## Elliptic dilogarithms and two-loop Feynman integrals

Pierre Vanhove


12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris
June, 102013
based on work to appear with Spencer Bloch


Explicit amplitude computations display rather unexpectedly simple structures allowing to compute many more processes than expected

- On-shell recursion methods
- twistor geometry, Graßmanian, Symbol,...
- Dual conformal invariance
- amplitude relations ...

All these simplifications hints on simpler structures than the diagrammatic from Feynman rules suggest, and lead to the use of a basis of integrals for expressing the amplitudes

- What are the basic functions entering the expressions for the amplitudes?


## Monodromies, periods

- Amplitudes are multivalued quantities : they satisfy monodromy properties when going around the branch cuts for particle production

- As well the amplitude satisfy differential equation with respect to its parameters : kinematic invariants $s_{i j}$, internal masses $m_{i}, \ldots$
- monodromies and differential equation are typical of periods


## Periods

[Kontsevich, Zagier] define periods are follows. $\mathcal{P} \in \mathbb{C}$ is the ring of periods, is $z \in \mathcal{P}$ if $\mathfrak{R e}(z)$ and $\Im m(z)$ are of the forms

$$
\int_{\Delta \in \mathbb{R}^{n}} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)} \prod_{i=1}^{n} d x_{i}<\infty
$$

with $f, g \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$ and $\Delta$ is algebraically defined by inequalities and equalities.

- Typically form of the Feynman parametrization of a graph
- A Feynman graph with $L$ loops and $n$ edges

$$
I_{g r a p h} \propto \int_{0}^{\infty} \delta\left(1-\sum_{i=1}^{n} x_{i}\right) \frac{\mathcal{U}^{n-(L+1) \frac{D}{2}}}{\mathcal{F}^{n-L \frac{D}{2}}} \prod_{i=1}^{n} d x_{i}
$$

- $\mathcal{U}$ is homogenous of degree $L$ in the $x_{i}$ and $\mathcal{F}$ is homogenous of degree $L+1$ in $x_{i}$


## Periods

[Kontsevich, Zagier] define periods are follows. $\mathcal{P} \in \mathbb{C}$ is the ring of periods, is $z \in \mathcal{P}$ if $\mathfrak{R e}(z)$ and $\Im m(z)$ are of the forms

$$
\int_{\Delta \in \mathbb{R}^{n}} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)} \prod_{i=1}^{n} d x_{i}<\infty
$$

with $f, g \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$ and $\Delta$ is algebraically defined by inequalities and equalities.

- Typically form of the Feynman parametrization of a graph
- Problem for Feynman graphs $\Delta \cap\left\{g\left(x_{i}\right)=0\right\} \neq \emptyset$ : needs to blow-up the intersection points
- As well generaly the domain of integration is not closed $\partial \Delta \neq \emptyset$
- This leads to the notion of "generalized" periods


## Part I

## Tree-level amplitudes

## Tree-level amplitudes in QCD



- Tree-level amplitudes in gauge theory are decomposed into color $(n-1)!/ 2$ color-ordered sub-amplitudes

$$
\mathfrak{H}(1, \ldots, n) \sim \sum_{\sigma \in \mathbb{S}_{n-1} / \mathbb{Z}_{2}} \operatorname{Tr}\left(\lambda^{a_{1}} \lambda^{a_{\sigma(2)}} \ldots \lambda^{a_{\sigma(n)}}\right) \mathcal{A}(1, \sigma(2, \ldots, n))
$$

- $\lambda^{a}$ are generators in the fundamental representation
- $\mathcal{A}(1, \sigma(2, \ldots, n))$ are the color ordered amplitudes


## Tree-level amplitudes in QCD



- The color ordered amplitudes are not all independent
- For instance they satisfy the photon decoupling identity

$$
\sum_{\sigma \in \Im_{n-1}} \mathcal{A}_{n}(1, \sigma(2, \ldots, n))=0
$$

- There was the question of the independent amplitudes and their relations


## Tree-level amplitudes in QCD



- We evaluate them by considering the $\alpha^{\prime} \rightarrow 0$ limit of open string amplitudes on the disc.
- $\operatorname{PSL}(2, \mathbb{R})$ invariance $z_{1}=0, z_{n-1}=1$ and $z_{n}=+\infty$. (3 marked points)

$$
\mathcal{A}(\sigma(1, \ldots, n))=\int_{x_{\sigma(1)}<\cdots<x_{\sigma(n)}} f\left(x_{i}-x_{j}\right) \prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)^{2 \alpha^{\prime} k_{i} \cdot k_{j}} d^{n-3} x
$$

- The function $f\left(x_{j}\right)$ does not have branch cut but has poles. Depends on the polarisation of the external states.


