Twelfth Workshop on Non-Perturnative QCD, Paris, 10-13 June, 2013

On Non-Trivial Spectra of Trivial, Two Dimensional Gauge Theories

J.Wosiek
Jagellonian University, Krakow

- Nontrivial spectra of two dimensional gauge theories
- Lattice: partition function and its continuum limit
- Adding external charges:

Lattice: transfer matrix and spectrum
continuum limit
Feynman kernel
reduced system, hamiltonian and wave functions
theta states
screening and effective fractional charge

- Fractional charges on a lattice and the continuum limit
- Nonabelian case

I. Nontrivial spectra of trivial gauge theories

- Two dimensional gauge theories are trivial - no transverse degrees of freedom.
- True only if we neglect boundary conditions.

Quantum Maxwell Dynamics in $1+1$ dimensions $\left(Q M D_{2}\right)$ on a circle

$$
E_{n}=\frac{e^{2}}{2} \operatorname{Ln}^{2}, \quad n=0, \pm 1, \pm 2, \ldots \quad \quad[\text { Manton }, ' 84]
$$

An effective 1DOF hamiltonian

$$
\begin{equation*}
H=-\frac{e^{2}}{2 L} \frac{d^{2}}{d A^{2}}, \quad 0 \leq A<L_{A}=\frac{2 \pi}{L} \tag{1}
\end{equation*}
$$

The spectrum

$$
\begin{equation*}
\psi_{n}(A)=e^{i n A L}=e^{i p_{n} A}, \quad p_{n}=n \frac{2 \pi}{L_{A}}=n L, \quad E_{n}=\frac{e^{2}}{2} L n^{2} \tag{2}
\end{equation*}
$$

What is A ?

$$
A_{x}(x, t)=A(x, t), \quad \xrightarrow{\partial_{x} A(x, t)=0} A(x, t)=A(t) \neq 0
$$

In a periodic (in x) world one cannot set a constant A to 0 by a gauge transformation - 1 DOF left

Why periodicity in A ?
If space is periodic, gauge transformations also have to be periodic

$$
g(x)=e^{i \Lambda(x)}=g(x+L), \quad \longrightarrow \quad \Lambda(x+L)=\Lambda(x)+2 \pi n
$$

Take $\Lambda(x)=2 \pi \frac{x}{L}$, then

$$
A \longrightarrow A+\partial_{x} \Lambda(x)=A+\frac{2 \pi}{L}, \quad \text { are gauge equivalent } \Longrightarrow A \in\left(0, \frac{2 \pi}{L}\right]
$$

Interpretation

- a string with n units of electric flux winding around a circle
- Gauss's law satisfied thanks to the nontrivial topology - topological strings
- electric charge even without electrons/sources !

A generalization: Θ parameter
a)

$$
\begin{gathered}
H=-\frac{e^{2}}{2 L}\left(\frac{d}{d A}+i \Theta L\right)^{2} \\
E_{n}=\frac{e^{2}}{2} L(n+\Theta)^{2}, \quad \psi_{n}(A)=e^{i n A L}
\end{gathered}
$$

b)

$$
\begin{gathered}
\tilde{H}=-\frac{e^{2}}{2 L} \frac{d^{2}}{d A^{2}} \\
E_{n}=\frac{e^{2}}{2} L(n+\Theta)^{2}, \quad \tilde{\psi}_{n}(A)=e^{i(n+\Theta) A L} \\
\tilde{\psi}_{n}(A)=e^{i \Theta A L} \psi_{n}(A)
\end{gathered}
$$

Interpretation: $e \Theta-$ classic, constant electric field
II. $Q M D_{2}$ on a lattice

