⇥1|P23|4⇤+ i⇥2 3⇤⇥5 6⇤)

Y (2)
12;4 =

�(3)(P )�(6)(Q)

P 2
24

�(3)(⇥ijk⇥j k⇤⇤i + i ⇥īj̄k̄⇥j̄ k̄⇤⇤ī)
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ī, j̄ = 5, 6, 1

= sgn(h1 2i)sgn(h3 4i)sgn(h5 6i) + sgn(h2 3i)sgn(h4 5i)sgn(h6 1i)

Six-point amplitude

M(0)(1̄, 2, 3̄, 4, 5̄, 6) = Y (1)
12;4 + Y (2)

12;4

(hmni) := �i
hmnip

�(hmni2 + i�)

M(1)(1̄, 2, 3̄, 4, 5̄, 6) = �3S(Y (1)
12;4 � Y (2)

12;4)



‣ Tree-level: 

- Y-functions:  

‣ one-loop: 

- S

- sgn  

‣ Determined with maximal cuts (Bargheer, Beisert, Loebbert, McLoughlin) and 
supergraphs (Bianchi, Leoni, Mauri, Penati, Santambrogio)

Y (1)
12;4 =

�(3)(P )�(6)(Q)

P 2
24

�(3)(⇥ijk⇥j k⇤⇤i � i ⇥īj̄k̄⇥j̄ k̄⇤⇤ī)
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ī, j̄ = 5, 6, 1

= sgn(h1 2i)sgn(h3 4i)sgn(h5 6i) + sgn(h2 3i)sgn(h4 5i)sgn(h6 1i)

Six-point amplitude

M(0)(1̄, 2, 3̄, 4, 5̄, 6) = Y (1)
12;4 + Y (2)

12;4

(hmni) := �i
hmnip

�(hmni2 + i�)

M(1)(1̄, 2, 3̄, 4, 5̄, 6) = �3S(Y (1)
12;4 � Y (2)

12;4)



‣ Goal: explain (and possibly extend) the remarkable similarity 
between the tree and one-loop results observed at 6 points

‣ Strategy: look for similarities with N=4 SYM in 4d

‣ More specifically: look for links between tree-level and one-
loop expressios...



• 4d N=4 SYM:

‣ one-loop amplitudes in N=4:  rational coefficient x box function              
(Bern, Dixon, Dunbar, Kosower)

‣ Box coefficient from generalised unitarity (Britto, Cachazo, Feng)

A1�loop =
�

i,j,k,l

C(i, j, k, l)

C(i, j, k, l) =



• Tree/one-loop link:

‣ RSV equations:  n equations relating sums of two-mass hard  
(and one-mass) box supercofficients to the N=4 tree amplitude                  
(Roiban, Spradlin, Volovich) 

‣ key picture: 

- LHS: quadruple cut evaluates 2mh coefficient. Note: 2 three-point vertices 
RHS: BCFW diagram contributing to the tree amplitude

- First hint: solutions for cut momenta          same as BCFW shifts      

i+n�2X

j=i+2

C2mh(i, j) = 2M(0) , i = 1, . . . , n

order to satisfy the anomalous dual conformal Ward identities, one-loop supercoefficients
must obey certain linear equations, n of which are precisely the relations between tree
amplitudes and one-loop two-mass hard and one-mass box coefficients described in [31].

At this point we mention a key ingredient in our story, namely the connection between
quadruple cuts involving two adjacent massless corners – from which one obtains the
coefficients that feature in the relations of [31], and tree-level recursion relations [36, 37].
In the context ofN = 4 SYM, this relation was first noticed in [36], and in [32] it was shown
how one can map each quadruple cut of this type directly to a BCFW recursive diagram.
In particular the two cut legs depicted as vertical lines in Figure 1(a) morph into BCFW
shifted legs, see Figure 1(b). In this way, the relations of [31] are proved because the
sum of two-mass hard coefficients is converted into the sum of BCFW recursive diagrams
which in turn is known to give the tree amplitude.
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Figure 1: Two-mass hard quadruple cut and the corresponding recursive diagram in N = 4
SYM.

Motivated by this, we will consider special triple cuts in three-dimensional ABJM the-
ory where one of the participating amplitudes is a four-point tree-level superamplitude,
while the remaining two can have any (even) number of particles. Note that in ABJM
the four-point amplitude is the smallest amplitude and plays a similar fundamental role
as the three-point amplitude in N = 4 SYM. In [17] the special role of four-point tree
amplitudes was emphasised and their superconformal anomalies, which are localised on
collinear configurations, were studied in detail and shown to be the source of superconfor-
mal anomalies of six-point tree and one-loop amplitudes.3 There are two solutions to the
triple-cut equations, and hence two contributions to the supercoefficients, paralleling the
two solutions z1,2 for the z variable defining the shifts in the three-dimensional recursion
relation [14]. InN = 4 SYM, the sum of the two contributions from the two quadruple cut
solutions gives the manifestly PT-invariant form of the supersymmetric BCFW recursion
relation. It contains two terms which happen to be equal as a consequence of the large-z
behaviour of the superamplitude [32], leading to the factor of two alluded to earlier.

What happens in the three-dimensional ABJM theory? We find something rather
surprising here. If combined with a positive sign, these two “sharpened” leading singular-

3Incidentally, we wish to point out the similar role played by four-point tree amplitudes in unitarity
cuts of one-loop superamplitudes in N = 4 SYM. Indeed it is the particular class of two-particle cuts
including a four-point tree amplitude that is related to IR divergences and responsible for the one-loop
dual conformal anomaly as pointed out in [35].
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î ̂i+1

j

(a)

(b)

Figure 1: Two-mass hard quadruple cut and the corresponding recursive diagram in N = 4
SYM.

