Elliptic dilogarithms and two-loop Feynman integrals

Pierre Vanhove

12th Workshop on Non-Perturbative Quantum Chromodynamics IAP, Paris

June, 10 2013

based on work to appear with Spencer Bloch

Explicit amplitude computations display rather unexpectedly simple structures allowing to compute many more processes than expected

- On-shell recursion methods
- twistor geometry, Graßmanian, Symbol,...
- Dual conformal invariance
- amplitude relations ...

All these simplifications hints on simpler structures than the diagrammatic from Feynman rules suggest, and lead to the use of a basis of integrals for expressing the amplitudes

• What are the basic functions entering the expressions for the amplitudes?

Monodromies, periods

 Amplitudes are multivalued quantities : they satisfy monodromy properties when going around the branch cuts for particle production

- ► As well the amplitude satisfy differential equation with respect to its parameters : kinematic invariants s_{ij}, internal masses m_i, ...
- monodromies and differential equation are typical of periods

Periods

[Kontsevich, Zagier] define periods are follows. $\mathcal{P} \in \mathbb{C}$ is the ring of periods, is $z \in \mathcal{P}$ if $\Re(z)$ and $\Im(z)$ are of the forms

$$\int_{\Delta \in \mathbb{R}^n} \frac{f(x_i)}{g(x_i)} \prod_{i=1}^n dx_i < \infty$$

with $f, g \in \mathbb{Z}[x_1, \dots, x_n]$ and Δ is algebraically defined by inequalities and equalities.

- Typically form of the Feynman parametrization of a graph
- A Feynman graph with *L* loops and *n* edges

$$I_{graph} \propto \int_0^\infty \delta(1 - \sum_{i=1}^n x_i) \frac{\mathcal{U}^{n-(L+1)\frac{D}{2}}}{\mathcal{F}^{n-L\frac{D}{2}}} \prod_{i=1}^n dx_i$$

• \mathcal{U} is homogenous of degree *L* in the x_i and \mathcal{F} is homogenous of degree L + 1 in x_i

Pierre Vanhove (IPhT & IHES)

Periods

[Kontsevich, Zagier] define periods are follows. $\mathcal{P} \in \mathbb{C}$ is the ring of periods, is $z \in \mathcal{P}$ if $\Re(z)$ and $\Im(z)$ are of the forms

$$\int_{\Delta \in \mathbb{R}^n} \frac{f(x_i)}{g(x_i)} \prod_{i=1}^n dx_i < \infty$$

with $f, g \in \mathbb{Z}[x_1, \dots, x_n]$ and Δ is algebraically defined by inequalities and equalities.

- Typically form of the Feynman parametrization of a graph
- Problem for Feynman graphs △ ∩ {g(x_i) = 0} ≠ Ø : needs to blow-up the intersection points
- As well generaly the domain of integration is not closed $\partial \Delta \neq \emptyset$
- This leads to the notion of "generalized" periods

Part I

Tree-level amplitudes

Tree-level amplitudes in QCD

► Tree-level amplitudes in gauge theory are decomposed into color (n-1)!/2 color-ordered sub-amplitudes

 $\mathfrak{A}(1,\ldots,n)\sim \sum_{\sigma\in\mathfrak{S}_{n-1}/\mathbb{Z}_2} \operatorname{Tr}\left(\lambda^{a_1}\lambda^{a_{\sigma(2)}}\cdots\lambda^{a_{\sigma(n)}}\right)\,\mathcal{A}(1,\sigma(2,\ldots,n))$

- λ^a are generators in the fundamental representation
- $\mathcal{A}(1, \sigma(2, ..., n))$ are the color ordered amplitudes

Tree-level amplitudes in QCD

- The color ordered amplitudes are not all independent
- For instance they satisfy the photon decoupling identity

$$\sum_{\sigma \in \mathfrak{S}_{n-1}} \mathcal{A}_n(1, \sigma(2, \ldots, n)) = 0$$

There was the question of the independent amplitudes and their relations

Tree-level amplitudes in QCD

- We evaluate them by considering the α' → 0 limit of open string amplitudes on the disc.
- ▶ $PSL(2, \mathbb{R})$ invariance $z_1 = 0$, $z_{n-1} = 1$ and $z_n = +\infty$. (3 marked points)

$$\mathcal{A}(\sigma(1,\ldots,n)) = \int_{x_{\sigma(1)} < \cdots < x_{\sigma(n)}} f(x_i - x_j) \prod_{1 \leq i < j \leq n} (x_i - x_j)^{2\alpha' k_i \cdot k_j} d^{n-3}x$$

► The function f(x_j) does not have branch cut but has poles. Depends on the polarisation of the external states.