Partition function on a 2x2 lattice

$$
\begin{gathered}
Z=\int_{0}^{2 \pi} B\left(\theta_{12}+\vartheta_{22}-\theta_{11}-\vartheta_{12}\right) B\left(\theta_{22}+\vartheta_{12}-\theta_{21}-v_{22}\right) \\
B\left(\theta_{11}+\vartheta_{21}-\theta_{12}-\vartheta_{11}\right) B\left(\theta_{21}+\vartheta_{11}-\theta_{22}-\vartheta_{21}\right) \\
d(\text { links }) \\
\\
B\left(\phi_{P}\right)=e^{\beta \cos \left(\phi_{P}\right)}, \quad d(\text { links })=\Pi_{l} \frac{d \alpha_{l}}{2 \pi}
\end{gathered}
$$

Change variables from links to plaquettes ϕ_{P}

- One constraint between plaquette angles (PBC)

$$
\begin{gathered}
\sum_{P} \phi_{P}=0 \\
Z=\int_{0}^{2 \pi} d \phi_{1} d \phi_{2} d \phi_{3} B\left(\phi_{1}\right) B\left(\phi_{2}\right) B\left(\phi_{3}\right) B\left(\phi_{1}+\phi_{2}+\phi_{3}\right) .
\end{gathered}
$$

A character expansion (Fourier analysis on a group)

$$
B(\phi)=\sum_{n=-\infty}^{\infty} I_{n}(\beta) \exp (i n \phi),
$$

The partition function "almost" factorizes

$$
Z=\Sigma_{n} I_{n}(\beta)^{4}
$$

For $N_{x} \mathbf{x} N_{t}$ lattice

$$
\begin{equation*}
Z=\int d^{N_{V}-1} \phi_{P}\left(\Pi_{P}^{N_{V}-1} B\left(\phi_{P}\right)\right) B\left(\Sigma_{P}^{N_{V}-1} \phi_{P}\right)=\Sigma_{n} I_{n}(\beta)^{N_{V}}, \quad N_{V}=N_{t} * N_{x} \tag{3}
\end{equation*}
$$

The continuum limit

$$
\begin{gathered}
Z=\# \Sigma_{n}\left(\frac{I_{n}(\beta)}{I_{0}(\beta)}\right)^{N_{x} * N_{t}}, \\
a N_{t}=T, \quad a N_{x}=L \quad \beta=\frac{1}{e^{2} a^{2}}, \quad a \rightarrow 0 .
\end{gathered}
$$

Asymptotic expansion of modified Bessel function

$$
I_{n}(\beta) \rightarrow \frac{e^{\beta}}{\sqrt{2 \pi \beta}}\left(1-\frac{4 n^{2}-1}{8 \beta}+\ldots\right)
$$

gives

$$
Z_{L Q M D_{2}} \quad \rightarrow \quad \# \Sigma_{n}\left(1-\frac{e^{2}}{2} n^{2} a^{2}\right)^{N_{x} N_{t}}=\Sigma_{n} e^{-E_{n} T}, \quad E_{n}=\frac{1}{2} e^{2} n^{2} L
$$

\longrightarrow Manton fluxes result in the continuum limit of lattice $Q M D_{2}$

Emergence of a constant mode - Coulomb gauge on a lattice

A single row of $N_{x}=3$ horizontal links $\theta_{1}, \theta_{2}, \theta_{3}$
A local gauge transformation specified by $\alpha_{1}, \alpha_{2}, \alpha_{3}$

$$
\begin{aligned}
& \theta_{1} \rightarrow{ }^{g} \theta_{1}=\theta_{1}+\alpha_{1}-\alpha_{2} \\
& \theta_{2} \rightarrow{ }^{g} \theta_{2}=\theta_{2}+\alpha_{2}-\alpha_{3} \\
& \theta_{3} \rightarrow{ }^{g} \theta_{3}=\theta_{3}+\alpha_{3}-\alpha_{1}
\end{aligned}
$$

or

$$
{ }^{g} \theta_{i}=\theta_{i}+\beta_{i}, \quad \sum_{i=1}^{3} \beta_{i}=0
$$

If we choose

$$
\begin{aligned}
\beta_{1} & =\frac{1}{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\theta_{1} \\
\beta_{2} & =\frac{1}{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\theta_{2} \\
\beta_{3} & =\frac{1}{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\theta_{3}
\end{aligned}
$$

then all new link angles are equal

$$
{ }^{g} \theta_{1}={ }^{g} \theta_{2}={ }^{g} \theta_{3}=\frac{1}{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right) \equiv \theta_{\text {row }} .
$$