Motivated by this, we will consider special triple cuts in three-dimensional ABJM the-
ory where one of the participating amplitudes is a four-point tree-level superamplitude,
while the remaining two can have any (even) number of particles. Note that in ABJM
the four-point amplitude is the smallest amplitude and plays a similar fundamental role
as the three-point amplitude in N = 4 SYM. In [17] the special role of four-point tree
amplitudes was emphasised and their superconformal anomalies, which are localised on
collinear configurations, were studied in detail and shown to be the source of superconfor-
mal anomalies of six-point tree and one-loop amplitudes.3 There are two solutions to the
triple-cut equations, and hence two contributions to the supercoefficients, paralleling the
two solutions z1,2 for the z variable defining the shifts in the three-dimensional recursion
relation [14]. InN = 4 SYM, the sum of the two contributions from the two quadruple cut
solutions gives the manifestly PT-invariant form of the supersymmetric BCFW recursion
relation. It contains two terms which happen to be equal as a consequence of the large-z
behaviour of the superamplitude [32], leading to the factor of two alluded to earlier.

What happens in the three-dimensional ABJM theory? We find something rather
surprising here. If combined with a positive sign, these two “sharpened” leading singular-

3Incidentally, we wish to point out the similar role played by four-point tree amplitudes in unitarity
cuts of one-loop superamplitudes in N = 4 SYM. Indeed it is the particular class of two-particle cuts
including a four-point tree amplitude that is related to IR divergences and responsible for the one-loop
dual conformal anomaly as pointed out in [35].

4

order to satisfy the anomalous dual conformal Ward identities, one-loop supercoefficients
must obey certain linear equations, n of which are precisely the relations between tree
amplitudes and one-loop two-mass hard and one-mass box coefficients described in [31].

At this point we mention a key ingredient in our story, namely the connection between
quadruple cuts involving two adjacent massless corners – from which one obtains the
coefficients that feature in the relations of [31], and tree-level recursion relations [36, 37].
In the context ofN = 4 SYM, this relation was first noticed in [36], and in [32] it was shown
how one can map each quadruple cut of this type directly to a BCFW recursive diagram.
In particular the two cut legs depicted as vertical lines in Figure 1(a) morph into BCFW
shifted legs, see Figure 1(b). In this way, the relations of [31] are proved because the
sum of two-mass hard coefficients is converted into the sum of BCFW recursive diagrams
which in turn is known to give the tree amplitude.

i i+1

j

3 3

RL

L R

î ̂i+1

j

(a)

(b)

Figure 1: Two-mass hard quadruple cut and the corresponding recursive diagram in N = 4
SYM.

Motivated by this, we will consider special triple cuts in three-dimensional ABJM the-
ory where one of the participating amplitudes is a four-point tree-level superamplitude,
while the remaining two can have any (even) number of particles. Note that in ABJM
the four-point amplitude is the smallest amplitude and plays a similar fundamental role
as the three-point amplitude in N = 4 SYM. In [17] the special role of four-point tree
amplitudes was emphasised and their superconformal anomalies, which are localised on
collinear configurations, were studied in detail and shown to be the source of superconfor-
mal anomalies of six-point tree and one-loop amplitudes.3 There are two solutions to the
triple-cut equations, and hence two contributions to the supercoefficients, paralleling the
two solutions z1,2 for the z variable defining the shifts in the three-dimensional recursion
relation [14]. InN = 4 SYM, the sum of the two contributions from the two quadruple cut
solutions gives the manifestly PT-invariant form of the supersymmetric BCFW recursion
relation. It contains two terms which happen to be equal as a consequence of the large-z
behaviour of the superamplitude [32], leading to the factor of two alluded to earlier.

What happens in the three-dimensional ABJM theory? We find something rather
surprising here. If combined with a positive sign, these two “sharpened” leading singular-

3Incidentally, we wish to point out the similar role played by four-point tree amplitudes in unitarity
cuts of one-loop superamplitudes in N = 4 SYM. Indeed it is the particular class of two-particle cuts
including a four-point tree amplitude that is related to IR divergences and responsible for the one-loop
dual conformal anomaly as pointed out in [35].

4

⇔
l̂a l̂b

l̂a, l̂b î, [i+ 1

K1 K2
K1 K2





‣ RSV relations proved by direct calculation or IR consistency 
conditions (Arkani-Hamed, Cachazo, Kaplan)  or using dual conformal 
equations (Brandhuber, Heslop, GT)

‣ question: do we have a similar connection in 3d? 

‣ pessimistic answer: RSV relations are related to infrared 
divergences. 3d at one loop is finite, hence answer is NO. 

‣ optimistic answer: the RSV equations are related to 
anomalous dual conformal symmetry, which ABJM does have 
(Bargheer, Beisert, Loebbert, McLoughlin) 

‣ our answer: try! 



‣ 3d key picture:                                 

- LHS: triple cut evaluates coefficient. Note: one 4-point amplitude            
RHS: BCFW diagram contributing to the tree amplitude

- First hint: solutions for cut momenta same as BCFW shifts      

‣ Opposite sign for the two residues

- curious minus signs in the one-loop amplitudes vs tree level explained

i

1 2

3
ii+1

n

4

L R

a b

c

K1 K2

Figure 3: The particular three-particle cut considered in Section 3.2 which we use to
evaluate the supercoefficient C12;i. Note that K1 := pi+1+ · · ·+pn, and K2 := p3+ · · ·+pi.

