Amplitudes and form factors in 3d superconformal Chern-Simons theory

Gabriele Travaglini Queen Mary, University of London

Brandhuber, GT, Wen
I 205.6705 [hep-th], I 207.6908 [hep-th]
Brandhuber, Gurdogan, Korres, Mooney, GT I305.242I [hep-th]
Brandhuber, GT, Wen, Wiegandt in progress

Plan

- $\mathrm{N}=6$ superconformal Chern-Simons matter theory (known as ABJM) (Aharony, Bergman, Jafferis, Maldacena)
- original motivation: find the dual field theory to M-theory on $\mathrm{AdS}_{4} \times \mathrm{S}^{7}$ (Schwarz)
- $A B J M$ amplitudes have surprising similarities to $\mathrm{N}=4$ super Yang-Mills amplitudes
- One-loop amplitudes
- explain certain intriguing regularities in one-loop amplitudes
- Two-loop Sudakov form factor
- very interesting properties of integral functions, peculiar to 3d

$A B J M$ in a nutshell

(Aharony, Bergman, Jafferis, Maldacena)

- Gauge fields (A, \hat{A})

Johansson's talk

- Chern-Simons levels k and $-k$ respectively

$$
\begin{aligned}
& S_{\mathrm{ABJM}} \ni S_{\mathrm{CS}}[A]+\hat{S}_{\mathrm{CS}}[\hat{A}] \\
= & \frac{k}{4 \pi} \int\left[\operatorname{Tr}\left(A \wedge d A-\frac{2}{3} i A \wedge A \wedge A\right)-\left(\hat{A} \wedge d \hat{A}-\frac{2}{3} i \hat{A} \wedge \hat{A} \wedge \hat{A}\right)\right]
\end{aligned}
$$

- gluons appear only as internal states!

$$
\partial_{[\mu} A_{\nu]}=0
$$

- peculiar role of gluon zero-momentum mode

- Matter fields:

- 4 complex bosons \& 4 complex fermions $\left(\phi^{A}, \psi_{A}^{\alpha}\right)_{\bar{I}}^{I}, \quad\left(\bar{\phi}_{A}, \bar{\psi}_{\alpha}^{A}\right)_{I}^{\bar{I}}$
- particles / anti-particles transform in the bi-fundamental (N, \bar{N}), (\bar{N}, N) of $\mathrm{U}(N) \times \mathrm{U}(N) \quad I, \bar{I}=1, \ldots, N$
- $\quad A=1, \ldots, 4 \mathrm{SU}(4)$ R-symmetry index, $\quad \alpha=1,2$ spin index
- all particles transform in the (anti)-fundamental of R-symmetry group (unlike N=4 SYM)
- $N=6$ supersymmetry in 3d (for appropriately tuned 6-scalar and 2-fermion/2-scalar couplings)
- superconformal $\operatorname{OSp}(6 \mid 4)$

- New example of AdS/CFT duality in 3d

- at large N and $k \ll N$
- dual to M-theory on $\mathrm{AdS}_{4} \times \mathrm{S}^{7} / Z_{k}$, weakly curved for $N \gg k^{5}$
- dual to type IIA string theory on $\mathrm{AdS}_{4} \times \mathrm{CP}^{3}$ for $N \ll k^{5} \ll N^{5}$:
- at large k, there is a weakly-coupled Lagrangian description
- 't Hooft limit: large N and k with $\lambda \equiv N / k$ fixed
- weak coupling for $\lambda \ll 1$
- $\quad 1 / N$ expansion at fixed λ
- this talk: amplitudes and form factors at small λ

Amplitudes

Spinor helicity formalism

- crucial to expose the simplicity of amplitudes (as in 4 d)
- Lorentz group isomorphic to $\operatorname{SL}(2, \mathbf{R}): p^{\mu} \rightarrow p_{\alpha \beta}:=p^{\mu} \sigma_{\mu, \alpha \beta}$
- For null vectors: $p_{\alpha \beta}=\lambda_{\alpha} \lambda_{\beta}$ with $\alpha, \beta=1,2$
- automatically enforces $\quad p^{2}=\operatorname{det}(p)=0$
- similar to $p_{\alpha \dot{\beta}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\beta}}$ in 4 d
- little group is $\lambda \rightarrow-\lambda$ hence no helicity (unlike in 4 d !)
- Lorentz invariant products: $\langle i j\rangle:=\lambda_{i \alpha} \lambda_{j \beta} \epsilon^{\alpha \beta}$
- only one kind of invariant product (no [...] brackets !)