\Longrightarrow Only one degree of freedom remains

A transfer matrix

- partition function

$$
\begin{equation*}
Z=\int d 4 d 3 d 2 d 1<4|\Pi| 3><3|\Pi| 2><2|\Pi| 1><1|\Pi| 4>=\operatorname{Tr}\left(\Pi^{4}\right) \tag{4}
\end{equation*}
$$

where $d i=d \alpha_{i} d \beta_{i}$ and the states $\left.|i>=| \alpha_{i}, \beta_{i}\right\rangle$.

- elements of transfer matrix, in the angular representation, are

$$
\begin{equation*}
<\alpha^{\prime}, \beta^{\prime}|\Pi| \alpha, \beta>=\int d \vartheta_{1} d \vartheta_{2} B\left(\alpha+\vartheta_{2}-\alpha^{\prime}-\vartheta_{1}\right) B\left(\beta+\vartheta_{1}-\beta^{\prime}-\vartheta_{2}\right) \tag{5}
\end{equation*}
$$

for N_{x} sites, and in the Coulomb gauge, they can be rewritten as

$$
<\theta|\Pi| \theta^{\prime}>=\Sigma_{n} I_{n}(\beta)^{N_{x}} e^{i n N_{x}\left(\theta-\theta^{\prime}\right)}
$$

with θ being now a single, common coordinate of all N_{x} horizontal links.

Continuum limit $N_{x} \theta \rightarrow L A$

$$
\beta=\frac{1}{e^{2} a^{2}}, \quad a N_{x}=L, \quad \theta=a A
$$

repeating earlier steps gives

$$
<\theta|\Pi| \theta^{\prime}>\longrightarrow \Sigma_{n} e^{-E_{n} a} e^{i n L\left(A-A^{\prime}\right)}=K\left(A, A^{\prime}, \epsilon=a\right)
$$

which is nothing but a spectral representation of the Feynman kernel propagating the system (1-2) through a time lapse $\epsilon=a$.

- Volume reduction
III. Adding external charges

Wilson loops - a tailing trick

$$
\begin{gather*}
W[\Gamma]=\Pi_{l \in \Gamma} e^{i \theta_{l}}=\Pi_{p \in i n(\Gamma)} e^{i \phi_{p}} \\
Z\langle W\rangle=\int d^{N_{V}-1} \phi_{p}\left(\Pi_{p \in i n(\Gamma)} e^{i \phi_{p}} B\left(\phi_{p}\right)\right)\left(\Pi_{p \in o u t(\Gamma)} B\left(\phi_{p}\right)\right) B\left(\Sigma_{p}^{N_{V}-1} \phi_{p}\right) \\
=\Sigma_{n} I_{n}(\beta)\left(\Pi_{i n(\Gamma)} \int_{\phi_{p}} e^{i(n+1) \phi_{p}} B\left(\phi_{p}\right)\right)\left(\Pi_{o u t(\Gamma)} \int_{\phi_{p^{\prime}}} e^{i n \phi_{p^{\prime}}} B\left(\phi_{p^{\prime}}\right)\right) \\
=\Sigma_{n} I_{n}(\beta)^{N_{x} * N_{t}-n_{x} * n_{t}} I_{n+1}(\beta)^{n_{x} * n_{t}} . \tag{6}
\end{gather*}
$$