In order to establish a connection between this particular class of triple cuts and
recursion diagrams we will now solve the triple cut conditions in a way that closely
parallels the on-shell conditions for the shifted legs in the recursion relation. To this end,
we note that the conditions l2a = l2b = 0 (in the notation of Figure 3) can be satisfied by
setting (la)αβ := λ̂a;αλ̂a;β, (lb)αβ := λ̂b;αλ̂b;β with

λ̂a = xλ1 − yλ2 ,

λ̂b = yλ1 + xλ2 . (3.11)

Momentum conservation implies la + lb = (x2 + y2)(λ1λ1 + λ2λ2), and hence x2 + y2 = 1.
We will solve this condition by setting [14]

x =
1

2
(z + z−1) ,

y =
1

2i
(z − z−1) , (3.12)

or (
λ̂a

λ̂b

)
= R(z)

(
λ1

λ2

)
, (3.13)

where

R(z) =




1
2(z + z−1) − 1

2i(z − z−1)

1
2i(z − z−1) 1

2(z + z−1)



 . (3.14)

Note that RT R = 1l. Finally, z can be determined by solving the remaining on-shell
condition

l2c = (la +K1)
2 = 0 . (3.15)

This turns out to be a biquadratic equation in z, as can be seen in the following way [14].
One notices that

λ̂a =
1

2

[
z(λ1 + iλ2) + z−1(λ1 − iλ2)

]
, (3.16)
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order to satisfy the anomalous dual conformal Ward identities, one-loop supercoefficients
must obey certain linear equations, n of which are precisely the relations between tree
amplitudes and one-loop two-mass hard and one-mass box coefficients described in [31].

At this point we mention a key ingredient in our story, namely the connection between
quadruple cuts involving two adjacent massless corners – from which one obtains the
coefficients that feature in the relations of [31], and tree-level recursion relations [36, 37].
In the context ofN = 4 SYM, this relation was first noticed in [36], and in [32] it was shown
how one can map each quadruple cut of this type directly to a BCFW recursive diagram.
In particular the two cut legs depicted as vertical lines in Figure 1(a) morph into BCFW
shifted legs, see Figure 1(b). In this way, the relations of [31] are proved because the
sum of two-mass hard coefficients is converted into the sum of BCFW recursive diagrams
which in turn is known to give the tree amplitude.

i i+1

j

3 3

RL

L R

î ̂i+1

j

(a)

(b)

Figure 1: Two-mass hard quadruple cut and the corresponding recursive diagram in N = 4
SYM.

Motivated by this, we will consider special triple cuts in three-dimensional ABJM the-
ory where one of the participating amplitudes is a four-point tree-level superamplitude,
while the remaining two can have any (even) number of particles. Note that in ABJM
the four-point amplitude is the smallest amplitude and plays a similar fundamental role
as the three-point amplitude in N = 4 SYM. In [17] the special role of four-point tree
amplitudes was emphasised and their superconformal anomalies, which are localised on
collinear configurations, were studied in detail and shown to be the source of superconfor-
mal anomalies of six-point tree and one-loop amplitudes.3 There are two solutions to the
triple-cut equations, and hence two contributions to the supercoefficients, paralleling the
two solutions z1,2 for the z variable defining the shifts in the three-dimensional recursion
relation [14]. InN = 4 SYM, the sum of the two contributions from the two quadruple cut
solutions gives the manifestly PT-invariant form of the supersymmetric BCFW recursion
relation. It contains two terms which happen to be equal as a consequence of the large-z
behaviour of the superamplitude [32], leading to the factor of two alluded to earlier.

What happens in the three-dimensional ABJM theory? We find something rather
surprising here. If combined with a positive sign, these two “sharpened” leading singular-

3Incidentally, we wish to point out the similar role played by four-point tree amplitudes in unitarity
cuts of one-loop superamplitudes in N = 4 SYM. Indeed it is the particular class of two-particle cuts
including a four-point tree amplitude that is related to IR divergences and responsible for the one-loop
dual conformal anomaly as pointed out in [35].

4
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One-loop amplitudes & BCFW diagrams                      
(Brandhuber,  GT,  Wen)

⇔



• In brief: 

‣ Recursion diagram: 

‣ Supercoefficient: 

‣ Supercoefficient x integral function: 

-                             ,

- prefactor involves sign functions 

‣ Result obtained by adding all cut diagrams

‣ Can derive complete amplitudes up to 10 points

R12;i = Y (1)
12;i + Y (2)

12;i

C12;i = �⇥12⇤
q

K2
1K

2
2

⇣
Y (1)
12;i � Y (2)

12;i

⌘

C12;i I12,K1,K2 = �i
⇥3

4

⇥12⇤p
�(P 2

12 + i⇤)

⇥�µ⇤p
�(K2

1 + i⇤)

⇥�0µ0⇤p
�(K2

2 + i⇤)

⇣
Y (1)
12;i � Y (2)

12;i

⌘

K1 ab := �(aµb) K2 ab := �0(aµ
0
b)

contribution of the two residues at z1 and z2



• Six-point amplitude 

‣ Tree level: 

- Y-functions from recursive diagrams:  

‣ Six-point amplitude at one loop: 

M(0)(1̄, 2, 3̄, 4, 5̄, 6) = Y (1)
12;4 + Y (2)

12;4

S = sgn(�1 2⇥)sgn(�3 4⇥)sgn(�5 6⇥) + sgn(�2 3⇥)sgn(�4 5⇥)sgn(�6 1⇥)

Examples

Y (1)
12;4 =

�(3)(P )�(6)(Q)

P 2
24

�(3)(⇥ijk⇥j k⇤⇤i � i ⇥īj̄k̄⇥j̄ k̄⇤⇤ī)
(⇥2|P34|5⇤+ i⇥3 4⇤⇥6 1⇤)(⇥1|P23|4⇤+ i⇥2 3⇤⇥5 6⇤)

Y (2)
12;4 =

�(3)(P )�(6)(Q)

P 2
24

�(3)(⇥ijk⇥j k⇤⇤i + i ⇥īj̄k̄⇥j̄ k̄⇤⇤ī)
(⇥2|P34|5⇤ � i⇥3 4⇤⇥6 1⇤)(⇥1|P23|4⇤ � i⇥2 3⇤⇥5 6⇤) ī, j̄ = 5, 6, 1

i, j = 2, 3, 4

= i�3SM(0)(6̄, 1, 2̄, 3, 4̄, 5)

M(1)(1̄, 2, 3̄, 4, 5̄, 6) = �3S(Y (1)
12;4 � Y (2)

12;4)



• Derivation from earlier result:  

‣ Anomalous cut diagrams: 

‣ Associated recursive diagrams: 

- Note: two BCFW diagrams with different shifts (same amplitude!)