Simplest amplitude

- Four-point (super)amplitude at tree level (Agarwal, Beisert, McLoughlin)

$$
\mathcal{M}(\overline{1}, 2, \overline{3}, 4)=\frac{\delta^{(3)}\left(\sum_{i=1}^{4} \lambda_{i} \lambda_{i}\right) \delta^{(6)}\left(\sum_{i=1}^{4} \lambda_{i} \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle}
$$

- all amplitudes with a fixed number of legs packaged into a single superamplitude
- $\quad \eta^{A}$ fermionic variables, $A=1,2,3$ is an $\operatorname{SU}(3)$ index $(\subset \mathrm{SU}(4))$
- $\mathbf{N}=6$ supersymmetric delta functions: $\delta^{(3)}\left(\sum_{i} \lambda_{i} \lambda_{i}\right) \delta^{(6)}\left(\sum_{i} \lambda_{i} \eta_{i}\right)$
- Because of gauge invariance, particles and antiparticles must alternate, hence only amplitudes with an even number of legs are nonvanishing
- The only amplitude reminiscent of 4d MHV amplitudes
- in 3d

$$
\mathcal{M}(\overline{1}, 2, \overline{3}, 4)=\frac{\delta^{(3)}\left(\sum_{i=1}^{4} \lambda_{i} \lambda_{i}\right) \delta^{(6)}\left(\sum_{i=1}^{4} \lambda_{i} \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle}
$$

- in 4d:

$$
\mathcal{M}_{\mathrm{MHV}}(1, \ldots, 4)=\frac{\delta^{(4)}\left(\sum_{i=1}^{4} \lambda_{i} \tilde{\lambda}_{i}\right) \delta^{(8)}\left(\sum_{i=1}^{4} \lambda_{i} \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}
$$

Parke-Taylor (super)amplitude

Facts \& similarities with N=4 SYM

- At four points in $A B J M$:
- One-loop amplitude vanishes (Agarwal, Beisert, McLoughlin)
- Two-loop amplitude matches the one-loop amplitude in N=4 SYM (Chen \& Huang; Bianchi, Leoni, Mauri, Penati, Santambrogio)
- Two-loop Wilson loop matches the one-loop Wilson loop in N=4 SYM (Henn, Plefka,Wiegandt;Wiegandt)
- Conjectured scattering amplitude-Wilson loop duality (at four points)
- Conjectured correlation function-Wilson loop duality (at four points) (Bianchi, Leoni, Mauri, Penati, Ratti, Santambrogio)
- Dual (super)conformal symmetry
- for the Wilson loop (Henn, Plefka, Wiegandt)
- for the amplitudes (Gang, Huang, Koh, Lee, Lipstein; Bargheer, Beisert, Loebbert, McLoughlin)
- Yangian symmetry (Bargheer, Loebbert, Meneghelli)
- by commuting dual conformal with conformal generators
- Amplitudes represented as a Grassmannian integral (Lee)
- Spectrum of (planar) anomalous dimensions in terms of integrable spin chain (Minahan \& Zarembo; Bak \& Rey)

Differences with N=4 SYM

- n-point amplitudes have Grassmann degree $3 n / 2$
- no MHV amplitudes, no helicity
- no amplitudes with odd number of particles
- n-point amplitudes at one loop are non-vanishing for $n \geq 6$ (Bargheer, Beisert, Loebbert, McLoughlin; Bianchi, Leoni, Mauri, Penati, Santambrogio; Brandhuber, GT, Wen)
- Wilson loop with odd number of edges is non-vanishing, but there is no corresponding amplitude!