Pierre Vanhove (IPhT & IHES)

Elliptic dilogarithms

Monodromies from contour deformation

Contour deformation gives monodromy relations between the ordered amplitudes

The monodromy relations lead to a set of linear system of equations relating different ordering of the external states

$$\sum_{\sigma \in \mathfrak{S}_{n-2}} \mathfrak{S}[\sigma(2,\ldots,n-1)|\beta(2,\ldots,n-1)]_{k_1} \mathcal{A}_n(n,\sigma(2,\ldots,n-1),1) = 0$$

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]

Pierre Vanhove (IPhT & IHES)

Elliptic dilogarithms

Momentum kernel

Contour deformation gives monodromy relations between the ordered amplitudes

This leads to an object named momentum kernel S

$$S[i_1,...,i_k|j_1,...,j_k]_p := \prod_{t=1}^k (p \cdot k_{i_t} + \sum_{q>t}^k \theta(t,q) k_{i_t} \cdot k_{i_q})$$

- ► $\theta(t,q) = 1$ if $(i_t i_q)(j_t j_q) < 0$ and 0 otherwise
- Exists as well in string theory with $\alpha' \neq 0$ as $\prod \sin \alpha'(...)/\alpha'$

[Bjerrum-bohr, Damgaard, Vanhove; Bjerrum-Bohr, Damgaard, Feng, Sondergaard; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]

Tree-level Gravity and Gauge amplitudes

- From closed string heterotic string setup we have points on the sphere
- holomorphic factorization |z|^{α'k_i⋅k_j} → x^{α'/2}k_i⋅k_j y^{α'/2}k_i⋅k_j gives product of ordered disc integrations with relative ordered contour of integrations C_x and C_y

$$\mathfrak{M}(1,\ldots,n) = \int_{C_x} d^{n-3}x \int_{C_y} d^{n-3}y \prod_{1 \leq i < j \leq n} (x_i - x_j)^{\frac{\alpha' k_i \cdot k_j}{2}} (y_i - y_j)^{\frac{\alpha' k_i \cdot k_j}{2}} f(x_{ij}) g(y_{ij})$$

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]

Tree-level Gravity and Gauge amplitudes

- ► From closed string heterotic string setup we have points on the sphere
- holomorphic factorization |z|^{α'k_i⋅k_j} → x^{α'/2}k_i⋅k_j y^{α'/2}k_i⋅k_j gives product of ordered disc integrations with relative ordered contour of integrations C_x and C_y
- The gauge theory and gravity amplitudes take a similar forms

$$\mathcal{A}_n^{\mathrm{YM}} = A^{\mathrm{vector}} \otimes \mathbb{S} \otimes A^{\mathrm{scalar}}$$
$$\mathcal{M}_n^{\mathrm{Grav}} = A^{\mathrm{vector}} \otimes \mathbb{S} \otimes A^{\mathrm{vector}}$$

 These relations are generic and independent of any precise parametrisation of the tree-level amplitudes

[Kawai,Lewellen, Tye; Tye, Zhang; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]

Part II

Two-loop amplitudes

two-loop integrals

We consider the two-loop sunset integral in two dimensions given by

$$\mathbb{J}_{\Theta}^2 \propto \int_{\mathbb{R}^4} \frac{d^2 \ell_1 d^2 \ell_2}{(\ell_1^2 - m_1^2)(\ell_2^2 - m_2^2)((\ell_1 + \ell_2 - K^2) - m_3^2)}$$

two-loop integrals

The Feynman parametrisation is given by

$$\mathbb{J}_{\ominus}^2 \propto \int_{x \ge 0 \atop y \ge 0} \frac{dx dy}{(m_1^2 x + m_2^2 y + m_3^2)(x + y + xy) - K^2 xy} \, .$$

