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Explicit amplitude computations display rather unexpectedly simple structures
allowing to compute many more processes than expected

I On-shell recursion methods
I twistor geometry, Graßmanian, Symbol,. . .
I Dual conformal invariance
I amplitude relations . . .

All these simplifications hints on simpler structures than the diagrammatic
from Feynman rules suggest, and lead to the use of a basis of integrals for
expressing the amplitudes

I What are the basic functions entering the expressions for the amplitudes?
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Monodromies, periods

I Amplitudes are multivalued quantities : they satisfy monodromy
properties when going around the branch cuts for particle production

I As well the amplitude satisfy differential equation with respect to its
parameters : kinematic invariants sij, internal masses mi, . . .

I monodromies and differential equation are typical of periods
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Periods

[Kontsevich, Zagier] define periods are follows. P ∈ C is the ring of
periods, is z ∈ P if <e(z) and =m(z) are of the forms∫

∆∈Rn

f (xi)

g(xi)

n∏
i=1

dxi <∞
with f , g ∈ Z[x1, · · · , xn] and ∆ is algebraically defined by inequalities and
equalities.
I Typically form of the Feynman parametrization of a graph

I A Feynman graph with L loops and n edges

Igraph ∝
∫∞

0
δ(1 −

n∑
i=1

xi)
Un−(L+1)D

2

Fn−L D
2

n∏
i=1

dxi

I U is homogenous of degree L in the xi and F is homogenous of degree
L + 1 in xi
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Periods

[Kontsevich, Zagier] define periods are follows. P ∈ C is the ring of
periods, is z ∈ P if <e(z) and =m(z) are of the forms∫

∆∈Rn

f (xi)

g(xi)

n∏
i=1

dxi <∞
with f , g ∈ Z[x1, · · · , xn] and ∆ is algebraically defined by inequalities and
equalities.

I Typically form of the Feynman parametrization of a graph

I Problem for Feynman graphs ∆ ∩ {g(xi) = 0} , ∅ : needs to blow-up the
intersection points

I As well generaly the domain of integration is not closed ∂∆ , ∅

I This leads to the notion of “generalized” periods
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Part I

Tree-level amplitudes
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Tree-level amplitudes in QCD

I Tree-level amplitudes in gauge theory are decomposed into color
(n − 1)!/2 color-ordered sub-amplitudes

A(1, . . . , n) ∼
∑

σ∈Sn−1/Z2

Tr (λa1λaσ(2) · · · λaσ(n)) A(1,σ(2, . . . , n))

I λa are generators in the fundamental representation

I A(1,σ(2, . . . , n)) are the color ordered amplitudes
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Tree-level amplitudes in QCD

I The color ordered amplitudes are not all independent

I For instance they satisfy the photon decoupling identity∑
σ∈Sn−1

An(1,σ(2, . . . , n)) = 0

I There was the question of the independent amplitudes and their relations
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Tree-level amplitudes in QCD

⇐=α ′→0

X

X

X

X

X

X

X

X X X X X X X
0 1 ∞

I We evaluate them by considering the α ′ → 0 limit of open string
amplitudes on the disc.

I PSL(2,R) invariance z1 = 0, zn−1 = 1 and zn = +∞. (3 marked points)

A(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

f (xi − xj)
∏

16i<j6n

(xi − xj)
2α ′ki·kj dn−3x

I The function f (xj) does not have branch cut but has poles. Depends on
the polarisation of the external states.
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Monodromies from contour deformation

Contour deformation gives monodromy relations between the ordered
amplitudes

I The monodromy relations lead to a set of linear system of equations
relating different ordering of the external states

∑
σ∈Sn−2

S[σ(2, . . . , n − 1)|β(2, . . . , n − 1)]k1An(n,σ(2, . . . , n − 1), 1) = 0

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]
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Momentum kernel

Contour deformation gives monodromy relations between the ordered
amplitudes

1 2

n-1n-2

i-1 i+1

... ...

i

I This leads to an object named momentum kernel S

S[i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

(p · kit +

k∑
q>t

θ(t, q) kit · kiq)

I θ(t, q) = 1 if (it − iq)(jt − jq) < 0 and 0 otherwise

I Exists as well in string theory with α ′ , 0 as
∏

sinα ′(...)/α ′

[Bjerrum-bohr, Damgaard, Vanhove; Bjerrum-Bohr, Damgaard, Feng, Sondergaard; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]
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Tree-level Gravity and Gauge amplitudes

I From closed string heterotic string setup we have points on the sphere

I holomorphic factorization |z|α
′ki·kj → x

α ′
2 ki·kj y

α ′
2 ki·kj gives product of

ordered disc integrations with relative ordered contour of integrations Cx

and Cy

M(1, . . . , n) =
∫

Cx

dn−3x
∫

Cy

dn−3y
∏

16i<j6n

(xi − xj)
α ′ki·kj

2 (yi − yj)
α ′ki·kj

2 f (xij)g(yij)

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]
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Tree-level Gravity and Gauge amplitudes

I From closed string heterotic string setup we have points on the sphere

I holomorphic factorization |z|α
′ki·kj → x

α ′
2 ki·kj y

α ′
2 ki·kj gives product of

ordered disc integrations with relative ordered contour of integrations Cx

and Cy

I The gauge theory and gravity amplitudes take a similar forms

AYM
n = Avector ⊗ S⊗ Ascalar

MGrav
n = Avector ⊗ S⊗ Avector

I These relations are generic and independent of any precise
parametrisation of the tree-level amplitudes

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]
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Part II

Two-loop amplitudes
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two-loop integrals

We consider the two-loop sunset integral in two dimensions given by

I2
� ∝

∫
R4

d2`1d2`2

(`21 − m2
1)(`

2
2 − m2

2)((`1 + `2 − K2) − m2
3)
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two-loop integrals

The Feynman parametrisation is given by

I2
� ∝

∫
x>0
y>0

dxdy
(m2

1x + m2
2y + m2

3)(x + y + xy) − K2xy
.