Time like Polyakov loops

As before

$$
\begin{equation*}
Z<P^{\dagger}(1) P\left(n_{x}+1\right)>=\Sigma_{n} I_{n}(\beta)^{N_{t} *\left(N_{x}-n_{x}\right)} I_{n+1}(\beta)^{N_{t} * n_{x}} \tag{7}
\end{equation*}
$$

Continuum limit

As earlier, introduce the dimensionful lattice constant, use the asymptotic form of Bessel functions and express (7) in terms of physical distances (in particular the distance between sources, $a n_{x}=R$) to obtain

$$
\begin{equation*}
Z<P(0)^{\dagger} P(R)>=\Sigma_{n} e^{-E_{n}^{P P} T}, \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{n}^{P P}=\frac{e^{2}}{2}\left(n^{2}(L-R)+(n+1)^{2} R\right), \quad n=0, \pm 1, \pm 2, \ldots \tag{9}
\end{equation*}
$$

A straightforward interpretation:

$$
\begin{equation*}
E_{n}^{P P}=\frac{e^{2}}{2}\left(n^{2}(L-R)+(n+1)^{2} R\right), \quad n=0, \pm 1, \pm 2, \ldots \tag{10}
\end{equation*}
$$

- Time like Polyakov lines modify Gauss's low at spatial points 0 and R - they introduce external unit charges at these positions.
- Such charges cause additional unit of flux extending over distance R.
- Hence the two contributions to the eigenenergies: an "old" flux over the distance $L-R$ and the new one, bigger by one unit (fluxes are additive !), over R.
- Interesting special cases:
\rightarrow at large T the lowest, $n=0$ and $n=-1$, states dominate. Then we just have standard (unit flux) strings of length R and $\mathrm{L}-\mathrm{R}$,
$\rightarrow R=0$ - old topological flux with charge n .
$\rightarrow R=L$ - when external charges meet at the "end point" of a circle, they annihilate $\left(e^{+} \delta_{P}(0)+e^{-} \delta_{P}(L)=0\right.$)and leave behind a topological string with length L and charge bigger by one unit.
- Varying R interpolates between integer valued topological fluxes.

Equivalent form

$$
\begin{equation*}
E_{n}^{P P}=\frac{e^{2}}{2} L(n+\rho)^{2}+\text { const. }(L, R), \quad \rho=\frac{R}{L}, \quad \text { const. }=\frac{e^{2}}{2} L \rho(1-\rho) \tag{11}
\end{equation*}
$$

- Indeed $e \frac{R}{L}$ is the electric field, generated by two sources, averaged over the whole volume.
- The system does not see any distances, $A_{x}(x)=$ const., hence averaging over the volume.
- Changing R allows to mimic arbitrary real charge $q=e(n+\rho)$.
- Only $[\rho]$ is relevant.

Hamiltonian and wave functions

Transfer matrix: repeat previous steps with two Polyakov lines

$$
\begin{align*}
& <\theta\left|\Pi^{P P}\right| \theta^{\prime}>=\Sigma_{n} I_{n}(\beta)^{N_{x}-n_{x}} I_{n+1}(\beta)^{n_{x}} e^{i n\left(N_{x}-n_{x}\right)\left(\theta-\theta^{\prime}\right)} e^{i(n+1) n_{x}\left(\theta-\theta^{\prime}\right)} \tag{12}\\
& \equiv K_{L}^{P P}\left(\theta, \theta^{\prime}\right)=\Sigma_{n} I_{n}(\beta)^{N_{x}-n_{x}} I_{n+1}(\beta)^{n_{x}} e^{i n N_{x}\left(\theta-\theta^{\prime}\right)} e^{i n_{x}\left(\theta-\theta^{\prime}\right)} \tag{13}
\end{align*}
$$

