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Explicit amplitude computations display rather unexpectedly simple structures
allowing to compute many more processes than expected

On-shell recursion methods

v

v

twistor geometry, GraBmanian, Symbol,.. .

\4

Dual conformal invariance

v

amplitude relations ...

All these simplifications hints on simpler structures than the diagrammatic
from Feynman rules suggest, and lead to the use of a basis of integrals for
expressing the amplitudes

» What are the basic functions entering the expressions for the amplitudes?
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Monodromies, periods

» Amplitudes are multivalued quantities : they satisfy monodromy
properties when going around the branch cuts for particle production

» As well the amplitude satisfy differential equation with respect to its
parameters : kinematic invariants s;;, internal masses 1, . ..

» monodromies and differential equation are typical of periods
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Periods

[Kontsevich, zagier] define periods are follows. P € C is the ring of
periods, is z € P if 9Re(z) and Tm(z) are of the forms

JAE]R”

with /, g € Z[x;, -+ ,x,] and A is algebralcally defined by inequalities and
equalities.

P < 00

» Typically form of the Feynman parametrization of a graph

» A Feynman graph with L loops and » edges

n (L+1) n

Lgraph JO (1— sz C dez

» 1l is homogenous of degree L in the x; and J is homogenous of degree
L+1 in Xi
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Periods

[Kontsevich, zagier] define periods are follows. P € C is the ring of
periods, is z € P if 9ie(z) and Jm(z) are of the forms

JAE]R”

withf, ¢ € Zlx, - ,x,] and Ais algebraically defined by inequalities and
equalities.

» Typically form of the Feynman parametrization of a graph

» Problem for Feynman graphs A 1 {g(x;) = 0} # () : needs to blow-up the
intersection points

» As well generaly the domain of integration is not closed 0A # ()

» This leads to the notion of “generalized” periods
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Part 1

Tree-level amplitudes
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Tree-level amplitudes in QCD

» Tree-level amplitudes in gauge theory are decomposed into color
(n— 1)!/2 color-ordered sub-amplitudes

AL...,n)~ Y Tr(A9A%@ ... X%0) A(1,0(2,...,n)
0€EC, 1/2Z,

» A“ are generators in the fundamental representation

» A(1,0(2,...,n)) are the color ordered amplitudes
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Tree-level amplitudes in QCD

» The color ordered amplitudes are not all independent

» For instance they satisfy the photon decoupling identity

D> Aul,0(2,...,m) =0

06‘5,1,1

» There was the question of the independent amplitudes and their relations
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Tree-level amplitudes in QCD

—oa/—0 0 1 o0

» We evaluate them by considering the o’ — 0 limit of open string
amplitudes on the disc.

» PSL(2,R) invariance z; = 0, 7, = | and z, = +oc0. (3 marked points)

20 kik; n—3
Alol,...,m) = | fi—x) [T —xP<h s
X(T(])<"'<X(T[”] l<l<j<n

» The function /(x;) does not have branch cut but has poles. Depends on
the polarisation of the external states.
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Monodromies from contour deformati

Contour deformation gives monodromy relations between the ordered
amplitudes

-4

-y
Y
Il

ezim’ ko (k1+ks) ezim’ ko ks

» The monodromy relations lead to a set of linear system of equations
relating different ordering of the external states

> Sl0(2,...,n—1DIB2,...,n — Dy Anln, (2, ..

0—661172

on—1),1)

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Bjerrum-bohr, Damgaard, Sgndergaard, Vanhove]
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Momentum kernel

Contour deformation gives monodromy relations between the ordered
amplitudes

n-2 n-1
—o- ®
1 2 ]| [ e W

» This leads to an object named momentum kernel &

k k
llr . lle/'- /.]k :H(sz,+z e(th) kl}'kiq)
=1 q>t

» 0(r,q) = 1if (i, —i,)(j; — j,) < 0 and O otherwise

» Exists as well in string theory with o¢” # O as [ [ sino/(...) /o’

[Bjerrum-bohr, Damgaard, Vanhove; Bjerrum-Bohr, Damgaard, Feng, Sondergaard; Bjerrum-bohr, Damgaard, Sgndergaard, Vanhove]
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Tree-level Gravity and Gauge amplitudes

» From closed string heterotic string setup we have points on the sphere

. . i ki A S L S
» holomorphic factorization |z|* “*% — xTkiki 5 kk gives product of
ordered disc integrations with relative ordered contour of integrations Cy
and C,

smu,...,n)zjd“xj a3y T @—x) " 0i—)
Cy Cy

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Spndergaard, Vanhove]
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Tree-level Gravity and Gauge amplitudes

» From closed string heterotic string setup we have points on the sphere

» holomorphic factorization |z|* **5 — x 2 kiki 5kl gives product of

ordered disc integrations with relative ordered contour of integrations Cy
and C,

» The gauge theory and gravity amplitudes take a similar forms

‘AEM _ Avector ® S ® Ascala.r
MGrav _ Avector ® S® Avector
n

» These relations are generic and independent of any precise
parametrisation of the tree-level amplitudes

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Sgndergaard, Vanhove]
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Part 11