4 The one-loop six-point superamplitude

We can use the results of the previous section, specifically (3.48) and (3.49), to re-derive
the six-point one-loop superamplitude, recently obtained in [17, 18]. In this case the two
possible three-particle cuts involve only four-point amplitudes. For six-point kinematics,
(3.23) takes the simple form

z21 = 2
P34 · P56 + 〈3 4〉〈5 6〉

〈λ1 + iλ2|P34 |λ1 + iλ2〉
, z22 = 2

P34 · P56 − 〈3 4〉〈5 6〉

〈λ1 + iλ2|P34 |λ1 + iλ2〉
. (4.1)

Here we have used K1 := P34, K2 := P56 and 〈ξµ〉 = −2i 〈3 4〉, 〈ξ′µ′〉 = −2i 〈5 6〉, with
P 2
34 = 〈3 4〉2, P 2

56 = 〈5 6〉2.

1 2

3456

2 3

4561

(a) (b)

Figure 5: The two contributions to the one-loop six-point amplitude.

Using (4.1), it is straightforward to find the six-point tree-level amplitude from BCFW
recursion relations

Mtree(1̄, 2, 3̄, 4, 5̄, 6) := Y (1)
12;4 + Y (2)

12;4

=
δ(3)(P )δ(6)(Q)

P 2
24

[
δ(3)(εijk〈j k〉ηi − i ε̄ij̄k̄〈j̄ k̄〉ηī)

(〈2|P34|5〉+ i〈3 4〉〈6 1〉)(〈1|P23|4〉+ i〈2 3〉〈5 6〉)

+
δ(3)(εijk〈j k〉ηi + i ε̄ij̄k̄〈j̄ k̄〉ηī)

(〈2|P34|5〉 − i〈3 4〉〈6 1〉)(〈1|P23|4〉 − i〈2 3〉〈5 6〉)

]
, (4.2)

where i , j , k = 2 , 3 , 4 , and ī , j̄ , k̄ = 5 , 6 , 1 .

We can now write down the expression for the corresponding one-loop supercoefficient
C12;4 from the triple cut in Figure 5(a) using (3.48),

C12;4 = −〈1 2〉〈3 4〉〈5 6〉
(
Y (1)
12;4 − Y (2)

12;4

)
. (4.3)

It was observed in [17] that the combination Y (1)
12;4 − Y (2)

12;4 is in fact equal to the shifted
tree-level amplitude iMtree(6̄, 1, 2̄, 3, 4̄, 5).9 Hence,

C12;4 = −i 〈1 2〉〈3 4〉〈5 6〉Mtree(6̄, 1, 2̄, 3, 4̄, 5) . (4.4)

9This fact can be easily understood by comparing the BCFW diagram with the same shift for these two
different amplitudes, Mtree(1̄, 2, 3̄, 4, 5̄, 6) and Mtree(6̄, 1, 2̄, 3, 4̄, 5). Similar but slightly more complicated
relations may be obtained from BCFW for higher-point tree-level amplitudes.
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Using (4.1), it is straightforward to find the six-point tree-level amplitude from BCFW
recursion relations
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(〈2|P34|5〉 − i〈3 4〉〈6 1〉)(〈1|P23|4〉 − i〈2 3〉〈5 6〉)

]
, (4.2)

where i , j , k = 2 , 3 , 4 , and ī , j̄ , k̄ = 5 , 6 , 1 .

We can now write down the expression for the corresponding one-loop supercoefficient
C12;4 from the triple cut in Figure 5(a) using (3.48),
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(
Y (1)
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)
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It was observed in [17] that the combination Y (1)
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The next step consists in performing the sum over the four solutions (z1,−z1, z2,−z2) to
(3.19) in order to obtain (3.27). To this end, we first note the property [14]

MR(−z)ML(−z) = −MR(z)ML(z) , (3.34)

which follows from λ̂a and λ̂b being odd in z and from (2.8), together with the fact that
particles 1 and 2 are adjacent in colour ordering. Using (3.34), we can rewrite the sum
on the right-hand side of (3.27) as

∑

z∈{±z1,±z2}

C12;i(z) = −4
〈12〉

z1 − z−1
1

∫
d3ηc

[
MR(3̄ . . . , i,−c̄, b̂)ML(i+ 1, . . . , n, ¯̂a, c)

]

z=z1

+ z1 → z2 . (3.35)

At this point we would like to establish a connection between (3.35) and a particular

L R
p2f

1̂ 2̂

3
K2

ii+1n
K1

Figure 4: The recursive diagram which we associate with the three-particle cut in Figure
4. We also set K1 := pi+1 + · · ·+ pn, and K2 := p3 + · · ·+ pi.

diagram in the BCFW recursion relation formulated in [14]. More specifically, we now
compare (3.35) with the recursive diagram depicted in Figure 4, whose expression is given
by [14]

R12;i =

∫
d3ηc

H(z1, z2)

p2f

[
MR(3̄ . . . , i,−c̄, 2̂)ML(i+ 1, . . . , n, ¯̂1, c)

]

z=z1
+ (z1 ↔ z2)

:= Y (1)
12;i + Y (2)

12;i , (3.36)

where pf = p2 + · · · + pi is the momentum in the internal propagator, (z1,−z1, z2,−z2)
are the four solutions to (3.26) (or equivalently (3.19)), and