One-loop amplitudes

One-loop ABJM amplitudes

- Only scalar triangles because of dual conformal symmetry
- one-mass and two-mass triangles vanish in $d=3$ hence

$$
\mathcal{M}_{n}^{(1)}=\sum_{K_{1}, K_{2}, K_{3}} \mathcal{C}_{K_{1}, K_{2}, K_{3}} \mathcal{I}^{3 m}\left(K_{1}, K_{2}, K_{3}\right)
$$

- three-mass triangles are finite $\quad\left(K_{i}^{2} \neq 0\right)$

$$
=\frac{-i \pi^{3}}{\sqrt{-\left(K_{1}^{2}+i \varepsilon\right)} \sqrt{-\left(K_{2}^{2}+i \varepsilon\right)} \sqrt{-\left(K_{3}^{2}+i \varepsilon\right)}}
$$

- All one-loop amplitudes are finite!
- we provide later a recursion relation for their coefficients

Six-point amplitude

- Tree-level:

$$
\left.\mathcal{M}^{(0)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=Y_{12 ; 4}^{(1)}+Y_{12 ; 4}^{(2)}\right)
$$

- one-loop:

$$
\left(\mathcal{M}^{(1)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=\pi^{3} \mathcal{S}\left(Y_{12 ; 4}^{(1)}-Y_{12 ; 4}^{(2)}\right)\right)
$$

- $S=\operatorname{sgn}(\langle 12\rangle) \operatorname{sgn}(\langle 34\rangle) \operatorname{sgn}(\langle\{6\rangle)+\operatorname{sgn}(\langle 23\rangle) \operatorname{sgn}(\langle 45\rangle) \operatorname{sgn}(\langle 61\rangle)$
- $\operatorname{sgn}(\langle m n\rangle):=-i \frac{\langle m n\rangle}{\sqrt{-\left(\langle m n)^{2}+i \varepsilon\right)}}$
- Determined with maximal cuts (Bargheer, Beisert, Loebbert, McLoughlin) and supergraphs (Bianchi, Leoni, Mauri, Penati, Santambrogio)

Six-point amplitude

- Tree-level:

$$
\mathcal{M}^{(0)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=Y_{12 ; 4}^{(1)}+Y_{12 ; 4}^{(2)}
$$

$$
Y_{12 ; 4}^{(2)}=\frac{\delta^{(3)}(P) \delta^{(6)}(Q)}{P_{24}^{2}} \frac{\delta^{(3)}\left(\epsilon_{i j k}\langle j k\rangle \eta_{i}+i \epsilon_{i \overline{i j k}}\langle\bar{j} \bar{k}\rangle \eta_{\bar{i}}\right)}{\left(\langle 2| P_{34}|5\rangle-i\langle 34\rangle\langle 61\rangle\right)\left(\langle 1| P_{23}|4\rangle-i\langle 23\rangle\langle 56\rangle\right)} \quad \bar{i}, \bar{j}=5,6,1
$$

- one-loop:

$$
\left(\mathcal{M}^{(1)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=\pi^{3} \mathcal{S}\left(Y_{12 ; 4}^{(1)}-Y_{12 ; 4}^{(2)}\right)\right)
$$

- $S=\operatorname{sgn}(\langle 12\rangle) \operatorname{sgn}(\langle 34\rangle) \operatorname{sgn}(\langle 56\rangle)+\operatorname{sgn}(\langle 23\rangle) \operatorname{sgn}(\langle 45\rangle) \operatorname{sgn}(\langle 61\rangle)$
$-\operatorname{sgn}(\langle m n\rangle):=-i \frac{\langle m n\rangle}{\sqrt{-\left(\langle m n)^{2}+i \varepsilon\right)}}$
- Determined with maximal cuts (Bargheer, Beisert, Loebbert, Mcloughlin) and supergraphs (Bianchi, Leoni, Mauri, Penati, Santambrogio)
- Goal: explain (and possibly extend) the remarkable similarity between the tree and one-loop results observed at 6 points
- Strategy: look for similarities with N=4 SYM in 4d
- More specifically: look for links between tree-level and oneloop expressios...

- 4d N=4 SYM:

- one-loop amplitudes in N=4: rational coefficient \times box function (Bern, Dixon, Dunbar, Kosower)

$$
\mathcal{A}^{1-\mathrm{loop}}=\sum_{i, j, k, l} \mathcal{C}(i, j, k, l)
$$

- Box coefficient from generalised unitarity (Britto, Cachazo, Feng)

$$
\mathcal{C}(i, j, k, l)=
$$

- Tree/one-loop link:
- RSV equations: n equations relating sums of two-mass hard (and one-mass) box supercofficients to the $N=4$ tree amplitude (Roiban, Spradlin,Volovich)

$$
\sum_{j=i+2}^{i+n-2} \mathcal{C}^{2 \mathrm{mh}}(i, j)=2 \mathcal{M}^{(0)}, \quad i=1, \ldots, n
$$