In the continuum limit , $N_{x} \theta=L A, n_{x} \theta=R A$, we get

$$
\begin{equation*}
K_{L}^{P P}\left(\theta, \theta^{\prime}\right) \longrightarrow K^{P P}\left(A, A^{\prime}, \epsilon\right)=\Sigma_{n} e^{-\frac{e^{2} L}{2}\left((n+\rho)^{2}+\rho(1-\rho)\right) \epsilon} e^{i(n+\rho) L\left(A-A^{\prime}\right)} . \tag{14}
\end{equation*}
$$

which is the momentum expansion of the Feynman kernel describing 1DOF QM with above spectrum. Now we can identify eigenfunctions and the hamiltonian

$$
\begin{equation*}
H=-\frac{e^{2} L}{2} \frac{d^{2}}{d \chi^{2}}+\frac{e^{2} L}{2} \rho(1-\rho), \quad \psi_{n}(\chi)=e^{i(n+\rho) \chi} \tag{15}
\end{equation*}
$$

Or, in another basis

$$
\begin{gathered}
\bar{K}^{P P}\left(A, A^{\prime}, \epsilon\right) \equiv e^{-i \rho\left(A-A^{\prime}\right) L} K^{P P}\left(A, A^{\prime}, \rho\right) . \\
\bar{H}=-\frac{e^{2} L}{2}\left(\frac{d}{d \chi}+i \rho\right)^{2}+\frac{e^{2} L}{2} \rho(1-\rho), \quad \chi=L A, \quad \bar{\psi}_{n}(\chi)=e^{i n \chi},
\end{gathered}
$$

with the spectrum (11) and corresponding, periodic eigenfunctions.

- Θ parameter acquires now a straightforward interpretation

$$
\Theta_{\text {Manton }}=\rho=\frac{R}{L},
$$

- A new constant term.

Θ-vacua

- The transformation $A \longrightarrow A+\frac{2 \pi}{L}$ is a large gauge transformation, $\Lambda(x)=\frac{2 \pi x}{L}, \Lambda(x+$ $L)=\Lambda(x)+2 \pi$
- Full analogy 4D YM and/or the crystal : many classical configurations around which we can quantize
- Θ vacua: $|\Theta\rangle=\Sigma_{n} e^{i \Theta n}|n\rangle$
- The wave function of a Θ-state $\psi_{\Theta}(x)=\langle x \mid \Theta\rangle$ satisfies $\psi_{\Theta}(x-d)=e^{i \Theta} \psi_{\Theta}(x)$
- The solution (Bloch theorem) : $\psi_{\Theta}(x)=e^{i \Theta x / d} u_{\Theta}(x)$, with periodic $u_{\Theta}(x)$
- Our case: $\psi_{n}(A)=e^{i(n+\rho) A L}=e^{i \rho A L} e^{i n A L}$ is exactly of Bloch type upon identification $x \rightarrow A, d \rightarrow 2 \pi / L, \Theta \rightarrow 2 \pi \rho$
- Introducing external charges fixes the Θ-vacuum in $Q M D_{2}$.
- $\mathrm{D}=4$: in a Θ-vacuum some field configurations acquire electric charge [Witten '76].

More, different charges

R_{2} - distance between doubly charged sources
R_{1} - distance between singly charged ones

$$
\begin{gathered}
Z<P(i)^{\dagger} P(j)^{2 \dagger} P^{2}\left(j+n_{2}\right) P\left(i+n_{1}\right)>= \\
\Sigma_{n} I_{n}(\beta)^{N_{t}\left(N_{x}-n_{1}\right)} I_{n+1}(\beta)^{N_{t}\left(n_{1}-n_{2}\right)} I_{n+3}(\beta)^{N_{t} n_{2}},
\end{gathered}
$$

- eigenenergies in the continuum limit

$$
\begin{aligned}
E_{n}^{P P P P} & =\frac{e^{2}}{2}\left(n^{2}\left(L-R_{1}\right)+(n+1)^{2}\left(R_{1}-R_{2}\right)+(n+3)^{2} R_{2}\right) \\
& =\frac{e^{2}}{2} L\left(\left(n+\rho_{1}+2 \rho_{2}\right)^{2}+\rho_{1}\left(1-\rho_{1}\right)+4 \rho_{2}\left(2-\rho_{1}-\rho_{2}\right)\right)
\end{aligned}
$$

etc. 1 DOF quantum mechanical systems can be also readily constructed.