H(z1, z2) :=
z1(z22 − 1)

z21 − z22
. (3.37)

Here we have also introduced shifted superspace variables λ̂1,2 and η̂1,2 which are defined
by formulae that are identical in form to (3.13) and (3.30), namely

(
λ̂1

λ̂2

)
= R(z)

(
λ1

λ2

)
,

(
η̂1
η̂2

)
= R(z)

(
η1
η2

)
. (3.38)
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‣ BCFW recursive diagram associated to the anomalous cut:

‣ Anomalous triple-cut diagram: 
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4 The one-loop six-point superamplitude

We can use the results of the previous section, specifically (3.48) and (3.49), to re-derive
the six-point one-loop superamplitude, recently obtained in [17, 18]. In this case the two
possible three-particle cuts involve only four-point amplitudes. For six-point kinematics,
(3.23) takes the simple form

z21 = 2
P34 · P56 + 〈3 4〉〈5 6〉

〈λ1 + iλ2|P34 |λ1 + iλ2〉
, z22 = 2

P34 · P56 − 〈3 4〉〈5 6〉

〈λ1 + iλ2|P34 |λ1 + iλ2〉
. (4.1)

Here we have used K1 := P34, K2 := P56 and 〈ξµ〉 = −2i 〈3 4〉, 〈ξ′µ′〉 = −2i 〈5 6〉, with
P 2
34 = 〈3 4〉2, P 2

56 = 〈5 6〉2.
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Figure 5: The two contributions to the one-loop six-point amplitude.

Using (4.1), it is straightforward to find the six-point tree-level amplitude from BCFW
recursion relations

Mtree(1̄, 2, 3̄, 4, 5̄, 6) := Y (1)
12;4 + Y (2)

12;4

=
δ(3)(P )δ(6)(Q)

P 2
24

[
δ(3)(εijk〈j k〉ηi − i ε̄ij̄k̄〈j̄ k̄〉ηī)

(〈2|P34|5〉+ i〈3 4〉〈6 1〉)(〈1|P23|4〉+ i〈2 3〉〈5 6〉)

+
δ(3)(εijk〈j k〉ηi + i ε̄ij̄k̄〈j̄ k̄〉ηī)

(〈2|P34|5〉 − i〈3 4〉〈6 1〉)(〈1|P23|4〉 − i〈2 3〉〈5 6〉)

]
, (4.2)

where i , j , k = 2 , 3 , 4 , and ī , j̄ , k̄ = 5 , 6 , 1 .

We can now write down the expression for the corresponding one-loop supercoefficient
C12;4 from the triple cut in Figure 5(a) using (3.48),

C12;4 = −〈1 2〉〈3 4〉〈5 6〉
(
Y (1)
12;4 − Y (2)

12;4

)
. (4.3)

It was observed in [17] that the combination Y (1)
12;4 − Y (2)

12;4 is in fact equal to the shifted
tree-level amplitude iMtree(6̄, 1, 2̄, 3, 4̄, 5).9 Hence,

C12;4 = −i 〈1 2〉〈3 4〉〈5 6〉Mtree(6̄, 1, 2̄, 3, 4̄, 5) . (4.4)

9This fact can be easily understood by comparing the BCFW diagram with the same shift for these two
different amplitudes, Mtree(1̄, 2, 3̄, 4, 5̄, 6) and Mtree(6̄, 1, 2̄, 3, 4̄, 5). Similar but slightly more complicated
relations may be obtained from BCFW for higher-point tree-level amplitudes.
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z1
z2

sgn (h1 2i) sgn (h3 4i) sgn (h5 6i)~ { (�)Y (2)
12;4

Y (1)
12;4

‣ Final result from adding other diagram



• Side remark: 

‣ In general, each recursion diagram has two contributions 
from the two poles z1 ,  z2 :

‣ The two residues are separately dual conformal invariant 

R12;i = Y (1)
12;i + Y (2)

12;i



• Just the main idea:

‣ Used already in QCD (Bern, Bjerrum-Bohr, Dunbar, Ita)

‣ Typical problems: 

- spurious poles

- large-z behaviour not understood  

‣ Example of a problematic case (in 4d gauge theory): 

Recursion relation for one-loop coefficients                               
(Brandhuber,  GT,  Wen)

⇒

î
î+1

î
î+1

Figure 4: A possible diagram which fails BCFW recursion relations for supercoefficients
in N = 4 sYM.

large z behaviour. However this kind of BCFW shift may lead to factorization channels
where one and only one of internal propagators is involved, which would fail the BCFW
recursion relations for the coefficients of loop amplitudes, see the example of Figure 4.
This is the reason why there is no simple BCFW recursion relations of supercoefficients in
N = 4 sYM. However if we are able to avoid such BCFW channels in some way, then the
BCFW recursion relations of coefficients follow immediately from the recursion relations
of tree-level amplitudes.

ABJM theory considered in this paper is a perfect candidate for having such recursion
relations of the one-loop supercoefficients3. That is because there are no non-vanishing
amplitudes with odd number particles, channels like Figure 4 can always be avoided by
choosing appropriate i. Let us consider a concrete example, see Figure 5, where the
supercoefficient is given by the unitary cuts,

Cn;1,2,...,m;i =

∫
d3ηad

3ηbd
3ηcM(1̄, . . . , m,−b̄,−a)M(m+1, . . . , i,−c̄, b)M(i+1, . . . , n, ā, c) .