## Monodromies from contour deformation

Contour deformation gives monodromy relations between the ordered amplitudes


- The monodromy relations lead to a set of linear system of equations relating different ordering of the external states

$$
\sum_{\sigma \in \Im_{n-2}} \mathcal{S}[\sigma(2, \ldots, n-1) \mid \beta(2, \ldots, n-1)]_{k_{1}} \mathcal{A}_{n}(n, \sigma(2, \ldots, n-1), 1)=0
$$

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]

## Momentum kernel

Contour deformation gives monodromy relations between the ordered amplitudes


- This leads to an object named momentum kernel $\mathcal{S}$

$$
\mathcal{S}\left[i_{1}, \ldots, i_{k} \mid j_{1}, \ldots, j_{k}\right]_{p}:=\prod_{t=1}^{k}\left(p \cdot k_{i_{t}}+\sum_{q>t}^{k} \theta(t, q) k_{i_{t}} \cdot k_{i_{q}}\right)
$$

- $\theta(t, q)=1$ if $\left(i_{t}-i_{q}\right)\left(j_{t}-j_{q}\right)<0$ and 0 otherwise
- Exists as well in string theory with $\alpha^{\prime} \neq 0$ as $\prod \sin \alpha^{\prime}(\ldots) / \alpha^{\prime}$


## Tree-level Gravity and Gauge amplitudes

- From closed string heterotic string setup we have points on the sphere
- holomorphic factorization $\left\lvert\, z^{\alpha^{\prime} k_{i} \cdot k_{j}} \rightarrow x^{\frac{\alpha^{\prime}}{2} k_{i} \cdot k_{j}} y^{\frac{\alpha^{\prime}}{2}} k_{i} \cdot k_{j}\right.$ gives product of ordered disc integrations with relative ordered contour of integrations $C_{x}$ and $C_{y}$

$$
\mathfrak{M}(1, \ldots, n)=\int_{C_{x}} d^{n-3} x \int_{C_{y}} d^{n-3} y \prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)^{\frac{\alpha^{\prime} k_{i} \cdot k_{j}}{2}}\left(y_{i}-y_{j}\right)^{\frac{\alpha^{\prime} k_{i} \cdot k_{j}}{2}} f\left(x_{i j}\right) g\left(y_{i j}\right)
$$

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]

## Tree-level Gravity and Gauge amplitudes

- From closed string heterotic string setup we have points on the sphere
- holomorphic factorization $|z|^{\alpha^{\prime} k_{i} \cdot k_{j}} \rightarrow x^{\frac{\alpha^{\prime}}{2} k_{i} \cdot k_{j}} y^{\frac{\alpha^{\prime}}{2} k_{i} \cdot k_{j}}$ gives product of ordered disc integrations with relative ordered contour of integrations $C_{x}$ and $C_{y}$
- The gauge theory and gravity amplitudes take a similar forms

$$
\begin{aligned}
\mathcal{A}_{n}^{\mathrm{YM}} & =A^{\text {vector }} \otimes \mathcal{S} \otimes A^{\text {scalar }} \\
\mathcal{M}_{n}^{\text {Grav }} & =A^{\text {vector }} \otimes \mathcal{S} \otimes A^{\text {vector }}
\end{aligned}
$$

- These relations are generic and independent of any precise parametrisation of the tree-level amplitudes
[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]


## Part II

## Two-loop amplitudes

## two-loop integrals



We consider the two-loop sunset integral in two dimensions given by

$$
\mathcal{J}_{\ominus}^{2} \propto \int_{\mathbb{R}^{4}} \frac{d^{2} \ell_{1} d^{2} \ell_{2}}{\left(\ell_{1}^{2}-m_{1}^{2}\right)\left(\ell_{2}^{2}-m_{2}^{2}\right)\left(\left(\ell_{1}+\ell_{2}-K^{2}\right)-m_{3}^{2}\right)}
$$