I We are again the setup of [Kontsevich, Zagier]

I The sunset integral is
∫
Dω with the 2-form

ω =
zdx ∧ dy + xdy ∧ dz + ydz ∧ dx

A�(x, y, z)
∈ H2(P2 − E)

I The graph is based on the elliptic curve E : A�(x, y, z) = 0

A�(x, y, z) := (m2
1x + m2

2y + m2
3z)(xz + xy + yz) − K2xyz .
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two-loop integrals

The Feynman parametrisation is given by

I2
� ∝

∫
x>0
y>0

dxdy
(m2

1x + m2
2y + m2

3)(x + y + xy) − K2xy
.

I We are again the setup of [Kontsevich, Zagier]

I The sunset integral is
∫
Dω with the 2-form

ω =
zdx ∧ dy + xdy ∧ dz + ydz ∧ dx

A�(x, y, z)
∈ H2(P2 − E)

I The domain of integration is

D := {[x : y : z] ∈ P2|x > 0, y > 0, z > 0}
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the sunset graph motive I
I The elliptic curve intersects the domain of integration D

D ∩ {A�(x, y, z) = 0} = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}

I We need to blow-up work in P2 − E
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the sunset graph motive II

I The domain of integration D < H2(P2 − E) because ∂D , ∅

I Need to pass to the relative cohomology

I If P→ P2 is the blow-up and Ê is the strict transform of E (here Ê � E)

I Hexagon h union of strict transform of ∂D = {xyz = 0} and the 3
divisors .

I Then in P we have resolved the two problems

D ∩ Ê = ∅; D ∈ H2(P − Ê, h− (h ∩ Ê))

I The sunset integral is a period of H2(P − Ê, h− (h ∩ Ê))

[Bloch, Esnault, Kreimer; Müller-Stach, Weinzeirl, Zayadeh]
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the elliptic curve of the sunset integral

I With all mass equal mi = m the integral is reduced to with t = K2/m2

I�(t) =
∫∞

0

∫∞
0

dxdy
(x + y + 1)(x + y + xy) − txy

.

Et : (x + y + 1)(x + y + xy) − txy = 0 .

I Special values
At t = 0, t = 1 and t = +∞ the elliptic curve factorizes.
At t = 9 we have the 3-particle the threshold t = K2/m2 ∈ C\[9,+∞[.
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the elliptic curve of the sunset integral

I With all mass equal mi = m the integral is reduced to with t = K2/m2

I�(t) =
∫∞

0

∫∞
0

dxdy
(x + y + 1)(x + y + xy) − txy

.

Et : (x + y + 1)(x + y + xy) − txy = 0 .

I We have a family of elliptic curve defining a K3 surface with 4 singular
fibers in [Beauville] classification.

I This is a universal family of X1(6) modular curves with a point of order 6
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the picard-fuchs equation of the sunset integral

Et : (x + y + 1)(x + y + xy) − txy = 0

I Since H1(Et) is generated by dx/y and d(dx/y)/dt, then exist
p0(t), p1(t), p2(t) ∈ Z[t] such that

p0(t)
d2

dt2

(
dx
y

)
+ p1(t)

d
dt

(
dx
y

)
+ p2(t)

(
dx
y

)
= dβ

I The homogeneous picard-fuchs operator is

Lt =
d
dt

(
t(t − 1)(t − 9)

d
dt

)
+ (t − 3)

Pierre Vanhove (IPhT & IHES) Elliptic dilogarithms 10/06/2013 17 / 18



the picard-fuchs equation of the sunset integral

Et : (x + y + 1)(x + y + xy) − txy = 0

I The homogeneous picard-fuchs operator is

Lt =
d
dt

(
t(t − 1)(t − 9)

d
dt

)
+ (t − 3)

I Acting on the integral we have

LtI
2
�(t) =

∫
D

dβ = −

∫
∂D

β , 0

I We find that (recovering the result of [Laporta, Remiddi])

d
dt

(
t(t − 1)(t − 9)

dI�(t)
dt

)
+ (t − 3)I�(t) = −6
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the sunset integral as an elliptic dilogarithm

I Evaluating the integrals leads to (for details see my talk at
String Math 2013)

I2
�(t) ∼ α1$1(t) + α2$2(t) +$2(t)E−1(qt) ,

where$1(t),$2(t) are the complex and real periods and E−1(q) is defined by

E−1(q) ∼ I2
�(0) −

1
2i

∑
n>0

(Li2(qnζ6) + Li2(qnζ2
6) − Li2(qnζ4

6) − Li2(qnζ5
6))

I (ζ6)
6 = 1 and q = exp(2iπτ(t)) with τ(t) = $1(t)/$2(t)

I Notice that we have Li2 and not the Bloch-Wigner D function

I The function is multivalued and convergent

Pierre Vanhove (IPhT & IHES) Elliptic dilogarithms 10/06/2013 18 / 18

http://scgp.stonybrook.edu/events/event-pages/string-math-2013

	 Tree-level amplitudes
	 Two-loop amplitudes