Two-loop amplitudes
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two-loop integrals

mi

mg3

We consider the two-loop sunset integral in two dimensions given by

) J d*0,d*t,
JZ o
7 IR (B —m2) (B —m3) (4 + b — K2) —m2)
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two-loop integrals

The Feynman parametrisation is given by

72 J dxdy
x .
O |0 (mix 4+ m3y + m3)(x +y + xy) — K2xy

y=0

» We are again the setup of [Kontsevich, zagier]

» The sunset integral is J",D w with the 2-form

W zdx /\ dy + xdy /\ dz + ydz /\ dx c
A@(x,y,z)

H*(P? —¢)

» The graph is based on the elliptic curve € : Ag(x,y,z) =0

Ac(x,y,z) := (mix + miy + m3z) (xz + xy + yz) — K%xyz.
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two-loop integrals

The Feynman parametrisation is given by

72 J dxdy
x .
O |0 (mix 4+ m3y + m3)(x +y + xy) — K2xy

y>0

» We are again the setup of [Kontsevich, zagier]

> The sunset integral is |, w with the 2-form

w— zdx /\ dy + xdy /\ dz + ydz /\ dx c
A@(x,y,z)

H*(P>—¢&)

» The domain of integration is

Di={lx:y:2 € P’lx >0,y >0,z >0}
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the sunset graph motive I

» The elliptic curve intersects the domain of integration 1D

DN{Ao(x,y,2) =0} ={[1:0:0,[0:1:0],[0:0:1]}

» We need to blow-up work in IP” — €
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the sunset graph motive II

» The domain of integration D ¢ H-(IP” — £) because 0D # ()

v

Need to pass to the relative cohomology

v

If » — IP? is the blow-up and ¢ is the strict transform of € (here & = €)

» Hexagon [) union of strict transform of 0D = {xyz = 0} and the 3
divisors .
» Then in P we have resolved the two problems
DNé=0 DeH,(P—&bH—(hné)) J
» The sunset integral is a period of /(P — &,hb—(pné)) J

[Bloch, Esnault, Kreimer; Miller-Stach, Weinzeirl, Zayadeh]
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the elliptic curve of the sunset integral

» With all mass equal 7, — m the integral is reduced to with 1 = K /m”

oo [ dxdy
j@(f) = .
0o Jo (x+y+1Dx+y+xy)—xy

E: (x+y+1)(x+y+xy) —txy=0.

» Special values
o Atr=0,7=1andr = +oo the elliptic curve factorizes.
e At7 — 9 we have the 3-particle the threshold 1 — K”/m” ¢ C\[9, +ool.

(i o

Tm
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the elliptic curve of the sunset integral

» With all mass equal 7, — m the integral is reduced to with 1 = K /m”

oo [ dxdy
j@(f) = .
0o Jo (x+y+1Dx+y+xy)—xy

E: (x+y+1)(x+y+xy) —txy=0.

» Special values
o Atr=0,7=1andr = +oo the elliptic curve factorizes.
e At7 — 9 we have the 3-particle the threshold 1 — K”/m” ¢ C\[9, +ool.

(i o
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the elliptic curve of the sunset integral

» With all mass equal 72; — m the integral is reduced to with 7 = K~ /m”

q m_roro dxdy
° 0o Jo x+y+1Dx+y+xy)—my’

&t (x+y+1Dx+y+xy) —txy=0.

SR T b
Cer 2
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the elliptic curve of the sunset integral

» With all mass equal 72; — m the integral is reduced to with 7 = K~ /m”

q m_roro dxdy
° 0o Jo x+y+1Dx+y+xy)—my’

&t (x+y+1Dx+y+xy) —txy=0.

» We have a family of elliptic curve defining a K3 surface with 4 singular
fibers in [Beauville] classification.

» This is a universal family of X (6) modular curves with a point of order 6
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the picard-fuchs equation of the sunset integral

Eilx+y+1D)(x+y+xy)—txy=0 J

» Since /7' (&,) is generated by /x/y and d(dx/y)/d1, then exist
polt),pil1), p2(1) € Zli] such that

2
polt) & (‘;") n0e <‘§‘) + ;1) (”;") — dp

» The homogeneous picard-fuchs operator is

L,:i(r(zl)(r9)i)+(t3) J
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the picard-fuchs equation of the sunset integral

Erilx+y+)x+y+xy) —txy=0 J

» The homogeneous picard-fuchs operator is

L,:jt(t(t—l)(t—9)5t>+(t—3) J

» Acting on the integral we have

L,Jé(r)zj dB:J B#0
D oD
» We find that (recovering the result of [Laporta, Remiddi])

dJo(1)
dt

d <t(t—1)(t—9)

dt
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the sunset integral as an elliptic dilogarithm

» Evaluating the integrals leads to (for details see my talk at
String Math 2013)

To(t) ~ o1 @1 (1) + 0@ (1) + @2(1) E_1(q1),

v

where @ (7), @, () are the complex and real periods and £ (¢) is defined by

1
E_1(g) ~93(0) — 5. }_(Lia(q"Ge) +Lia(q" ) — Lin(q" ) —Lin(q"C3)

n=0

> ((6)° = 1 and ¢ = exp(2imrt(1)) with T(¢) = @, (1)/@» (1)
» Notice that we have i, and not the Bloch-Wigner D function

» The function is multivalued and convergent
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