- ▶ We are again the setup of [Kontsevich, Zagier]
- The sunset integral is $\int_{\mathcal{D}} \omega$ with the 2-form

$$\omega = \frac{zdx \wedge dy + xdy \wedge dz + ydz \wedge dx}{A_{\ominus}(x, y, z)} \in H^{2}(\mathbb{P}^{2} - \mathcal{E})$$

• The graph is based on the elliptic curve $\mathcal{E} : A_{\ominus}(x, y, z) = 0$

$$A_{\ominus}(x, y, z) := (m_1^2 x + m_2^2 y + m_3^2 z)(xz + xy + yz) - K^2 xyz.$$

two-loop integrals

The Feynman parametrisation is given by

$$\mathbb{J}_{\ominus}^2 \propto \int_{x \ge 0 \atop y \ge 0} \frac{dx dy}{(m_1^2 x + m_2^2 y + m_3^2)(x + y + xy) - K^2 xy} \, .$$

- ▶ We are again the setup of [Kontsevich, Zagier]
- The sunset integral is $\int_{\mathcal{D}} \omega$ with the 2-form

$$\omega = \frac{zdx \wedge dy + xdy \wedge dz + ydz \wedge dx}{A_{\ominus}(x, y, z)} \in H^{2}(\mathbb{P}^{2} - \mathcal{E})$$

The domain of integration is

$$\mathcal{D} := \{ [x: y: z] \in \mathbb{P}^2 | x \ge 0, y \ge 0, z \ge 0 \}$$

the sunset graph motive I

• The elliptic curve intersects the domain of integration \mathcal{D}

 $\mathcal{D} \cap \{A_{\Theta}(x, y, z) = 0\} = \{[1:0:0], [0:1:0], [0:0:1]\}$

• We need to blow-up work in $\mathbb{P}^2 - \mathcal{E}$

the sunset graph motive II

- ► The domain of integration $\mathcal{D} \notin H_2(\mathbb{P}^2 \mathcal{E})$ because $\partial \mathcal{D} \neq \emptyset$
- Need to pass to the relative cohomology
- If $P \to \mathbb{P}^2$ is the blow-up and $\hat{\xi}$ is the strict transform of ξ (here $\hat{\xi} \cong \xi$)
- Hexagon b union of strict transform of $\partial D = \{xyz = 0\}$ and the 3 divisors.
- Then in *P* we have resolved the two problems

 $\mathcal{D} \cap \hat{\mathcal{E}} = \emptyset; \qquad \mathcal{D} \in H_2(P - \hat{\mathcal{E}}, \mathfrak{h} - (\mathfrak{h} \cap \hat{\mathcal{E}}))$

• The sunset integral is a period of $H^2(P - \hat{\xi}, \mathfrak{h} - (\mathfrak{h} \cap \hat{\xi}))$

[Bloch, Esnault, Kreimer; Müller-Stach, Weinzeirl, Zayadeh]

• With all mass equal $m_i = m$ the integral is reduced to with $t = K^2/m^2$

$$\mathfrak{I}_{\Theta}(t) = \int_0^\infty \int_0^\infty \frac{dxdy}{(x+y+1)(x+y+xy) - txy} \, .$$

$$\mathcal{E}_t: (x+y+1)(x+y+xy) - txy = 0.$$

Special values

- At t = 0, t = 1 and $t = +\infty$ the elliptic curve factorizes.
- At t = 9 we have the 3-particle the threshold $t = K^2/m^2 \in \mathbb{C} \setminus [9, +\infty[.$

• With all mass equal $m_i = m$ the integral is reduced to with $t = K^2/m^2$

$$\mathfrak{I}_{\Theta}(t) = \int_0^\infty \int_0^\infty \frac{dxdy}{(x+y+1)(x+y+xy) - txy} \, .$$

$$\mathcal{E}_t: (x+y+1)(x+y+xy) - txy = 0.$$

Special values

- At t = 0, t = 1 and $t = +\infty$ the elliptic curve factorizes.
- At t = 9 we have the 3-particle the threshold $t = K^2/m^2 \in \mathbb{C} \setminus [9, +\infty[.$