From the above analysis, shifting 1 and 2 is one possible valid BCFW shift, as indicated
in the figure4. We then apply the BCFW recursion relation of tree-level amplitude and
get

Cn;1,...,m;i := C(1̄, 2, . . . , m;m+ 1, . . . , i; i+ 1, . . . , n)

=

∫
d3ηad

3ηbd
3ηc d

3ηP̂
∑

k

H(z1, z2)

p2f
M(3̄, . . . , k,− ¯̂P, 2̂)M(k + 1, . . . ,−a,−b̄, ¯̂1, P̂ )

× M(m+ 1, . . . , i,−c̄, b)M(i+ 1, . . . , n, ā, c)|z1 + (z1 ↔ z2)

=
∑

k

(−)
m−k

2 +1

∫
d3ηP̂

H(z1, z2)

p2f
M(3̄, . . . , k,− ¯̂P, 2̂)

× C(¯̂1, P̂ , k + 1, . . . , m;m+ 1, . . . , i; i+ 1, . . . , n)|z1 + (z1 ↔ z2) , (3.1)

3The authors of the reference [9] were able to find a valid BCFW recursion relation for a special
helicity configuration in N = 1 sYM.

4In fact shifting any i and i+ 1 would also work when i is odd.
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• Problematic situation can always be avoided in ABJM

‣ can choose shifts such that legs a and b belong to the same 
amplitude 

‣ reason: no amplitudes with odd number of legs

‣ shift i and i +1 with i odd (e.g. 1 and 2)

• All one-loop amplitudes in ABJM under control!

where the extra sign factor (−)
m−k

2 +1 arises from the fact that we have used

M(k + 1, . . . ,−a,−b̄, ¯̂1, P̂ ) = (−)
m−k

2 +1M(¯̂1, P̂ , k + 1, . . . ,−a,−b̄) . (3.2)

The reason of doing this is that the supercoefficient is defined when legs a and b̄ are at
the end of the tree-level amplitude,

C(¯̂1, P̂ , k + 1, . . . , m;m+ 1, . . . , i; i+ 1, . . . , n)

=

∫
d3ηP̂M(¯̂1, P̂ , k + 1, . . . ,−a,−b̄)M(m+ 1, . . . , i,−c̄, b)M(i+ 1, . . . , n, ā, c) .

1̂
P̂

2̂

3
1 m

k−1

k
k+1
m

⇒a b

c

a b

c

Figure 5: A BCFW recursive diagram for the supercoefficients in one-loop ABJM theory.

In the following sections, we will also apply the recursion relations with BCFW shift
on m− 1 and m, so for completeness we write the corresponding recursion relation here,

Cn;1,...,m;i =
∑

k

(−)
k+1
2

+ k+3
2

m−k+1
2

∫
d3ηP̂ M(k̄, . . . , m̂−1, P̂ )

× C(1̄, . . . , k−1,− ¯̂P, m̂;m+1, . . . , i; i+ 1, . . . , n)|z1 + (z1 ↔ z2) . (3.3)

As the natural property of recursion relations, it reduces a higher-point amplitude to
lower-point ones, we can recursively reduce any corner with higher-point amplitudes to a
four-point amplitude, for which we know how to relate it to tree-level BCFW recursion
relation [6]. Combine this with the fact that, except some possible minus signs, the recur-
sion relations of supercoefficients are not really different from BCFW recursion relations
for tree-level amplitudes, one can conclude that one-loop supercoefficients (as well as the
one-loop amplitude itself) should be closely related to tree-level BCFW terms, and we
will explore the precise relation between these two objects in the following sections.

4 All one-loop amplitudes

4.1 Six-point at one corner

The goal of this section is to find the precise relations between one-loop amplitudes and
tree-level BCFW terms by applying the BCFW recursion relations of one-loop superco-
efficients. Let us start with the simplest case when one corner of the one-loop diagram is

9
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• Partially off-shell quantities

• Electromagnetic form factor  

                  Form Factors 

on shell on shellJe.m.
µ = ⇥̄�µ⇥

he�(p0)| Je.m.
µ (0) |e�(p)i =

������� ������

����

����	�

��
��

off shell
q = p� p0

F =

Z
d

4
x e

�iqx hstate|O(x)|0i = �

(4)(q � p

state

) hstate|O(0)|0i



•  Three-loop correction to electron g−2

‣ wild oscillations between the values of each diagram/integral                                                    

‣ final result is O(1)

‣ another example of  “unexplained” simplicity...

(Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

72 diagrams 
like = (1.181241456...) (�e.m./⇥)

3



•  A number of interesting recent results: 

‣ surprising similarities between two-loop, three-point 
form factors of 1/2 BPS operators in N=4 SYM and:

1. Higgs + 3 jet amplitudes in QCD 

- maximally transcendental parts are identical!                                                                       

2. a slice (u + v + w = 1)  of the six-point MHV 
amplitude remainder in N=4 SYM  (Brandhuber, GT, Yang)                                              

this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
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where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.
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‣ Simplest form factors:  scalar 1/2 BPS operators  

- e.g.             

- Sudakov form factor:                                                                       

- equal to 1 at tree level, one-loop correction vanishes

‣ Sudakov form factor controls IR divergences of amplitudes and 
UV divergences of Wilson loops with cusps (Korchemsky & Radyushkin)

- zero at one-loop (consistent with finiteness of one-loop amplitudes)

- at two loops expect                             from known 4- and 6-pt 
amplitudes

Form factors in ABJM                                                      
(Brandhuber, Korres, Gurdogan, Mooney, GT;   Young)                       

O(x) = Tr(�A�̄4)(x)

��A(p1)�̄4(p2)|O(0) |0⇥

⇠ �cusp
✏2

+ finite

O  is a colour singlet



‣ Goal:  evaluate                                                      at two 
loops,    q = p1 + p2

‣ Known technical challenge: non-planar amplitudes enter the 
cuts of planar form factors

‣ Strategy: use a combination of 

- two-particle cuts

- three-particle cuts fix all remaining ambiguities

- note: we work at the integrand level!