## two-loop integrals

The Feynman parametrisation is given by

$$
\mathcal{J}_{\ominus}^{2} \propto \int_{\substack{x \geqslant 0 \\ y \geqslant 0}} \frac{d x d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}^{2}\right)(x+y+x y)-K^{2} x y} .
$$

- We are again the setup of [Kontsevich, Zagier]
- The sunset integral is $\int_{\mathcal{D}} \omega$ with the 2-form

$$
\omega=\frac{z d x \wedge d y+x d y \wedge d z+y d z \wedge d x}{A_{\ominus}(x, y, z)} \in H^{2}\left(\mathbb{P}^{2}-\mathcal{\varepsilon}\right)
$$

- The graph is based on the elliptic curve $\mathcal{E}: A_{\ominus}(x, y, z)=0$

$$
A_{\ominus}(x, y, z):=\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}^{2} z\right)(x z+x y+y z)-K^{2} x y z .
$$

## two-loop integrals

The Feynman parametrisation is given by

$$
\mathcal{J}_{\ominus}^{2} \propto \int_{\substack{x \geqslant 0 \\ y \geqslant 0}} \frac{d x d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}^{2}\right)(x+y+x y)-K^{2} x y} .
$$

- We are again the setup of [Kontsevich, Zagier]
- The sunset integral is $\int_{\mathcal{D}} \omega$ with the 2-form

$$
\omega=\frac{z d x \wedge d y+x d y \wedge d z+y d z \wedge d x}{A_{\ominus}(x, y, z)} \in H^{2}\left(\mathbb{P}^{2}-\mathcal{E}\right)
$$

- The domain of integration is

$$
\mathcal{D}:=\left\{[x: y: z] \in \mathbb{P}^{2} \mid x \geqslant 0, y \geqslant 0, z \geqslant 0\right\}
$$

## the sunset graph motive I

- The elliptic curve intersects the domain of integration $\mathcal{D}$

$$
\mathcal{D} \cap\left\{A_{\ominus}(x, y, z)=0\right\}=\{[1: 0: 0],[0: 1: 0],[0: 0: 1]\}
$$

- We need to blow-up work in $\mathbb{P}^{2}-\varepsilon$



## the sunset graph motive II

- The domain of integration $\mathcal{D} \notin H_{2}\left(\mathbb{P}^{2}-\varepsilon\right)$ because $\partial \mathcal{D} \neq \emptyset$
- Need to pass to the relative cohomology
- If $P \rightarrow \mathbb{P}^{2}$ is the blow-up and $\hat{\varepsilon}$ is the strict transform of $\mathcal{E}$ (here $\hat{\varepsilon} \cong \varepsilon$ )
- Hexagon $\mathfrak{y}$ union of strict transform of $\partial \mathcal{D}=\{x y z=0\}$ and the 3 divisors.
- Then in $P$ we have resolved the two problems

$$
\mathcal{D} \cap \hat{\varepsilon}=\emptyset ; \quad \mathcal{D} \in H_{2}(P-\hat{\varepsilon}, \mathfrak{h}-(\mathfrak{h} \cap \hat{\varepsilon}))
$$

- The sunset integral is a period of $H^{2}(P-\hat{\varepsilon}, \mathfrak{h}-(\mathfrak{h} \cap \hat{\varepsilon}))$


## the elliptic curve of the sunset integral

- With all mass equal $m_{i}=m$ the integral is reduced to with $t=K^{2} / m^{2}$

$$
\mathcal{J}_{\ominus}(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(x+y+1)(x+y+x y)-t x y}
$$

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0 .
$$

- Special values
- At $t=0, t=1$ and $t=+\infty$ the elliptic curve factorizes.
- At $t=9$ we have the 3-particle the threshold $t=K^{2} / m^{2} \in \mathbb{C} \backslash[9,+\infty[$.