- This time $\Theta=\left(R_{1}+2 R_{2}\right) / L$, i.e. it is again equal to the external field averaged over the whole volume.
IV. Arbitrary charges on a lattice

Why? To learn about screening
Massive Schwinger model
$\sigma_{q}=m e\left(1-\cos \left(2 \pi \frac{q}{e}\right)\right) \quad m / e \ll 1, \quad$ [Coleman et al., '75]
\Rightarrow generalizations for large $\mathrm{N} Q C D_{2}$.
\Rightarrow How to put arbitrary (noncongruent with e) charges on a lattice?

- One way: as above $q=e(n+R / L)$
- Another way: new observables

Wilson loops with arbitrary charge

$$
Z\left\langle W_{Q}\right\rangle=\int(W[\Gamma])^{Q} e^{-S}, \quad Q=q / e
$$

Contras:
gauge invariance - not if you carefully/consistently deal with multivaluedness
dependence on the boundaries in angular variables - not if you do loops

Pros:
Results are consistent $(M C \leftrightarrow T H)$
New structure appears $Q M D_{2}$ Why not!

Q-loops theoretically

$$
\begin{aligned}
& Z\left\langle W_{Q}\right\rangle= \int_{0}^{2 \pi} d(l i n k s)\left(\Pi_{l \in \Gamma} e^{i Q \theta_{l}}\right)\left(\Pi_{p}^{N_{V}} B\left(\phi_{p}\right)\right) \\
&= \Sigma_{m_{1}, m_{2}, \ldots, m_{N_{V}}} I_{m_{1}} \ldots I_{m_{N_{V}}} \int_{l i n k s}\left(\Pi_{l \in \Gamma} e^{i Q \theta_{l}}\right)\left(\Pi_{p}^{N_{V}} e^{i m_{p} \phi_{p}}\right) \\
&= \Sigma_{m_{1}, m_{2}, \ldots, m_{N_{V}}} I_{m_{1}} \ldots I_{m_{N_{V}}}\left(\Pi_{l \notin \Gamma} \delta_{m_{L}(l), m_{R}(l)}\right)\left(\Pi_{l \in \Gamma} \bar{S}\left(Q-m_{L}(l)+m_{R}(l)\right)\right) \\
&= \Sigma_{m, n} I_{n}^{N_{x} N_{t}-n_{x} n_{t}} I_{m}^{n_{n} n t} S(Q-m+n)^{n_{x}+n_{t}}, \\
& \quad \bar{S}(x)=\frac{\sin \pi x}{\pi x}, \quad S(x)=\left(\frac{\sin \pi x}{\pi x}\right)^{2}
\end{aligned}
$$

and "experimentally"

Figure 1:

- Q-loops can be defined on a lattice - MC agrees with TH
- They do not create states with arbitrary charge
- they excite the only existing quantum states with integer charges

Continuum limit

$$
\begin{array}{r}
Z\left\langle W_{Q}\right\rangle=\Sigma_{m, n} I_{n}^{N_{x} N_{t}-n_{x} n_{t}} I_{m}^{n_{x} n_{t}} S(Q-(n-m))^{n_{t}+n_{x}}= \\
\Sigma_{m, n} \exp \left(-\frac{e^{2}}{2} n^{2} L(T-t)\right) \exp \left(-\frac{e^{2}}{2}\left(n^{2}(L-R)+m^{2} R\right) t\right) \\
S(Q-(n-m))^{(t+R) / a}
\end{array}
$$

does not exist at fixed, not integer Q.
\Longrightarrow However the classical limit:
$Q \rightarrow \infty$, with $q=Q e-f i x e d$, on a fixed lattice ($a, N^{\prime} s$, const.) does exist!