F (q2) = ��A(p1)�̄4(p2)|Tr(�A�̄4)(0) |0⇥



‣ Two-particle cuts:                                   and    

- LHS: glue tree-level Sudakov form factor to a four-point one-loop 
complete amplitude

- RHS: glue one-loop Sudakov form factor with four-point tree-level 
amplitude

‣ Triple cuts:

- no odd-particle amplitudes in ABJM

- very powerful constraint!

- triple cuts uniquely fix potential remaining integral                                        
(which is free of double two-particle cuts)

Furthermore, there could be integrals that do not have any two-particle cuts. This
final ambiguity of our Ansatz is fixed in Section 4.3 considering the three-particle cuts. In
this section we find the combination that has the correct cuts in all the channels. Finally,
we present our result by evaluating the relevant two-loop integrals.

F
q

⇤4(p2)

⇤̄A(p1)

⌥1

⌥2

(a) Tree-level form factor glued
to one-loop amplitude.

q

1 2

⌥3

⌥1⌥2

⌥5
⌥4

⌥6

(b) The ladder triangle
topology.

Figure 2: The two-particle cut and the ladder-triangle topology.

4.1 Planar Contribution

The first cut considered contains the tree level Sudakov form factor and the integrand
of the one-loop, four-point scattering amplitude as shown in Figure 2a. There is a fixed
internal particle configuration due to the operator inside the form factor and it is possible
to select the relevant component integrand of the one-loop superamplitude (2.6).

To match the labels of Figure 2a, in the one-loop amplitude (2.6) we have to set:
k1 = p1, k2 = p4, k3 = �⌥1 and k4 = �⌥2. Furthermore, the loop momentum is shifted
as ⌥3 = ⌥ + p2 for convenience in later steps. With these modifications, one obtains the
following one-loop component integrand:

⇥1⌥1⇤⇥⌥1⌥2⇤
⇥1⌥1⇤

2(⌥3 � p2)2�(p1, ⌥2, p2) + 2s2⇤1�(⌥3, 1, 2)

(⌥3 � p2)2(⌥3 � p2 � p1)2(⌥3 � ⌥1)2⌥23
. (4.1)

Since the tree-level Sudakov form factor is normalised to 1, the component integrand
(4.1) alone constitutes the planar contribution to the q2 cut.

To promote the cut expression to an integrand, the spinor-index traces are rearranged
in the numerator to cancel the bracket ⇥1⌥2⇤. Then, we identify (4.2) as the integrand lt
of the two-loop ladder-triangle integral

LT(q2) =

�
dD⌥1dD⌥3
(i⇥D)2

�q2 Tr(p1 ⌥3 p2 ⌥1) + q2(⌥1 � p1)2(⌥3 � p2)2

⌥21 (p1 + p2 � ⌥1)2 ⌥23 (p1 + p2 � ⌥3)2(⌥1 � ⌥3)2(⌥3 � p2)2
, (4.2)

which is depicted in Figure 2b.
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F
q

�4(p2)

�̄A(p1)

⌃1

⌃2

Figure 3: Tree-level form factor glued to one-loop amplitude.

The expression (4.2) is the planar part of our Ansatz for the two-loop integrand of the
Sudakov form factor in the ABJM theory:

F (q2)

����q2-cut
planar

= LT(q2) . (4.3)

The integral LT(q2) has nice properties which are somewhat obscure in its form pre-
sented in equation (4.2). It satisfies a couple of rather non-trivial consistency checks as
discussed in Sections 4.1.2 and 4.1.3. Moreover, it is transcendental and the value is
presented in equation (4.48).

4.1.1 One-loop form factor attached to a tree amplitude

We do the first consistency check on the Ansatz (4.2) by comparing it to the cut diagram
in the q2 channel with a one-loop form factor and a tree-level scattering amplitude on
either side of the cut as depicted in figure 3. In this cut we have the following conditions:

⌃23 = ⌃24 = 0, ⌃3 + ⌃4 = p1 + p2 . (4.4)

Note that, unlike in the cut shown in figure 2a, the particles in the cut legs can be
fermions as well as scalars. The scalar contribution is:

F (1)(�̄A(⌃4),�
4(⌃3)) A

(0)(�̄A(p1),�
A(⌃4), �̄3(⌃1),�

4(p2)) . (4.5)

The one-loop scalar form factor integrand is computed in Section 3, whereas the tree
amplitude is given in equation (2.5). Computing the cut diagram (4.5) and restoring the
cut propagators we obtain:

q2
Tr(p1⌃4⌃1⌃3)

⌃21 (p1 + p2 � ⌃1)2 ⌃23 (p1 + p2 � ⌃3)2(⌃1 � ⌃3)2(⌃3 � p2)2
. (4.6)

The denominator is already the demoninator of the planar part of our Ansatz (4.2), but
there are further contributions to the numerator from the cut diagram from the fermions.
Before computing this contribution we can massage the trace in (4.6):

Tr(p1⌃4⌃1⌃3) = Tr(p1⌃3p2⌃1)� Tr(p1⌃4p1⌃1) + 4(p1 · ⌃4) (⌃1 · ⌃3) , (4.7)
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Two-loop form factors in ABJM                                                      
(Brandhuber, Korres, Gurdogan, Mooney, GT)                       

F
q

�A(p2)

�̄4(p1)

⌃1

⌃4

⌃5 = 0

Figure 7: The three-particle cut of the form factor.

We begin with the ladder-triangle integral (4.2) that comes from gluing the one-loop
scattering amplitude to the tree-level form factor. For this integral, there are two ways of
cutting three particles in the q2 channel and these contribute to the three-particle cut of
the Ansatz separately. The two distinct cuts are shown in Figures 8a and 8b.

q

1 2

⌃3

⌃2

⌃5

(a) The A-cut.

q

1 2

⌃3

⌃5
⌃2

(b) The B-cut.

Figure 8: The two cuts of the ladder triangles. In the A-cut, we the labellings are inherited
from figure 2b, whereas in the B-cut, we relabel the momenta as follows: ⌃4 ⇥ ⌃2, ⌃5 ⇥
�⌃5 and ⌃1 ⇥ ⌃3.