- key picture:

- LHS: quadruple cut evaluates 2 mh coefficient. Note: 2 three-point vertices RHS: BCFW diagram contributing to the tree amplitude
- First hint: solutions for cut momenta \hat{l}_{a}, \hat{l}_{b} same as BCFW shifts $\hat{i}, \widehat{i+1}$
- Tree/one-loop link:
- RSV equations: n equations relating sums of two-mass hard (and one-mass) box supercofficients to the $\mathrm{N}=4$ tree amplitude (Roiban, Spradlin,Volovich)

$$
\sum_{j=i+2}^{i+n-2} \mathcal{C}^{2 \mathrm{mh}}(i, j)=2 \mathcal{M}^{(0)}, \quad i=1, \ldots, n
$$

- key picture:

- LHS: quadruple cut evaluates 2 mh coefficient. Note: 2 three-point vertices RHS: BCFW diagram contributing to the tree amplitude
- First hint: solutions for cut momenta \hat{l}_{a}, \hat{l}_{b} same as BCFW shifts $\hat{i}, \widehat{i+1}$
- RSV relations proved by direct calculation or IR consistency conditions (Arkani-Hamed, Cachazo, Kaplan) or using dual conformal equations (Brandhuber, Heslop, GT)
- question: do we have a similar connection in 3d?
- pessimistic answer: RSV relations are related to infrared divergences. 3d at one loop is finite, hence answer is NO.
- optimistic answer: the RSV equations are related to anomalous dual conformal symmetry, which ABJM does have (Bargheer, Beisert, Loebbert, McLoughlin)
- our answer:try!

One-loop amplitudes \& BCFW diagrams
 (Brandhuber, GT, Wen)

- 3d key picture:

- LHS: triple cut evaluates coefficient. Note: one 4-point amplitude RHS: BCFW diagram contributing to the tree amplitude
- First hint: solutions for cut momenta same as BCFW shifts
- Opposite sign for the two residues
- curious minus signs in the one-loop amplitudes vs tree level explained

$$
\text { contribution of the two residues at } z_{1} \text { and } z_{2}
$$

- In brief:
- Recursion diagram: $\quad \mathcal{R}_{12 ; i}=Y_{12 ; i}^{(1)}+Y_{12 ; i}^{(2)}$
- Supercoefficient:
$\mathcal{C}_{12 ; i}=-\langle 12\rangle \sqrt{K_{1}^{2} K_{2}^{2}}\left(Y_{12 ; i}^{(1)}-Y_{12 ; i}^{(2)}\right)$
- Supercoefficient x integral function:

$$
\mathcal{C}_{12 ; i} \mathcal{I}_{12, K_{1}, K_{2}}=-i \frac{\pi^{3}}{4} \frac{\langle 12\rangle}{\sqrt{-\left(P_{12}^{2}+i \varepsilon\right)}} \frac{\langle\xi \mu\rangle}{\sqrt{-\left(K_{1}^{2}+i \varepsilon\right)}} \frac{\left\langle\xi^{\prime} \mu^{\prime}\right\rangle}{\sqrt{-\left(K_{2}^{2}+i \varepsilon\right)}}\left(Y_{12 ; i}^{(1)}-Y_{12 ; i}^{(2)}\right)
$$

- $\quad K_{1 a b}:=\xi_{\left(a \mu_{b)} \quad, \quad K_{2 a b}:=\xi_{(a}^{\prime} \mu_{b)}^{\prime}, ~\right.}^{x}$
- prefactor involves sign functions
- Result obtained by adding all cut diagrams
- Can derive complete amplitudes up to 10 points

Examples

- Six-point amplitude
- Tree level: $\quad \mathcal{M}^{(0)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)=Y_{12 ; 4}^{(1)}+Y_{12 ; 4}^{(2)}$
- Y-functions from recursive diagrams:

$$
\begin{array}{ll}
Y_{12 ; 4}^{(1)}=\frac{\delta^{(3)}(P) \delta^{(6)}(Q)}{P_{24}^{2}} \frac{\delta^{(3)}\left(\epsilon_{i j k}\left\langle j\langle \rangle \eta_{i}-i \epsilon_{\overline{i j} \bar{k}}\langle\bar{j}\rangle\right\rangle \eta_{\bar{i}}\right)}{\left(\langle 2| P_{34}|5\rangle+i\langle 34\rangle\langle 61\rangle\right)\left(\langle 1| P_{23}|4\rangle+i\langle 23\rangle\langle 56\rangle\right)} & i, j=2,3,4 \\
Y_{12 ; 4}^{(2)}=\frac{\delta^{(3)}(P) \delta^{(6)}(Q)}{P_{24}^{2}} \frac{\left.\delta^{(3)}\left(\epsilon_{i j k}\langle j k\rangle \eta_{i}+i \epsilon_{\overline{i j} \bar{k}} \bar{k} \bar{j}\right\rangle \eta_{\bar{i}}\right)}{\left(\langle 2| P_{34}|5\rangle-i\langle 34\rangle\langle 61\rangle\right)\left(\langle 1| P_{23}|4\rangle-i\langle 23\rangle\langle 56\rangle\right)} & \bar{i}, \bar{j}=5,6,1
\end{array}
$$

- Six-point amplitude at one loop:

$$
\begin{aligned}
& \mathcal{M}^{(1)}(\overline{1}, 2, \overline{3}, 4, \overline{5}, 6)= \\
& =\pi^{3} \mathcal{S}\left(Y_{12 ; 4}^{(1)}-Y_{12 ; 4}^{(2)}\right) \\
& \\
& =i \pi^{3} \mathcal{S} \mathcal{M}^{(0)}(\overline{6}, 1, \overline{2}, 3, \overline{4}, 5) \\
& \mathcal{S}=\operatorname{sgn}(\langle 12\rangle) \operatorname{sgn}(\langle 34\rangle) \operatorname{sgn}(\langle 56\rangle)+\operatorname{sgn}(\langle 23\rangle) \operatorname{sgn}(\langle 45\rangle) \operatorname{sgn}(\langle 61\rangle)
\end{aligned}
$$

- Derivation from earlier result:
- Anomalous cut diagrams:

- Associated recursive diagrams:

- Note: two BCFW diagrams with different shifts (same amplitude!)
- BCFW recursive diagram associated to the anomalous cut:

- Anomalous triple-cut diagram:

- Final result from adding other diagram
- Side remark:
- In general, each recursion diagram has two contributions from the two poles z_{1}, z_{2} :

$$
\mathcal{R}_{12 ; i}=Y_{12 ; i}^{(1)}+Y_{12 ; i}^{(2)}
$$

- The two residues are separately dual conformal invariant

Recursion relation for one-loop coefficients

(Brandhuber, GT, Wen)

- Just the main idea:
- Used already in QCD (Bern, Bjerrum-Bohr, Dunbar, Ita)
- Typical problems:
- spurious poles
- large-z behaviour not understood
- Example of a problematic case (in 4d gauge theory):

- Problematic situation can always be avoided in ABJM
- can choose shifts such that legs a and b belong to the same amplitude

- reason: no amplitudes with odd number of legs
- shift i and $i+1$ with i odd (e.g. 1 and 2)
- All one-loop amplitudes in ABJM under control!

Form Factors

- Partially off-shell quantities

$$
F=\int d^{4} x e^{-i q x}\langle\text { state }| \mathcal{O}(x)|0\rangle=\delta^{(4)}\left(q-p_{\text {state }}\right)\langle\text { state }| \mathcal{O}(0)|0\rangle
$$

- Electromagnetic form factor

$$
\left\langle e^{-}\left(p^{\prime}\right)\right| J_{\mu}^{e . m \cdot}(0)\left|e^{-}(p)\right\rangle=
$$

$$
\gamma(q)=\begin{gathered}
q=p-p^{\prime} \\
\text { off shell }
\end{gathered}
$$

$$
J_{\mu}^{e . m .}=\bar{\psi} \gamma_{\mu} \psi
$$

on shell
on shell

- Three-loop correction to electron $g-2$

72 diagrams

$$
=(1.181241456 \ldots)\left(\alpha_{\text {e.m. } .} / \pi\right)^{3}
$$

(Cvitanovic \& Kinoshita '74)
(Laporta \& Remiddi '96)

- wild oscillations between the values of each diagram/integral
- final result is $O(1)$
- another example of "unexplained" simplicity...

- A number of interesting recent results:

- surprising similarities between two-loop, three-point form factors of I/2 BPS operators in N=4 SYM and:
I. Higgs +3 jet amplitudes in QCD
- maximally transcendental parts are identical!