## the elliptic curve of the sunset integral

- With all mass equal $m_{i}=m$ the integral is reduced to with $t=K^{2} / m^{2}$

$$
\mathcal{J}_{\ominus}(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(x+y+1)(x+y+x y)-t x y}
$$

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0 .
$$

- Special values
- At $t=0, t=1$ and $t=+\infty$ the elliptic curve factorizes.
- At $t=9$ we have the 3-particle the threshold $t=K^{2} / m^{2} \in \mathbb{C} \backslash[9,+\infty[$.




## the elliptic curve of the sunset integral

- With all mass equal $m_{i}=m$ the integral is reduced to with $t=K^{2} / m^{2}$

$$
\mathcal{J}_{\ominus}(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(x+y+1)(x+y+x y)-t x y}
$$

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0 .
$$



## the elliptic curve of the sunset integral

- With all mass equal $m_{i}=m$ the integral is reduced to with $t=K^{2} / m^{2}$

$$
\mathcal{J}_{\Theta}(t)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{(x+y+1)(x+y+x y)-t x y}
$$

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0 .
$$

- We have a family of elliptic curve defining a $K_{3}$ surface with 4 singular fibers in [Beauville] classification.
- This is a universal family of $X_{1}(6)$ modular curves with a point of order 6


## the picard-fuchs equation of the sunset integral

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0
$$

- Since $H^{1}\left(\varepsilon_{t}\right)$ is generated by $d x / y$ and $d(d x / y) / d t$, then exist $p_{0}(t), p_{1}(t), p_{2}(t) \in \mathbb{Z}[t]$ such that

$$
p_{0}(t) \frac{d^{2}}{d t^{2}}\left(\frac{d x}{y}\right)+p_{1}(t) \frac{d}{d t}\left(\frac{d x}{y}\right)+p_{2}(t)\left(\frac{d x}{y}\right)=d \beta
$$

- The homogeneous picard-fuchs operator is

$$
L_{t}=\frac{d}{d t}\left(t(t-1)(t-9) \frac{d}{d t}\right)+(t-3)
$$

## the picard-fuchs equation of the sunset integral

$$
\mathcal{E}_{t}:(x+y+1)(x+y+x y)-t x y=0
$$

- The homogeneous picard-fuchs operator is

$$
L_{t}=\frac{d}{d t}\left(t(t-1)(t-9) \frac{d}{d t}\right)+(t-3)
$$

- Acting on the integral we have

$$
L_{t} J_{\ominus}^{2}(t)=\int_{\mathcal{D}} d \beta=-\int_{\partial \mathcal{D}} \beta \neq 0
$$

- We find that (recovering the result of [Laporta, Remiddi])

$$
\frac{d}{d t}\left(t(t-1)(t-9) \frac{d \mathcal{J}_{\ominus}(t)}{d t}\right)+(t-3) \mathcal{J}_{\ominus}(t)=-6
$$

## the sunset integral as an elliptic dilogarithm

- Evaluating the integrals leads to (for details see my talk at String Math 2013)

$$
\mathcal{J}_{\ominus}^{2}(t) \sim \alpha_{1} \varpi_{1}(t)+\alpha_{2} \varpi_{2}(t)+\varpi_{2}(t) E_{-1}\left(q_{t}\right)
$$

where $\varpi_{1}(t), \varpi_{2}(t)$ are the complex and real periods and $E_{-1}(q)$ is defined by

$$
E_{-1}(q) \sim \mathcal{J}_{\ominus}^{2}(0)-\frac{1}{2 i} \sum_{n \geqslant 0}\left(\operatorname{Li}_{2}\left(q^{n} \zeta_{6}\right)+\operatorname{Li}_{2}\left(q^{n} \zeta_{6}^{2}\right)-\operatorname{Li}_{2}\left(q^{n} \zeta_{6}^{4}\right)-\operatorname{Li}_{2}\left(q^{n} \zeta_{6}^{5}\right)\right)
$$

- $\left(\zeta_{6}\right)^{6}=1$ and $q=\exp (2 i \pi \tau(t))$ with $\tau(t)=\omega_{1}(t) / \omega_{2}(t)$
- Notice that we have $\mathrm{Li}_{2}$ and not the Bloch-Wigner $D$ function
- The function is multivalued and convergent