In the cut labelled A, we set ⌃22 = (q � ⌃1)2 = 0, ⌃23 = 0, ⌃25 = (⌃1 � ⌃3)2 = 0. Then all
the other loop momenta in the integrand (4.2) are written in terms of these and p1,2 so
that the expression can be rewritten is such a way that it involves spinor brackets only.
For the numerator of the planar part of the Ansatz (4.2) we obtain:

�q2Tr(p1⌃3p2⌃1)+q2(⌃1�p1)
2(⌃3�p2)

2

⇧⇧⇧⇧
A

= q2
⇤
⇤1⌃3⌅⇤⌃32⌅⇤2⌃2⌅⇤⌃21⌅+ ⇤⌃22⌅2⇤⌃32⌅2

⌅

= �⇤12⌅2⇤⌃3|p2|⌃2⌅⇤⌃3|⌃5|⌃2⌅ ,

(4.34)

where the first equality follows from rewriting the trace

Tr(p1⌃3p2⌃1) = Tr
�
p1⌃3p2(p1 + p2 � ⌃2)

⇥
= �Tr(p1⌃3p2⌃2) , (4.35)

whereas the second one follows from the momentum conservation equation (4.33). Again,
using momentum conservation to rewrite the uncut momenta in terms of cut ones, and
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⌥2 ⌥3

p1 p2

Figure 10: The fan integrand with labellings of the loop momenta as they appear in the
combination (4.45).

Correspondingly, on the B-cut the integrand is equal to

xt
��
B-cut = � ⇥1 2⇤⇥⌥2 1⇤2

⇥⌥3 ⌥5⇤⇥2 ⌥3⇤⇥⌥5 1⇤
(4.43)

with the labellings of Figure 9b.

Now we observe that the combination of the three-particle cut of ladder-triangle and
crossed-triangle integrands gives:

lt
��
A-cut + lt

��
B-cut � lt

��A-cut
⇥3�⇥5

� lt
��B-cut
⇥2�⇥5

+ xt
��
A-cut + xt

��
B-cut = �⇥1 2⇤⇥⌥3 ⌥2⇤

⇥1 ⌥2⇤⇥2 ⌥3⇤
. (4.44)

The expression on the right hand side of (4.44) can be identified as the three particle cut
of (minus) the fan integrand defined as:

fan =
Tr(p1p2⌥3⌥2)

⌥22 (⌥2 + ⌥3 � p1 � p2)2 ⌥23 (⌥2 � p1)2(⌥3 � p2)2
(4.45)

where (⌥2+ ⌥3� p1� p2 = ⌥5). Therefore the FAN integral has to be included in the form
factor, which, after the appropriate relabelings is

FAN(q2) =

⇥
dD⌥2dD⌥3
(i⇥D)2

Tr(p1p2⌥3⌥2)

⌥22 (⌥2 + ⌥3 � p1 � p2)2 ⌥23 (⌥2 � p1)2(⌥3 � p2)2
. (4.46)

This integral already has a numerator that vanishes in the cuts discussed in Section
4.1.3. The minus sign in front of the relabelled cuts of the integrand lt arise from the
Jacobian factor of the cut integral. The Jacobian in the three-particle cut is proportional
to �(⌥2, ⌥5, ⌥3) and the renamed cut integrand indeed requires a minus sign to be integrated
under a common on-shell measure with the original labelling.

Combining the information from all the unitarity cuts discussed above, we conclude
that the following combination returns the correct cuts in all of the channels:

F (q2) = 2LT(q2)� XT(q2)� FAN(q2) , (4.47)

where the integrals LT, XT, FAN are defined in equations (4.2), (4.31) and (4.46),
respectively. These integrals can be computed by reduction to master integrals using
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‣ Final result: 

‣  

- agreement with the IR divergences of the known two-loop amplitudes, 
result has maximal degree of transcendentality
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✓
N

k
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‣ Comment 1

- special numerator removes unwanted/unphysical infrared 
divergences associated to  three internal momenta becoming soft.                              
These are present even for massive external kinematics

- Already observed in amplitudes, where numerators are crucial to 
maintain dual conformal invariance (Bianchi, Leoni, Mauri, Penati, Santambrogio)

- Only I1s - I4s is dual conformal.  I1s and  I4s separately IR divergent!

- Dual conformal symmetry absent in form factors, however the 
cancellation of unwanted IR divergences is still present and powerful
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plus their t–counterparts obtained by cyclic permutation of the (1, 2, 3, 4) indices. Their

graphical representation is given in Fig. 4.
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Figure 4: Graphical representation of dual conformally invariant integrals.

The appearance of the particular combination I1s − I4s is not an accident. In fact,
due to the presence of internal cubic vertices, the integrals I1s, I4s are IR divergent also

off–shell and then ill–defined in three dimensions. Dual conformal invariance would
require to discharge these integrals. However, as we show in Appendix C, taking the

linear combination I1s − I4s the off–shell divergences cancel and I5s is well–defined in
three dimensions.

The on–shell evaluation of these integrals in D = 3− 2ε dimensions reveals that

I2s ∼ O(ε2) I3s + I3t = −I1s − I1t (5.5)
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‣ Comment 2

- Numerators make the integrals maximally transcendental!

- an experimental observation so far

- amplitudes and Wilson loops have uniform degree of 
transcendentality as in N=4 SYM 



‣ Hidden structures/regularities in ABJM amplitudes

‣ One-loop amplitudes and recursion relations

- connection between special triple cuts and BCFW diagrams

- recursion relations for supercoefficients 

‣ Two-loop Sudakov form factor

- very interesting properties of integral functions, 
transcendental result

‣ Plenty of questions to ask!   

Summary