2. a slice $(u+v+w=1)$ of the six-point MHV amplitude remainder in $\mathrm{N}=4 \mathrm{SYM}$ (Brandhuber, GT,Yang)

$$
\begin{aligned}
\mathcal{R}_{3}^{(2)}= & -2\left[\mathrm{~J}_{4}\left(-\frac{u v}{w}\right)+\mathrm{J}_{4}\left(-\frac{v w}{u}\right)+\mathrm{J}_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-u_{i}^{-1}\right)\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4}
\end{aligned}
$$

$$
\mathrm{J}_{4}(z):=\operatorname{Li}_{4}(z)-\log (-z) \mathrm{Li}_{3}(z)+\frac{\log ^{2}(-z)}{2!} \mathrm{Li}_{2}(z)-\frac{\log ^{3}(-z)}{3!} \mathrm{Li}_{1}(z)-\frac{\log ^{4}(-z)}{48} .
$$

Form factors in $A B J M$

(Brandhuber, Korres, Gurdogan, Mooney, GT; Young)

- Simplest form factors: scalar I/2 BPS operators
- e.g. $O(x)=\operatorname{Tr}\left(\phi^{A} \bar{\phi}_{4}\right)(x)$
- Sudakov form factor:

$$
\left\langle\phi^{A}\left(p_{1}\right) \bar{\phi}_{4}\left(p_{2}\right)\right| O(0)|0\rangle \quad O \text { is a colour singlet }
$$

- equal to 1 at tree level, one-loop correction vanishes
- Sudakov form factor controls IR divergences of amplitudes and UV divergences of Wilson loops with cusps (Korchemsky \& Radyushkin)
- zero at one-loop (consistent with finiteness of one-loop amplitudes)
- at two loops expect $\sim \frac{\gamma_{\text {cusp }}}{\epsilon^{2}}+$ finite from known 4- and 6-pt amplitudes
- Goal: evaluate $F\left(q^{2}\right)=\left\langle\phi^{A}\left(p_{1}\right) \bar{\phi}_{4}\left(p_{2}\right)\right| \operatorname{Tr}\left(\phi^{A} \bar{\phi}_{4}\right)(0)|0\rangle$ at two loops, $\quad q=p_{1}+p_{2}$
- Known technical challenge: non-planar amplitudes enter the cuts of planar form factors
- Strategy: use a combination of
- two-particle cuts
- three-particle cuts fix all remaining ambiguities
- note: we work at the integrand level!

Two-loop form factors in ABJM

(Brandhuber, Korres, Gurdogan, Mooney, GT)

- Two-particle cuts:

- LHS: glue tree-level Sudakov form factor to a four-point one-loop complete amplitude
- RHS: glue one-loop Sudakov form factor with four-point tree-level amplitude
- Triple cuts:
- no odd-particle amplitudes in ABJM

- very powerful constraint!
- triple cuts uniquely fix potential remaining integral (which is free of double two-particle cuts)
- Final result: $\quad F^{(2)}\left(q^{2}\right)=\left(\frac{N}{k}\right)^{2} \mathbf{X} \mathbf{T}\left(q^{2}\right)$

$$
\begin{aligned}
\mathbf{X T}\left(q^{2}\right) & =\underbrace{\ell_{2}}_{\ell_{4}} \times q^{2}\left[-\operatorname{Tr}\left(p_{1} p_{2} l_{3} l_{1}\right)+q^{2} l_{3}^{2}\right] \\
& =-\frac{1}{(4 \pi)^{3}}\left(-\frac{q^{2} e^{\gamma_{E}}}{4 \pi \mu^{2}}\right)^{-2 \epsilon}\left[\frac{\pi}{\epsilon^{2}}+\frac{2 \pi \log 2}{\epsilon}-4 \pi \log ^{2} 2-\frac{2 \pi^{3}}{3}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

$$
F^{(2)}\left(q^{2}\right)=\frac{1}{64 \pi^{2}}\left(\frac{N}{k}\right)^{2}\left(-\frac{q^{2}}{\mu^{\prime 2}}\right)^{-2 \epsilon}\left[-\frac{1}{\epsilon^{2}}+6 \log ^{2} 2+\frac{2 \pi^{2}}{3}+\mathcal{O}(\epsilon)\right]
$$