Then $\beta \equiv b^{2}=1 / e^{2} a^{2} \rightarrow \infty$, but not because $a \rightarrow 0$, but because $e \rightarrow 0$.
The spectrum of fluxes becomes continuous: $n \rightarrow u=n / b, m \rightarrow v=n / b$

Therefore $(Q=q / e=\sqrt{\beta / \kappa}=b / g, g=1 / q a)$

$$
\begin{array}{r}
Z K_{\Pi Q Q}=\beta \int d u d v \exp \left(-\frac{1}{2}\left(u^{2}\left(N_{x}-n_{x}\right)+v^{2} n_{x}\right)\right) \\
S\left(b\left(g^{-1}-(u-v)\right)\right)^{2} e^{i b u\left(\Theta_{L-R}-\Theta_{L-R}^{\prime}\right)} e^{i b v\left(\Theta_{R}-\Theta_{R}^{\prime}\right)}
\end{array}
$$

using

$$
S(b \Delta) \xrightarrow{b \rightarrow \infty} \frac{1}{b} \delta(\Delta)
$$

gives

$$
\begin{array}{r}
Z K_{\Pi Q Q}=\sqrt{\beta} \int d u \exp \left(-\frac{1}{2}\left(u^{2}\left(N_{x}-n_{x}\right)+\left(u-g^{-1}\right)^{2} n_{x}\right)\right) \\
e^{i b u\left(\Theta_{L-R^{-}}-\Theta_{L-R}^{\prime}\right)} e^{i b\left(u-g^{-1}\right)\left(\Theta_{R}-\Theta_{R}^{\prime}\right)}
\end{array}
$$

Now, do the gaussian integral, take the continuum limit to obtain

$$
Z K_{\Pi Q Q}=\sqrt{\beta} \sqrt{\frac{2 \pi a}{L}} \exp \left(-\frac{L}{2} \frac{\left(A-A^{\prime}\right)^{2}}{a}\right) \exp \left(-\frac{q^{2}}{2} \rho(1-\rho) L a\right)
$$

\Longrightarrow a free particle propagating over a time a, but in a constant background potential

$$
V=\frac{q^{2}}{2} \rho(1-\rho) L
$$

with arbitrary, real value of a classical charge q.

- The classical energy with a continuous charge q results from the contribution of many microscopic states with discrete charges.
- the structure (zeroes of the string tension)
- Continuum: problem reduces to N constant in space, but constrained, angles $\theta_{i}, \Sigma_{i} \theta_{i}=0$.

Hamiltnian is again quadratic and the spectrum is known explicitly [Hetrick and Hosotani '89]

$$
E_{\{n\}}=\frac{g^{2} L}{4}\left(\Sigma_{i} n_{i}^{2}-\frac{1}{N}\left(\Sigma_{i} n_{i}\right)^{2}\right), \quad i=1, \ldots, N-1
$$

- Continuum: different spectrum was obtained by Rajeev: $E_{R}=\frac{g^{2} L}{2} C_{2}(R)$
- Discrepancy comes from the Casimir energy due to the curvature of the group manifold [Hetrick '93, Witten '91,'92]
- Lattice: continuum spectrum \Longleftarrow the large β behaviour of the character expansion of Boltzman factor.

It is given by the Casimir plus, the N dependent, constant curvature correction/Casimir energy, and agrees with Hetrick and Hosotani .

- External charges in $Y M_{2}$ - studied by many [Semenoff et al. '97] but above connection with Θ-vacuum not.

EU grant (via Foundation for Polish Science)

Jagellonian University International PhD Studies on Physics of Complex Systems

- 1 M Euro
- 4 years
- 14 PhD students ($1 / 2-2$ years abroad)
- 9 Local Supervisors
- 17 Foreign Partners: J. Ambjorn, J.P. Blaizot, H. Nicolai, S. Sharpe, ...