• With all mass equal $m_i = m$ the integral is reduced to with $t = K^2/m^2$

$$\mathfrak{I}_{\Theta}(t) = \int_0^\infty \int_0^\infty \frac{dxdy}{(x+y+1)(x+y+xy) - txy} \, dx \, dy$$

$$\mathcal{E}_t: (x+y+1)(x+y+xy) - txy = 0.$$

• With all mass equal $m_i = m$ the integral is reduced to with $t = K^2/m^2$

$$\mathfrak{I}_{\Theta}(t) = \int_0^\infty \int_0^\infty \frac{dxdy}{(x+y+1)(x+y+xy) - txy} \, dt$$

$$\mathcal{E}_t: (x+y+1)(x+y+xy) - txy = 0.$$

- ▶ We have a family of elliptic curve defining a *K*₃ surface with 4 singular fibers in [Beauville] classification.
- This is a universal family of $X_1(6)$ modular curves with a point of order 6

the picard-fuchs equation of the sunset integral

$$\mathcal{E}_t : (x + y + 1)(x + y + xy) - txy = 0$$

► Since $H^1(\mathcal{E}_t)$ is generated by dx/y and d(dx/y)/dt, then exist $p_0(t), p_1(t), p_2(t) \in \mathbb{Z}[t]$ such that

$$p_0(t)\frac{d^2}{dt^2}\left(\frac{dx}{y}\right) + p_1(t)\frac{d}{dt}\left(\frac{dx}{y}\right) + p_2(t)\left(\frac{dx}{y}\right) = d\beta$$

The homogeneous picard-fuchs operator is

$$L_t = \frac{d}{dt} \left(t(t-1)(t-9)\frac{d}{dt} \right) + (t-3)$$

Pierre Vanhove (IPhT & IHES)

the picard-fuchs equation of the sunset integral

$$\mathcal{E}_t : (x + y + 1)(x + y + xy) - txy = 0$$

► The homogeneous picard-fuchs operator is

$$L_t = \frac{d}{dt} \left(t(t-1)(t-9)\frac{d}{dt} \right) + (t-3)$$

Acting on the integral we have

$$L_t \mathfrak{I}_{\Theta}^2(t) = \int_{\mathfrak{D}} d\beta = -\int_{\partial \mathfrak{D}} \beta \neq 0$$

▶ We find that (recovering the result of [Laporta, Remiddi])

$$\frac{d}{dt}\left(t(t-1)(t-9)\frac{d\mathfrak{I}_{\ominus}(t)}{dt}\right) + (t-3)\mathfrak{I}_{\ominus}(t) = -6$$

the sunset integral as an elliptic dilogarithm

 Evaluating the integrals leads to (for details see my talk at String Math 2013)

$$\mathfrak{I}_{\Theta}^{2}(t)\sim lpha_{1} \mathfrak{D}_{1}(t)+ lpha_{2} \mathfrak{D}_{2}(t)+ \mathfrak{D}_{2}(t) E_{-1}(q_{t})$$
 ,

where $\varpi_1(t)$, $\varpi_2(t)$ are the complex and real periods and $E_{-1}(q)$ is defined by

$$E_{-1}(q) \sim \mathcal{J}_{\Theta}^{2}(0) - \frac{1}{2i} \sum_{n \ge 0} (\operatorname{Li}_{2}(q^{n}\zeta_{6}) + \operatorname{Li}_{2}(q^{n}\zeta_{6}^{2}) - \operatorname{Li}_{2}(q^{n}\zeta_{6}^{4}) - \operatorname{Li}_{2}(q^{n}\zeta_{6}^{5}))$$

- $(\zeta_6)^6 = 1$ and $q = \exp(2i\pi\tau(t))$ with $\tau(t) = \varpi_1(t)/\varpi_2(t)$
- Notice that we have Li_2 and not the Bloch-Wigner *D* function
- The function is multivalued and convergent