$$
\mu^{\prime 2}:=8 \pi e^{-\gamma_{E}} \mu^{2}
$$

- agreement with the IR divergences of the known two-loop amplitudes, result has maximal degree of transcendentality
- Final result: $\quad F^{(2)}\left(q^{2}\right)=\left(\frac{N}{k}\right)^{2} \mathbf{X T}\left(q^{2}\right)$

note particular

$\mathbf{X T}\left(q^{2}\right)=\underbrace{}_{2}$

$$
F^{(2)}\left(q^{2}\right)=\frac{1}{64 \pi^{2}}\left(\frac{N}{k}\right)^{2}\left(-\frac{q^{2}}{\mu^{\prime 2}}\right)^{-2 \epsilon}\left[-\frac{1}{\epsilon^{2}}+6 \log ^{2} 2+\frac{2 \pi^{2}}{3}+\mathcal{O}(\epsilon)\right]
$$

$$
\mu^{\prime 2}:=8 \pi e^{-\gamma_{E}} \mu^{2}
$$

- agreement with the IR divergences of the known two-loop amplitudes, result has maximal degree of transcendentality
- Final result: $\quad F^{(2)}\left(q^{2}\right)=\left(\frac{N}{k}\right)^{2} \mathbf{X T}\left(q^{2}\right)$

note particular

$$
\begin{aligned}
& F^{(2)}\left(q^{2}\right)=\frac{1}{64 \pi^{2}}\left(\frac{N}{k}\right)^{2}\left(-\frac{q^{2}}{\mu^{\prime 2}}\right)^{-2 \epsilon}\left[-\frac{1}{\epsilon^{2}}+6 \log ^{2} 2+\frac{2 \pi^{2}}{3}+\mathcal{O}(\epsilon)\right] \\
& \mu^{\prime 2}:=8 \pi e^{-\gamma_{E}} \mu^{2}
\end{aligned}
$$

- agreement with the IR divergences of the known two-loop amplitudes, result has maximal degree of transcendentality

- Comment

- special numerator removes unwanted/unphysical infrared divergences associated to three internal momenta becoming soft. These are present even for massive external kinematics
- Already observed in amplitudes, where numerators are crucial to maintain dual conformal invariance (Bianchi, Leoni, Mauri, Penati, Santambrogio)

- Only $I_{1 s}-I_{4 s}$ is dual conformal. $I_{1 s}$ and $I_{4 s}$ separately IR divergent!
- Dual conformal symmetry absent in form factors, however the cancellation of unwanted IR divergences is still present and powerful

- Comment

- special numerator removes unwanted/unphysical infrared divergences associated to three internal momenta becoming soft. These are present even for massive external kinematics
- Already observed in amplitudes, where numerators are crucial to maintain dual conformal invariance (Bianchi, Leoni, Mauri, Penati, Santambrogio)
$I_{4 s}$

$I_{4 s}=\int \frac{d^{3} x_{5}}{(2 \pi)^{D}} \frac{d^{3} x_{6}}{(2 \pi)^{D}} \frac{x_{13}^{2} x_{25}^{2} x_{46}^{2}}{x_{15}^{2} x_{35}^{2} x_{45}^{2} x_{56}^{2} x_{16}^{2} x_{26}^{2} x_{36}^{2}}$

$$
I_{1 s}=\int \frac{d^{3} x_{5}}{(2 \pi)^{D}} \frac{d^{3} x_{6}}{(2 \pi)^{D}} \frac{x_{13}^{4}}{x_{15}^{2} x_{35}^{2} x_{56}^{2} x_{16}^{2} x_{36}^{2}}
$$

- Only $I_{1 s}-I_{4 s}$ is dual conformal. $I_{1 s}$ and $I_{4 s}$ separately IR divergent!
- Dual conformal symmetry absent in form factors, however the cancellation of unwanted IR divergences is still present and powerful

- Comment 2

- Numerators make the integrals maximally transcendental!
- an experimental observation so far
- amplitudes and Wilson loops have uniform degree of transcendentality as in N=4 SYM

Summary

- Hidden structures/regularities in ABJM amplitudes
- One-loop amplitudes and recursion relations
- connection between special triple cuts and BCFW diagrams
- recursion relations for supercoefficients
- Two-loop Sudakov form factor
- very interesting properties of integral functions, transcendental result
- Plenty of questions to ask!

